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Abstract

Intraguild predation is added to a mathematical model of competition between two species for a single 
nutrient with internal storage in the unstirred chemostat. At first, we established the sharp a priori estimates 
for nonnegative solutions of the system, which assure that all of nonnegative solutions belong to a special 
cone. The selection of this special cone enables us to apply the topological fixed point theorems in cones 
to establish the existence of positive solutions. Secondly, existence for positive steady state solutions of 
intraguild prey and intraguild predator is established in terms of the principal eigenvalues of associated 
nonlinear eigenvalue problems by means of the degree theory in the special cone. It turns out that positive 
steady state solutions exist when the associated principal eigenvalues are both negative or both positive.
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1. Introduction

Intraguild predation is a common phenomenon in ecosystems, in which the predators not only 
feed on the prey but also consume the same prey resources. Ecological theory predicts that coex-
istence of intraguild predators and intraguild prey can occur in intraguild predation ecosystems 
(see, e.g., [2,3,6,14–16]). Recently, Wilken et al. [20] proposed a mathematical model describing 
the population dynamics of a intraguild predation system, and their experimental results support 
the theoretical predictions. In the experiments of [20], Ochromonas (a mixotrophic organism) 
and Microcystis (an autotrophic prey) share ammonium (a nitrogen resource), and Ochromonas
also feeds on Microcystis for growth.

The dynamics of the chemostat experiments in [20] is governed by the following ordinary 
differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR
dt

= (R(0) − R)D − f1(R,Q1)N1 − f2(R,Q2)N2,

dN1
dt

= [μ1(Q1) − D]N1 − g(N1)N2,

dQ1
dt

= f1(R,Q1) − μ1(Q1)Q1,

dN2
dt

= [μ2(Q2) − D]N2,

dQ2
dt

= f2(R,Q2) − μ2(Q2)Q2 + g(N1)Q1,

R(0) ≥ 0, Ni(0) ≥ 0, Qi(0) ≥ Qmin,i , i = 1,2,

(1.1)

where R(t) represents the concentration of nutrient (ammonium) at time t ; N1(t) and N2(t)

denote the population densities of autotrophic prey organism (Microcystis) and mixotrophic 
chrysophyte (Ochromonas), respectively. For i=1,2, Qi(t) represents the average amount of 
stored nutrient per cell of i-th population at time t . μi(Qi) is the growth rate of species i as 
a function of cell quota Qi , fi(R, Qi) is the per capita nutrient uptake rate, per cell of species 
i as a function of nutrient concentration R and cell quota Qi ; Qmin,i denotes the threshold cell 
quota below which no growth of species i occurs; R(0) and D stand for the nutrient supply 
concentration and dilution rate of the chemostat, respectively. Both mortality rates of N1(t) and 
N2(t) are assumed to be equal to the dilution rate (D) of the chemostat (see [20]). The function 
g(N1) is the functional response of the mixotroph feeding on the autotroph; the term g(N1)Q1
describes the assimilation of nutrients from ingested prey. The predation rate of the mixotroph 
feeding on the autotroph, g(N1), follows a Holling type III functional response:

g(N1) = gmaxN
b
1

Kb
max + Nb

1

, b > 1. (1.2)

The specific growth rates of the autotroph and mixotroph take the form (see also [4])

μi(Qi) = μmax,i (1 − Qmax,i − Qi

Qmax,i − Qmin,i

), i = 1,2,

where Qmin,i ≤ Qi ≤ Qmax,i , μmax,i is the maximum specific growth rate of species i, and 
Qmax,i and Qmin,i are its maximum and minimum cell quotas, respectively. The nutrient uptake 
rates of the species take the form (see also [13]):
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fi(R,Qi) = amax,iR

Ki + R

Qmax,i − Qi

Qmax,i − Qmin,i

, i = 1,2,

where Qmin,i ≤ Qi ≤ Qmax,i , amax,i is the maximum nutrient uptake rate of species i and Ki

is its half-saturation constant for nutrient uptake. For the rest of this paper, we assume that the 
functions μi(Qi) and fi(R, Qi) satisfy the following assumptions with i = 1, 2

(H1) μi(Qi) is Lipschitz continuous for Qi ≥ Qmin,i , and satisfies μi(Qi) ≥ 0, μ′
i (Qi) > 0 for 

a.e. Qi ≥ Qmin,i , μi(Qmin,i ) = 0, where K is a positive constant;
(H2) fi(R, Qi) and ∂fi(R,Qi)

∂R
are Lipschitz continuous for R ≥ 0 and Qi ≥ Qmin,i ; 

∂fi(R,Qi)
∂R

≥
0, ∂fi (R,Qi)

∂Qi
≤ 0 and fi(R, Qi) ≥ 0 for a.e. R ≥ 0 and Qi ≥ Qmin,i ; there exists QBi ∈

(Qmin,i , +∞] such that

fi(R,Qi) > 0,
∂fi(R,Qi)

∂R
> 0 in (R,Qi) ∈ R+ × [Qmin,i ,QBi),

fi(R,Qi) = 0 in {(R,Qi) ∈R+ × [Qmin,i ,+∞) : R = 0 or Qi ≥ QBi}.
(When QBi = +∞, it is understood that fi(R, Qi) = 0 if and only if R = 0.)

System (1.1) was mathematically analyzed by the authors in [22]. Theoretical predictions 
in [22] and the experimental results in [20] have the same conclusions that coexistence of 
Ochromonas (the intraguild predator) and Microcystis (the prey) can happen if Microcystis is 
a better competitor for ammonium. In a real ecosystem, the habitat is poorly mixed, and it is 
more realistic to extend system (1.1) to include spatial variations. For this purpose, the authors in 
[11] assumed that U1 = Q1N1 and U2 = Q2N2 are the total amounts of stored nutrients at time t
for the intraguild prey and predator, respectively. Then system (1.1) is equivalent to the following 
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR
dt

= (R(0) − R)D − f1(R, U1
N1

)N1 − f2(R, U2
N2

)N2,

dN1
dt

=
[
μ1(

U1
N1

) − D
]
N1 − g(N1)N2,

dU1
dt

= f1(R, U1
N1

)N1 − DU1 − h(N1)U1N2,

dN2
dt

=
[
μ2(

U2
N2

) − D
]
N2,

dU2
dt

= f2(R, U2
N2

)N2 − DU2 + h(N1)U1N2,

R(0) ≥ 0, Ni(0) ≥ 0, Ui(0) ≥ 0, i = 1,2,

(1.3)

where

h(N1) := g(N1)

N1
. (1.4)

By virtue of (1.2) and b > 1, one can conclude that h(N1) is continuously differentiable on 
[0, +∞) with h(0) = 0. The unstirred chemostat (see, e.g., [10,12,18,21,23]) is a common labo-
ratory apparatus which is usually regarded as a spatially variable habitat in which nutrients and 
organisms are transported by diffusion. Inspired by the previous models with variable quotas in 
spatially variable habitats (see, e.g., [5,7–9]), the authors in [11] extended system (1.3) to the 
following unstirred chemostat model with internal storage:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂R
∂t

= d ∂2R
∂x2 − f1(R, U1

N1
)N1 − f2(R, U2

N2
)N2, x ∈ (0,1), t > 0,

∂N1
∂t

= d ∂2N1
∂x2 + μ1(

U1
N1

)N1 − g(N1)N2, x ∈ (0,1), t > 0,

∂U1
∂t

= d ∂2U1
∂x2 + f1(R, U1

N1
)N1 − h(N1)U1N2, x ∈ (0,1), t > 0,

∂N2
∂t

= d ∂2N2
∂x2 + μ2(

U2
N2

)N2, x ∈ (0,1), t > 0,

∂U2
∂t

= d ∂2U2
∂x2 + f2(R, U2

N2
)N2 + h(N1)U1N2, x ∈ (0,1), t > 0,

(1.5)

with boundary conditions⎧⎪⎪⎨⎪⎪⎩
∂R
∂x

(0, t) = −R(0), ∂R
∂x

(1, t) + γR(1, t) = 0, t > 0,

∂Ni

∂x
(0, t) = 0,

∂Ni

∂x
(1, t) + γNi(1, t) = 0, t > 0, i = 1,2,

∂Ui

∂x
(0, t) = 0,

∂Ui

∂x
(1, t) + γUi(1, t) = 0, t > 0, i = 1,2,

(1.6)

and initial conditions {
R(x,0) = R0(x) ≥ 0, Ni(x,0) = N0

i (x) ≥ 0,

Ui(x,0) = U0
i (x) ≥ 0, x ∈ [0,1], i = 1,2,

(1.7)

where d and γ represent the diffusion coefficient and the washout constant, respectively.
For system (1.5)–(1.7), the authors in [11] first determined conditions such that there is a triv-

ial steady-state solution with neither species present, and two semitrivial steady-state solutions 
with just one of the species. Then coexistence of the intraguild predator and prey for system 
(1.5)–(1.7) is possible if both of the semitrivial steady-state solutions are “uniform weak re-
pellers”. The authors in [11] also discussed another interesting case that coexistence for system 
(1.5)–(1.7) is possible if the semitrivial steady-state solution with the presence of prey and the 
absence of predator is a “uniform weak repeller”, but the semitrivial steady-state solution with 
the presence of predator and the absence of prey does not exist. Basically, arguments used in [11]
rely on the theory of uniform persistence.

There is another common competitive outcome for an ecosystem, namely, bistability, that is, 
competitive exclusion depends on initial conditions. This phenomenon usually arises when both 
of the semitrivial steady-state solutions are locally asymptotically stable, and we point out that 
the arguments in [11] can not be applied to this case. Instead, we will use the degree theory in 
cones (see [1, Lemma 12.1]) to investigate the existence of positive steady-state solutions for 
system (1.5)–(1.7). Substituting the new variable (see, e.g., [10])

�(x, t) = R(x, t) + U1(x, t) + U2(x, t)

into (1.5)–(1.7), it follows that{
∂�
∂t

= d ∂2�
∂x2 , x ∈ (0,1), t > 0,

∂�
∂x

(0, t) = −R(0), ∂�
∂x

(1, t) + γ�(1, t) = 0, t > 0.

It is easy to see that �(x, t) satisfies lim
t→∞�(x, t) = z(x) uniformly in x ∈ [0, 1], where z(x) =

R(0)(
1+γ − x). Thus we obtain the limiting system of (1.5)–(1.7) as follows

γ
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂N1
∂t

= d ∂2N1
∂x2 + μ1(

U1
N1

)N1 − g(N1)N2,

∂U1
∂t

= d ∂2U1
∂x2 + f1(z(x) − U1 − U2,

U1
N1

)N1 − h(N1)U1N2,

∂N2
∂t

= d ∂2N2
∂x2 + μ2(

U2
N2

)N2,

∂U2
∂t

= d ∂2U2
∂x2 + f2(z(x) − U1 − U2,

U2
N2

)N2 + h(N1)U1N2,

(1.8)

for (x, t) ∈ (0, 1) × (0, ∞) with boundary conditions

{
∂Ni

∂x
(0, t) = 0,

∂Ni

∂x
(1, t) + γNi(1, t) = 0, t > 0, i = 1,2,

∂Ui

∂x
(0, t) = 0,

∂Ui

∂x
(1, t) + γUi(1, t) = 0, t > 0, i = 1,2,

(1.9)

and initial conditions

Ni(x,0) = N0
i (x) ≥ 0, Ui(x,0) = U0

i (x) ≥ 0, 0 < x < 1, i = 1,2. (1.10)

Thus, we will only focus on the study of the positive steady-state solutions of system (1.8)–(1.10). 
It is worth mentioning that (if necessary) we can extend the functions fi(R, Qi) and μi(Qi) with 
i = 1, 2 as follows

f̂i (R,Qi) =

⎧⎪⎨⎪⎩
fi(R,Qi) for R ≥ 0, Qi ≥ Qmin,i ,

fi(R,Qmin,i ) for R > 0, Qi < Qmin,i ,

0 for R < 0,

(1.11)

μ̂i(Qi) =
{

μi(Qi) for Qi ≥ Qmin,i ,

μ′
i (Qmin,i )(Qi − Qmin,i ) for Qi < Qmin,i .

(1.12)

Then it is easy to check that μ̂′
i(Qi) > 0 for all Qi ∈ R and f̂i(R, Qi) satisfies (H2) for a.e. 

(R, Qi) ∈ R ×R with i = 1, 2. We will denote f̂i(R, Qi), μ̂i(Qi) by fi(R, Qi), μi(Qi) respec-
tively for the sake of simplicity.

The organization of this paper is as follows. In Section 2, we first collect some existing results 
on nonlinear eigenvalue problems and the threshold dynamics of the single species associated 
with system (1.5)–(1.7) or (1.8)–(1.10). Section 3 is the main part of this paper. Existence of 
positive steady state solutions will be established by calculation of fixed point indices. A brief 
discussion will be presented in Section 4. In the Appendix section, we provide rigorous argu-
ments for the local stability of two semi-trivial solutions.

2. Preliminaries

In this section, we collect some existing results which will be used in the subsequent investi-
gation. We review the results of the global dynamics on the single population model associated 
with system (1.8)–(1.10):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂t
= d

∂2Ni

∂x2 + μi(
Ui

Ni
)Ni, x ∈ (0,1), t > 0,

∂Ui

∂t
= d

∂2Ui

∂x2 + fi(z(x) − Ui,
Ui

Ni
)Ni, x ∈ (0,1), t > 0,

∂Ni

∂x
(0, t) = 0,

∂Ni

∂x
(1, t) + γNi(1, t) = 0, t > 0,

∂Ui

∂x
(0, t) = 0,

∂Ui

∂x
(1, t) + γUi(1, t) = 0, t > 0,

Ni(x,0) = N0
i (x) ≥ 0, Ui(x,0) = U0

i (x) ≥ 0, x ∈ [0,1],

(2.1)

with i = 1 or 2. The global dynamics of system (2.1) can be determined by the following nonlin-
ear eigenvalue problem

⎧⎪⎨⎪⎩
λφ(x) = dφ′′(x) + μi(

ϕ(x)
φ(x)

)φ(x), x ∈ (0,1),

λϕ(x) = dϕ′′(x) + fi(z(x),
ϕ(x)
φ(x)

)φ(x), x ∈ (0,1),

φ′(0) = φ′(1) + γφ(1) = 0, ϕ′(0) = ϕ′(1) + γ ϕ(1) = 0

(2.2)

with i = 1 or 2. As in [8], we first define Q∗
i to be the unique positive number so that

Q∗
i := inf{Qi > 0 : fi(z(x),Qi) − μi(Qi)Qi ≤ 0 in [0,1]}, for i = 1,2. (2.3)

Let D = C0([0, 1], R2+) and

Ci = {(N,U) ∈D : Qmin,iN(x) ≤ U(x) ≤ Q∗
i N(x) for x ∈ [0,1]}, i = 1 or 2.

It is clear that D and C1, C2 are complete cones in the normed linear space C0([0, 1], R2) and that 
D is both normal and solid. We say that (u1, v1) ≥D (u2, v2) if and only if (u1, v1) − (u2, v2) ∈
D, and (u1, v1) 	D (u2, v2) if and only if (u1, v1) − (u2, v2) ∈ IntD. By the similar arguments as 
in Lemmas 5.1 and 7.1 in [8], the eigenvalue problem (2.2) admits a principal eigenvalue λ0

i (d)

corresponding to a strongly positive eigenfunction (φi(x), ϕi(x)) 	D (0, 0) in Ci with i = 1, 2. 
Moreover, there is a d0,i > 0 (i = 1, 2) such that

λ0
i (d) > 0 if 0 < d < d0,i , λ0

i (d) = 0 if d = d0,i , λ0
i (d) < 0 if d > d0,i . (2.4)

By similar arguments as in [8, Theorem 2.3] (see also [11]), we have the following results, 
which indicate that there exists a threshold diffusion coefficient for species survival. Here the 
existence of the threshold diffusion coefficient is determined by (2.4). Indeed, these results have 
already been proven in [9, Theorem 2.2]. They established the existence of the threshold diffusion 
coefficient by analyzing the monotonicity of the positive steady states of the single population 
model (2.1) on the diffusion coefficient. For i = 1, 2, let

�i = {(N0
i ,U0

i ) ∈ C([0,1];R2+) : U0
i (·) ≤ z(·) and there exists Q̃i > 0

such that Qmin,iN
0
i (·) ≤ U0

i (·) ≤ Q̃iN
0
i (·) in [0,1]}.

Lemma 2.1. ([9, Theorem 2.2]) Suppose d > 0, fi, μi satisfy (H1) and (H2). Then there exists 
d0,i > 0 such that
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(i) if d ≥ d0,i , (2.1) has no positive steady state solution in �i , and every solution of (2.1) with 
initial conditions in �i satisfies (Ni(·, t), Ui(·, t)) → (0, 0) as t → ∞.

(ii) if 0 < d < d0,i , there is a unique positive steady state solution (N∗
i (d, ·), U∗

i (d, ·)) which is 
globally asymptotically stable in �i . Moreover, (N∗

i (d, ·), U∗
i (d, ·)) is strictly decreasing in 

d such that

lim
d→d0,i−

(N∗
i (d, ·),U∗

i (d, ·)) = (0,0) uniformly on [0,1],

lim
d→0+(N∗

i (d, ·),U∗
i (d, ·)) = (z(x)/Qmin,i , z(x)) uniformly on [0,1].

We finish this section by stating the following lemma, which is essential to the calculation of 
the indices of fixed points related to compact maps. To this end, we denote by (E, P) an arbitrary 
ordered Banach space with open unit ball B . For every ρ > 0, we define Pρ := ρB ∩P . Then the 
boundary S+

ρ of Pρ in P equals ρS ∩ P , where S denotes the unit sphere in E . It follows from 
the fixed point index theory in [1] that for every open subset O of P and every compact map 
f : O → P , the fixed point index index(f, O, P) is well-defined, provided f has no fixed points 
on ∂O . Moreover, for an arbitrary positive number ρ, we have the following results.

Lemma 2.2. ([1, Lemma 12.1]) Let f : P ρ → P be a compact map.

(i) If f (x) �= λx for every x ∈ S+
ρ and every λ ≥ 1, then index(f, Pρ, P) = 1.

(ii) If there exists an element p > 0 such that x − f (x) �= λp for every x ∈ S+
ρ and every λ ≥ 0, 

then index(f, Pρ, P) = 0.

3. Steady state solutions

This section is devoted to the investigation of the existence of positive steady-state solutions 
of system (1.8)–(1.10), that is, we shall consider the following elliptic system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dN ′′
1 + μ1(

U1
N1

)N1 − g(N1)N2 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U1 − U2,

U1
N1

)N1 − h(N1)U1N2 = 0, x ∈ (0,1),

dN ′′
2 + μ2(

U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2(z(x) − U1 − U2,

U2
N2

)N2 + h(N1)U1N2 = 0, x ∈ (0,1)

(3.1)

with boundary conditions{
N ′

i (0) = 0, N ′
i (1) + γNi(1) = 0, i = 1,2,

U ′
i (0) = 0, U ′

i (1) + γUi(1) = 0, i = 1,2.
(3.2)

Here we call (N1, U1, N2, U2) ∈ C2([0, 1]) a steady-state solution if the ratio Ui

Ni
are finite a.e., 

and the equations (3.1) and (3.2) are satisfied a.e. in (0, 1).
For i = 1, 2, the functions μi (Ui/Ni)Ni and fi(z(x) − U1 − U2, Ui/Ni)Ni can be respec-

tively extended to those similar to Eq. (4.9) and Eq. (4.10) in [8], if necessary. Then it follows 
from Lemma 2.1 that there are three types of nonnegative steady-state solutions of (3.1)–(3.2):
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(i) Trivial solution E0(x) = (0, 0, 0, 0) always exists;
(ii) Semi-trivial solution E1(x) = (N∗

1 (d, x), U∗
1 (d, x), 0, 0) exists provided that 0 < d < d0,1, 

and semi-trivial solution E2(x) = (0, 0, N∗
2 (d, x), U∗

2 (d, x)) exists provided that 0 < d <

d0,2;
(iii) Positive solutions with (N1(x), U1(x), N2(x), U2(x)) > 0 may exist.

The main task below is to study the positive solutions of (3.1)–(3.2). To this end, we first 
establish a priori estimates for nonnegative solutions of the system (3.1)–(3.2).

Lemma 3.1. Suppose (N1, U1, N2, U2) is a nonnegative solution of the system (3.1)–(3.2) with 
Ni �≡ 0, Ui �≡ 0. Then

(i) Ni(x) > 0, Ui(x) > 0 on [0, 1] with i = 1, 2;
(ii) U1(x) + U2(x) < z(x) on [0, 1];

(iii) N1(x)Qmin,1 < U1(x) < N1(x)Q∗
1 and N2(x)Qmin,2 < U2(x) < N2(x)Q∗∗

2 on [0, 1], where 
Q∗

1 is defined by (2.3), and

Q∗∗
2 := inf{Q > 0 : f2(z(x),Q) − μ2(Q)Q + g

(
z(x)

Qmin,1

)
Q∗

1 ≤ 0 in [0,1]}.

Proof. We first prove Ni(x) > 0 with i = 1, 2. For any nonnegative solution (N1(x), U1(x),

N2(x), U2(x)) of (3.1)–(3.2) with Ni �≡ 0, Ui �≡ 0, one concludes that Ci(x) := μi(
Ui

Ni
) is well de-

fined for all x ∈ (0, 1) with i = 1, 2. Rewrite Ci(x) = C+
i (x) −C−

i (x), where C+
i (x), C−

i (x) are 
the positive part and negative part of Ci(x), respectively, i = 1, 2. In view of g(N1) = h(N1)N1, 
the first equation of (3.1) becomes

dN ′′
1 − [C−

1 (x) + h(N1)N2]N1 = −C+
1 (x)N1 ≤ 0

for x ∈ (0, 1). Clearly, C−
1 (x) = μ1(

U1
N1

)− ∈ L∞(0, 1) based on the extension (1.12), and 

C−
1 (x) + h(N1)N2 ≥ 0 on [0, 1]. It follows from the strong maximum principle that N1(x) > 0

in (0, 1). If N1(0) = 0, it follows from the Hopf boundary lemma that N ′
1(0) > 0, contradicting 

the boundary condition N ′
1(0) = 0. Hence, N1(0) > 0. Similarly, N1(1) > 0. Thus N1(x) > 0 on 

[0, 1].
The equation for N2 can be rewritten as

dN ′′
2 − C−

2 (x)N2 = −C+
2 (x)N2 ≤ 0 in (0,1).

In view of C−
2 (x) = μ2(

U2
N2

)− ∈ L∞(0, 1), similar arguments as above imply that N2(x) > 0 on 

[0, 1]. Thus, we have Ui

Ni
∈ C([0, 1]), and hence, the solution satisfying (3.1) is in the classical 

sense everywhere.
Next, we claim U1 + U2 < z(x) on [0, 1]. Let 
 = z − U1 − U2. Then 
 satisfies

{
−d
′′ + [N1

∫ 1
0

∂f1
∂R

(τ
, U1
N1

)dτ + N2
∫ 1

0
∂f2
∂R

(τ
, U2
N2

)dτ ]
 = 0, x ∈ (0,1),


′(0) = −R(0), 
′(1) + γ
(1) = 0.



H. Nie et al. / J. Differential Equations 266 (2019) 8459–8491 8467
By the strong maximum principle, we have 
 > 0 on [0, 1]. That is, U1 + U2 < z(x) on [0, 1]. 
Noting that Ui �≡ 0 (i=1, 2), and U1, U2 satisfy{

−dU ′′
1 + h(N1)N2U1 = f1(z(x) − U1 − U2,

U1
N1

)N1 ≥ 0, x ∈ (0,1),

U ′
1(0) = U ′

1(1) + γU1(1) = 0,

and {
−dU ′′

2 = f2(z(x) − U1 − U2,
U2
N2

)N2 + h(N1)U1N2 ≥ 0, x ∈ (0,1),

U ′
2(0) = U ′

2(1) + γU2(1) = 0.

Then we have U1 > 0, U2 > 0 on [0, 1] by the strong maximum principle.
In order to show Ui > NiQmin,i on [0, 1] with i = 1, 2, we set ωi = Ui − NiQmin,i . Note that 

for i = 1, 2,

μi(
Ui

Ni

) = μi(Qmin,i ) + ζi(x,Qmin,i )(
Ui

Ni

− Qmin,i ), (3.3)

where

ζi(x,Qi) =
1∫

0

μ′
i (τ

Ui

Ni

+ (1 − τ)Qi)dτ > 0. (3.4)

Then ω1(x), ω2(x) satisfy{
dω′′

1 − (h(N1)N2 + Qmin,1ζ1(x,Qmin,1))ω1 = −N1f1(z − U1 − U2,
U1
N1

) ≤ 0,

ω′
1(0) = 0, ω′

1(1) + γω1(1) = 0,

and {
dω′′

2 − Qmin,2ζ2(x,Qmin,2)ω2 = −N2f2(z − U1 − U2,
U2
N2

) − g(N1)
U1
N1

N2 ≤ 0,

ω′
2(0) = 0, ω′

2(1) + γω2(1) = 0.

By the strong maximum principle and the boundary conditions, we have ω1(x) > 0 on [0, 1] or 
ω1(x) ≡ 0 on [0, 1]. If ω1(x) ≡ 0 on [0, 1], then U1 ≡ N1Qmin,1, and{

−dN ′′
1 + h(N1)N2 · N1 = μ1(Qmin,1)N1 = 0, x ∈ (0,1),

N ′
1(0) = N ′

1(1) + γN1(1) = 0,

which implies N1 ≡ 0 on [0, 1], contradicting the fact N1 > 0 on [0, 1]. Hence ω1(x) > 0 on [0, 
1], that is U1 > N1Qmin,1 on [0, 1]. Similarly, we can show that U2 > N2Qmin,2 on [0, 1].

It remains to show that U1(x) < N1(x)Q∗
1 and U2(x) < N2(x)Q∗∗

2 on [0, 1]. By the definition 
of Q∗

1, (H2) and 0 < z − U1 − U2 < z on [0, 1], we can conclude that

f1(z − U1 − U2,Q
∗) − μ1(Q

∗)Q∗ < 0 for x ∈ [0,1]. (3.5)
1 1 1
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Let χ1 = U1 − N1Q
∗
1. Note that

f1(z − U1 − U2,
U1

N1
) = f1(z − U1 − U2,Q

∗
1) + ξ1(x,Q∗

1)(
U1

N1
− Q∗

1), (3.6)

μ1(
U1

N1
) = μ1(Q

∗
1) + ζ1(x,Q∗

1)(
U1

N1
− Q∗

1), (3.7)

where ζ1(x, Q1) is given by (3.4), and

ξ1(x,Q1) =
1∫

0

∂f1

∂Q1
(z − U1 − U2, τ

U1

N1
+ (1 − τ)Q1)dτ ≤ 0. (3.8)

Then χ1(x) satisfies⎧⎪⎨⎪⎩
−dχ ′′

1 + (−ξ1(x,Q∗
1) + ζ1(x,Q∗

1)Q
∗
1 + h(N1)N2

)
χ1

= [f1(z − U1 − U2,Q
∗
1) − μ1(Q

∗
1)Q

∗
1]N1 < 0, x ∈ (0,1),

χ ′
1(0) = 0, χ ′

1(1) + γχ1(1) = 0.

In view of (1.2), (3.4) and (3.8), we conclude that −ξ1(x, Q∗
1) + ζ1(x, Q∗

1)Q
∗
1 + h(N1)N2 > 0

in (0, 1). It follows from the strong maximum principle that χ1 < 0 on [0, 1], that is, U1(x) <
N1(x)Q∗

1 on [0, 1].
Similarly, by the definition of Q∗∗

2 , the assumption (H2) and 0 < z − U1 − U2 < z on [0, 1], 
we can conclude that

f2(z − U1 − U2,Q
∗∗
2 ) − μ2(Q

∗∗
2 )Q∗∗

2 + g

(
z(x)

Qmin,1

)
Q∗

1 < 0 for x ∈ [0,1]. (3.9)

Let χ2 = U2 − N2Q
∗∗
2 . Note that

f2(z − U1 − U2,
U2

N2
) = f2(z − U1 − U2,Q

∗∗
2 ) + ξ2(x,Q∗∗

2 )(
U2

N2
− Q∗∗

2 ), (3.10)

μ2(
U2

N2
) = μ2(Q

∗∗
2 ) + ζ2(x,Q∗∗

2 )(
U2

N2
− Q∗∗

2 ), (3.11)

where ζ2(x, Q2) is given by (3.4), and

ξ2(x,Q2) =
1∫

0

∂f2

∂Q2
(z − U1 − U2, τ

U2

N2
+ (1 − τ)Q2)dτ ≤ 0. (3.12)

It follows from N1(x) < U1(x)
Qmin,1

<
z(x)

Qmin,1
, U1(x)

N1(x)
< Q∗

1 and (3.9) that χ2(x) satisfies

⎧⎪⎨⎪⎩
−dχ ′′

2 + (−ξ2(x,Q∗∗
2 ) + ζ2(x,Q∗∗

2 )Q∗∗
2 )χ2

= [f2(z − U1 − U2,Q
∗∗
2 ) − μ2(Q

∗∗
2 )Q∗∗

2 + h(N1)U1]N2 < 0, x ∈ (0,1),

χ ′ (0) = 0, χ ′ (1) + γχ (1) = 0
2 2 2
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It follows from (3.4) and (3.12) that −ξ2(x, Q∗∗
2 ) + ζ2(x, Q∗∗

2 )Q∗∗
2 > 0 in (0, 1). By the strong 

maximum principle, we deduce that χ2 < 0 on [0, 1], that is, U2(x) < N2(x)Q∗∗
2 on [0, 1]. �

Next, we show the existence of positive steady state solutions by degree theory. By virtue of 
Lemma 3.1, we introduce the spaces

X = C([0,1];R4), X+ = C([0,1];R4+), D = C0([0,1],R2+),

W1 = C1 = {(N1,U1) ∈D : Qmin,1N1(x) ≤ U1(x) ≤ Q∗
1N1(x) on x ∈ [0,1]},

W2 = {(N2,U2) ∈D : Qmin,2N2(x) ≤ U2(x) ≤ Q∗∗
2 N2(x) on x ∈ [0,1]}.

W = W1 × W2,

� = {(N1,U1,N2,U2) ∈ W : ‖N1‖ + ‖U1‖ + ‖N2‖ + ‖U2‖ ≤ M0},

where ‖ ·‖ is the usual norm in C([0, 1]) and M0 = 4 max{1, 1
Qmin,1

, 1
Qmin,2

}‖z‖. Clearly, W ⊂ X+
is also a cone of X, where X+ is the natural positive cone of X.

Observe that for any (N1, U1, N2, U2) ∈ � ⊂ W , we have Ui(x0) = 0 if Ni(x0) = 0 at some 
point x0 ∈ [0, 1] with i = 1, 2. Motivated by Eq. (4.9) and Eq. (4.10) in [8], for i = 1, 2 and any 
(N1, U1, N2, U2) ∈ �, we define

μ̃i(Ui(x),Ni(x)) =
{

0 when Ni(x) = 0, for some x ∈ [0,1],
μi(Ui(x)/Ni(x))Ni(x) when Ni(x) > 0, ∀ x ∈ [0,1], (3.13)

and f̃i(R(x), Ui(x), Ni(x))

=
{

0 when Ni(x) = 0, for some x ∈ [0,1],
fi(R(x),Ui(x)/Ni(x))Ni(x) when Ni(x) > 0, ∀ x ∈ [0,1], (3.14)

with R(x) = z(x) − U1(x) − U2(x). Then for i = 1, 2, the functions μ̃i(Ui(x), Ni(x)) and 
f̃i (z(x) − U1(x) − U2(x), Ui(x), Ni(x)) are continuous in �. In particular, these two func-
tions are continuous at the steady-state solutions E0, E1 and E2. For our convenience, 
we will still denote μ̃i(Ui(x), Ni(x)) (resp. f̃i (R(x), Ui(x), Ni(x))) by μi(Ui/Ni)Ni (resp. 
fi(R(x), Ui/Ni)Ni ) in the subsequent discussions.

Define F : � → X by

F

⎛⎜⎜⎝
N1
U1
N2
U2

⎞⎟⎟⎠ := (−d
d2

dx2 + M)−1

⎛⎜⎜⎜⎝
μ1(

U1
N1

)N1 − g(N1)N2 + MN1

f1(z(x) − U1 − U2,
U1
N1

)N1 − h(N1)U1N2 + MU1

μ2(
U2
N2

)N2 + MN2

f2(z(x) − U1 − U2,
U2
N2

)N2 + h(N1)U1N2 + MU2

⎞⎟⎟⎟⎠ ,

where (−d d2

dx2 +M)−1 is the inverse operator of −d d2

dx2 +M subject to the boundary conditions 
ux(0) = ux(1) + γ u(1) = 0, and M is sufficiently large such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1(
U1
N1

) − h(N1)N2 + M > 0,

f1(z(x) − U1 − U2,
U1
N1

)N1
U1

− h(N1)N2 + M > 0,

μ2(
U2
N2

) + M > 0,

f2(z(x) − U1 − U2,
U2
N2

)N2
U2

+ h(N1)
N2
U2

U1 + M > 0,

ξ1(x,Qmin,1) − Qmin,1ζ1(x,Qmin,1) − h(N1)N2 + M > 0,

ξ1(x,Q∗
1) − Q∗

1ζ1(x,Q∗
1) − h(N1)N2 + M > 0,

ξ2(x,Qmin,2) − Qmin,2ζ2(x,Qmin,2) + M > 0,

ξ2(x,Q∗∗
2 ) − Q∗∗

2 ζ2(x,Q∗∗
2 ) + M > 0

(3.15)

for all (N1, U1, N2, U2) ∈ �. Here ζi(x, Qi), ξ1(x, Q1) and ξ2(x, Q2) are defined by (3.4), 
(3.8) and (3.12) respectively. By the assumptions (H1)-(H2) and the extensions (1.11)–(1.12)
and (3.13)–(3.14), one can conclude that F is compact.

Next, we show that F(�) ⊂ W by direct computations and the maximum principle. 
To this end, let F(N1, U1, N2, U2) = (N1, U1, N2, U2) for any (N1, U1, N2, U2) ∈ �. Then 
(N1, U1, N2, U2) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−dN1
′′ + MN1 = μ1(

U1
N1

)N1 − g(N1)N2 + MN1,

−dU1
′′ + MU1 = f1(z(x) − U1 − U2,

U1
N1

)N1 − h(N1)U1N2 + MU1,

−dN2
′′ + MN2 = μ2(

U2
N2

)N2 + MN2,

−dU2
′′ + MU2 = f2(z(x) − U1 − U2,

U2
N2

)N2 + h(N1)U1N2 + MU2,

(3.16)

for x ∈ (0, 1) with boundary conditions{
Ni

′
(0) = 0, Ni

′
(1) + γNi(1) = 0, i = 1,2,

Ui
′
(0) = 0, Ui

′
(1) + γUi(1) = 0, i = 1,2.

(3.17)

In view of (3.15), it follows from the maximum principle that N1 ≥ 0, U1 ≥ 0, N2 ≥ 0, U2 ≥ 0
on [0, 1]. It remains to show that Qmin,1N1 ≤ U1 ≤ Q∗

1N1 and Qmin,2N2 ≤ U2 ≤ Q∗∗
2 N1 on [0, 

1]. With this in mind, let ωi = Ui −NiQmin,i and ωi = Ui −NiQmin,i with i = 1, 2. Then ωi ≥ 0
on [0, 1] based on (N1, U1, N2, U2) ∈ � ⊂ W . Note that for i = 1, 2,

fi(z − U1 − U2,
Ui

Ni

) = fi(z − U1 − U2,Qmin,i ) + ξi(x,Qmin,i )(
Ui

Ni

− Qmin,i ),

where ξ1(x, Q1), ξ2(x, Q2) are given by (3.8) and (3.12) respectively. It follows from
(3.16)–(3.17) and (3.3) that ωi

′(0) = 0, ωi
′(1) + γωi(1) = 0 and for x ∈ (0, 1),

−dω1
′′ + Mω1

= f1(z(x) − U1 − U2,
U1

N1
)N1 − μ1(

U1

N1
)N1Qmin,i − h(N1)N2ω1 + Mω1

= (ξ1(x,Qmin,1) − Qmin,1ζ1(x,Qmin,1) − h(N1)N2 + M)ω1 + f1(z − U1 − U2,Qmin,1)N1

≥ (ξ1(x,Qmin,1) − Qmin,1ζ1(x,Qmin,1) − h(N1)N2 + M)ω1,
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and

−dω2
′′ + Mω2

= f2(z(x) − U1 − U2,
U2

N2
)N2 − μ2(

U2

N2
)N2Qmin,2 + h(N1)U1N2 + Mω1

= (ξ2(x,Qmin,2) − Qmin,2ζ2(x,Qmin,2) + M)ω2 + h(N1)U1N2 + f2(z − U1 − U2,Qmin,2)N2

≥ (ξ2(x,Qmin,2) − Qmin,2ζ2(x,Qmin,2) + M)ω2.

By using (3.15) and the maximum principle, it is easy to see that ωi ≥ 0 on [0, 1]. Also, we have 
Qmin,iNi ≤ Ui on [0, 1].

Similarly, let χ1 = U1 −Q∗
1N1, χ2 = U2 −Q∗∗

2 N2 and χ1 = U1 −Q∗
1N1, χ2 = U2 −Q∗∗

2 N2. 
Then χi ≤ 0 on [0, 1] based on (N1, U1, N2, U2) ∈ � ⊂ W . It follows from (3.5)–(3.7), 
(3.9)–(3.11), (3.15) and (3.16)–(3.17) that χi ≤ 0 on [0, 1] by similar computations and the 
maximum principle. That is, U1 ≤ Q∗

1N1 and U2 ≤ Q∗∗
2 N1 on [0, 1]. Hence, by the definition of 

M , we have F(�) ⊂ W . By Lemma 3.1, we conclude that (3.1)–(3.2) have nonnegative solutions 
if and only if the operator F has a fixed point in �.

As mentioned before, due to a priori estimates for nonnegative solutions of the system 
(3.1)–(3.2), we can establish the existence of positive solutions to (3.1)–(3.2) by using the topo-
logical fixed point theorems in the cone W (see Lemma 2.2). The selection of this special cone 
W ensures the existence of M satisfying (3.15), and guarantees F(�) ⊂ W , which enables us to 
apply Lemma 2.2.

Lemma 3.2. For λ ≥ 1, the equation F(N1, U1, N2, U2) = λ(N1, U1, N2, U2) has no solution in 
W satisfying ‖N1‖ + ‖U1‖ + ‖N2‖ + ‖U2‖ = M0.

Proof. Suppose (N1, U1, N2, U2) ∈ W satisfies F(N1, U1, N2, U2) = λ(N1, U1, N2, U2). Then 
0 ≤ Ni ≤ Ui

Qmin,i
on [0, 1] with i = 1, 2, and for x ∈ (0, 1),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λdN ′′
1 + μ1(

U1
N1

)N1 − g(N1)N2 = (λ − 1)MN1 ≥ 0,

λdU ′′
1 + f1(z(x) − U1 − U2,

U1
N1

)N1 − h(N1)U1N2 = (λ − 1)MU1 ≥ 0,

λdN ′′
2 + μ2(

U2
N2

)N2 = (λ − 1)MN2 ≥ 0,

λdU ′′
2 + f2(z(x) − U1 − U2,

U2
N2

)N2 + h(N1)U1N2 = (λ − 1)MU2 ≥ 0

with the boundary conditions (3.2). By similar arguments as in Lemma 3.1, we have U1 + U2 <

z(x) on [0, 1], which implies that 0 ≤ Ni ≤ Ui

Qmin,i
<

z(x)
Qmin,i

. Hence, there exists no solution 
of F(N1, U1, N2, U2) = λ(N1, U1, N2, U2) in W satisfying ‖N1‖ + ‖U1‖ + ‖N2‖ + ‖U2‖ =
M0. �

As a consequence of Lemma 3.2 and Lemma 2.2, we have the following outcome.

Lemma 3.3. index(F, �̇, W) = 1, where �̇ denotes the interior of � in W .

Lemma 3.4. Suppose 0 < d < d0,2. Then for δ > 0 small enough,

index(F,O+(E0),W) = 0,
δ
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where O+
δ (E0) = {(N1, U1, N2, U2) ∈ W : ‖N1‖ + ‖U1‖ + ‖N2‖ + ‖U2‖ < δ

γ
R(0)} is a neigh-

borhood of E0 in W .

Proof. By the definition of N∗
2 (x), U∗

2 (x), there exists ε0, δ0 > 0 small, such that

δ

γ
R(0) ≤ N∗

2 (x) − ε0,
δ

γ
R(0) ≤ U∗

2 (x) − ε0

hold for all x ∈ [0, 1] and all δ ∈ (0, δ0]. Denote the boundary

∂O+
δ (E0) = {(N1,U1,N2,U2) ∈ W : ‖N1‖ + ‖U1‖ + ‖N2‖ + ‖U2‖ = δ

γ
R(0)}.

Thus ‖Ni‖ ≤ δz, ‖Ui‖ ≤ δz (i = 1, 2) whenever (N1, U1, N2, U2) ∈ ∂O+
δ (E0).

Let χ = 2 + γ − γ x2. Then χ > 0 on [0, 1] and satisfies

χxx < 0 in (0,1), χx(0) = 0, χx(1) + γχ(1) = 0.

Moreover, (χ, Qmin,1χ, χ, Qmin,2χ) ∈ W . Next, we show that for λ ≥ 0,

(N1,U1,N2,U2) − F(N1,U1,N2,U2) = λ(χ,Qmin,1χ,χ,Qmin,2χ)

has no solution on Sδ for small δ. Assume on the contrary that it has a solution (N1, U1, N2, U2)

on Sδ . Then (N2, U2) satisfies

dN ′′
2 + μ2(

U2
N2

)N2 = λ(dχ ′′ − Mχ), x ∈ (0,1),

dU ′′
2 + f2(z(x) − U1 − U2,

U2
N2

)N2 + h(N1)U1N2 = λQmin,2(dχ ′′ − Mχ), x ∈ (0,1).

By the definition of χ , we have

dN ′′
2 + μ2(

U2
N2

)N2 ≤ 0, x ∈ (0,1),

dU ′′
2 + f2((1 − δ)z(x) − U2,

U2
N2

)N2 ≤ 0, x ∈ (0,1).

Let �δ
2 = {(N0, U0) ∈ C([0, 1]; R2) : N0 > 0, 0 < U0 ≤ (1 −δ)z(x), U0(x)

N0(x)
≥ Qmin,2 on [0, 1]}. 

We consider the following auxiliary problem⎧⎪⎨⎪⎩
dN ′′

2 + μ2(
U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2((1 − δ)z(x) − U2,

U2
N2

)N2 = 0, x ∈ (0,1),

N ′
2(0) = 0, N ′

2(1) + γN2(1) = 0, U ′
2(0) = 0, U ′

2(1) + γU2(1) = 0.

(3.18)

Let λδ
2(d) be the principal eigenvalue of the following nonlinear eigenvalue problem⎧⎪⎨⎪⎩

λφ(x) = dφ′′(x) + μ2(
ϕ(x)
φ(x)

)φ(x), x ∈ (0,1),

λϕ(x) = dϕ′′(x) + f2((1 − δ)z(x),
ϕ(x)
φ(x)

)φ(x), x ∈ (0,1),

φ′(0) = φ′(1) + γφ(1) = 0, ϕ′(0) = ϕ′(1) + γ ϕ(1) = 0.
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By similar arguments as in [8, Lemma 7.1], there is a dδ
0,2 > 0 such that

λδ
2(d) > 0 if 0 < d < dδ

0,2, λδ
2(d) = 0 if d = dδ

0,2, λδ
2(d) < 0 if d > dδ

0,2.

By standard regularity theory, it is easy to deduce that dδ
0,2 → d0,2 as δ → 0. In view of 

0 < d < d0,2, there exists δ1 > 0 small such that for any 0 < δ ≤ δ1, we have 0 < d < dδ
0,2. 

It follows from Lemma 2.1 that (3.18) has a unique positive solution (Nδ
2 (x), Uδ

2 (x)) which is 
globally asymptotically stable in �δ

2. Since (3.18) is cooperative, it follows from the monotone 
method and uniqueness of (Nδ

2 (x), Uδ
2 (x)) that N2(x) ≥ Nδ

2 (x), U2(x) ≥ Uδ
2 (x). Meanwhile, by 

Lp estimates and the Sobolev embedding theorem, we proceed as in the proof of Theorem 2.5 in 
[23] to obtain

lim
δ→0

Nδ
2 (x) = N∗

2 (x), lim
δ→0

Uδ
2 (x) = U∗

2 (x).

Hence, there exists δ2 > 0 such that for 0 < δ ≤ δ2, Nδ
2 (x) > N∗

2 (x) − ε0, Uδ
2 (x) > U∗

2 (x) − ε0. 
Set δ̄ = min{δ0, δ1, δ2}. Then for any 0 < δ ≤ δ̄, we can find that N2(x) > N∗

2 (x) − ε0 ≥
δ
γ
R(0), U2(x) > U∗

2 (x) − ε0 ≥ δ
γ
R(0), which contradicts (N1, U1, N2, U2) ∈ ∂O+

δ (E0). There-

fore, index(F, O+
δ (E0), W) = 0 by Lemma 2.2. �

Consider the following two nonlinear eigenvalue problems⎧⎪⎨⎪⎩
�1�1 = d�′′

1 + μ1(

1
�1

)�1, x ∈ (0,1),

�1
1 = d
′′
1 + f1(z − U∗

2 , 
1
�1

)�1, x ∈ (0,1),

�′
1(0) = �′

1(1) + γ�1(1) = 0, 
′
1(0) = 
′

1(1) + γ
1(1) = 0,

(3.19)

and ⎧⎪⎨⎪⎩
�2�2 = d�′′

2 + μ2(

2
�2

)�2, x ∈ (0,1),

�2
2 = d
′′
2 + f2(z − U∗

1 , 
2
�2

)�2 + h(N∗
1 )U∗

1 �2, x ∈ (0,1),

�′
2(0) = �′

2(1) + γ�2(1) = 0, 
′
2(0) = 
′

2(1) + γ
2(1) = 0.

(3.20)

By similar arguments as in [8, Lemma 5.1] (see also [11]), the eigenvalue problem (3.19) (resp. 
(3.20)) admits its principal eigenvalue, denoted by �0

1 (resp. �0
2) with the corresponding strongly 

positive eigenfunctions (�1, 
1) 	D (0, 0) in W1 (resp. (�2, 
2) 	D (0, 0) in W2).
Now we turn to calculate the indices of the compact operator F at the neighborhood of the 

semi-trivial positive solutions E1(x) = (N∗
1 (d, x), U∗

1 (d, x), 0, 0) and E2(x) = (0, 0, N∗
2 (d, x),

U∗
2 (d, x)) in W .

Lemma 3.5. Suppose 0 < d < d0,1 and F has no fixed point in �̇. Then for δ > 0 small enough

index(F,O+
δ (E1),W) =

{
1 if �0

2 < 0,

0 if �0
2 > 0,

where O+
δ (E1) = {(N1, U1, N2, U2) ∈ W : ‖N1 − N∗

1 ‖ + ‖U1 − U∗
1 ‖ + ‖N2‖ + ‖U2‖ < δ} is a 

neighborhood of E1(x) in W .
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Proof. For τ ∈ [0, 1], define

F(τ)

⎛⎜⎜⎝
N1
U1
N2
U2

⎞⎟⎟⎠ = (−d
d2

dx2 + M)−1

⎛⎜⎜⎜⎝
μ1(

U1
N1

)N1 − τg(N1)N2 + MN1

f1(z(x) − U1 − τU2,
U1
N1

)N1 − τh(N1)U1N2 + MU1

μ2(
U2
N2

)N2 + MN2

f2(z(x) − U1 − τU2,
U2
N2

)N2 + h(N1)U1N2 + MU2

⎞⎟⎟⎟⎠ ,

where M is large enough such that (3.15) holds for all (N1, U1, N2, U2) ∈ �. Then F(τ)(N1, U1,

N2, U2) = (N1, U1, N2, U2) leads to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dN ′′

1 + μ1(
U1
N1

)N1 − τg(N1)N2 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U1 − τU2,

U1
N1

)N1 − τh(N1)U1N2 = 0, x ∈ (0,1),

dN ′′
2 + μ2(

U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2(z(x) − U1 − τU2,

U2
N2

)N2 + h(N1)U1N2 = 0, x ∈ (0,1)

(3.21)

with the boundary conditions (3.2). If (N1, U1, N2, U2) is a fixed point of F(τ) on the boundary 
∂O+

δ (E1) = {(N1, U1, N2, U2) ∈ W : ‖N1 −N∗
1 ‖ +‖U1 −U∗

1 ‖ +‖N2‖ +‖U2‖ = δ} of O+
δ (E1)

in W , we can deduce that

N1(x) > 0,U1(x) > 0,N2(x) ≥ 0,U2(x) ≥ 0

and

N1(x)Qmin,1 ≤ U1(x) ≤ N1(x)Q∗
1, N2(x)Qmin,2 ≤ U2(x) ≤ N2(x)Q∗∗

2

on [0, 1]. Furthermore, we can show that N2(x) > 0, U2(x) > 0, otherwise we have (N1, U1,

N2, U2) = E1. This is a contradiction to (N1, U1, N2, U2) ∈ ∂O+
δ (E1).

Next, we show that for τ ∈ [0, 1], F(τ) has no fixed point on ∂O+
δ (E1). Assume on the 

contrary that (N1, U1, N2, U2) ∈ ∂O+
δ (E1) is a fixed point of F(τ). Then Ni(x) > 0, Ui(x) >

0 and N1(x)Qmin,1 ≤ U1(x) ≤ N1(x)Q∗
1, N2(x)Qmin,2 ≤ U2(x) ≤ N2(x)Q∗∗

2 on [0, 1] by the 
above arguments. But for τ = 0, we can find that (N1, U1) = (N∗

1 , U∗
1 ) based on 0 < d < d0,1, 

and (N2, U2) ∈ W2 satisfies{
dN ′′

2 + μ2(
U2
N2

)N2 = 0,

dU ′′
2 + f2(z(x) − U∗

1 , U2
N2

)N2 + h(N∗
1 )U∗

1 N2 = 0
(3.22)

with the usual boundary conditions, which implies �0
2 = 0, a contradiction to �0

2 �= 0. For τ > 0, 
it follows from the equation (3.21) that (N1, U1, τN2, τU2) ∈ W is a fixed point of F in �̇, 
which is a contradiction to the hypothesis of this lemma. Thus by the homotopy invariance of 
topological degree that

index(F,O+
δ (E1),W) = index(F (1),O+

δ (E1),W) = index(F (0),O+
δ (E1),W),

where
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F(0)

⎛⎜⎜⎝
N1
U1
N2
U2

⎞⎟⎟⎠ = (−d
d2

dx2 + M)−1

⎛⎜⎜⎜⎝
μ1(

U1
N1

)N1 + MN1

f1(z(x) − U1,
U1
N1

)N1 + MU1

μ2(
U2
N2

)N2 + MN2

f2(z(x) − U1,
U2
N2

)N2 + h(N1)U1N2 + MU2

⎞⎟⎟⎟⎠ .

The remain task is to calculate index(F (0), O+
δ (E1), W). For this purpose, we first investigate 

the fixed points of F(0). Suppose (N1, U1, N2, U2) is a fixed point of F(0) in O+
δ (E1). Then 

N1 > 0, U1 > 0, N2 ≥ 0, U2 ≥ 0 and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dN ′′

1 + μ1(
U1
N1

)N1 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U1,

U1
N1

)N1 = 0, x ∈ (0,1),

dN ′′
2 + μ2(

U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2(z(x) − U1,

U2
N2

)N2 + h(N1)U1N2 = 0, x ∈ (0,1)

with the boundary conditions (3.2). It is easy to conclude that (N1, U1) = (N∗
1 , U∗

1 ) based on 
0 < d < d0,1, and (N2, U2) satisfies (3.22). Similar arguments as before indicate that (N2, U2) ≡
(0, 0) when �0

2 �= 0. Hence, E1 is the unique fixed point of F(0) in O+
δ (E1), and

index(F (0),O+
δ (E1),W) = index(F (0),E1,W).

For σ ∈ [0, 1], let T (σ ) be defined by

T (σ )

⎛⎜⎜⎝
N1
U1
N2
U2

⎞⎟⎟⎠ = (−d
d2

dx2 + M)−1

⎛⎜⎜⎜⎝
μ1(

U1
N1

)N1 + MN1

f1(z − U1,
U1
N1

)N1 + MU1

μ2(
U2
N2

)N2 + MN2

T4(N1,U1,N2,U2) + MU2

⎞⎟⎟⎟⎠ ,

where T4(N1, U1, N2, U2) = f2(z − [(1 − σ)U1 + σU∗
1 ], U2

N2
)N2 + h((1 − σ)N1 + σN∗

1 )[(1 −
σ)U1 + σU∗

1 ]N2. Then T (σ )(N1, U1, N2, U2) = (N1, U1, N2, U2) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dN ′′
1 + μ1(

U1
N1

)N1 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U1,

U1
N1

)N1 = 0, x ∈ (0,1),

dN ′′
2 + μ2(

U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2(z − [(1 − σ)U1 + σU∗

1 ], U2
N2

)N2

+h((1 − σ)N1 + σN∗
1 )[(1 − σ)U1 + σU∗

1 ]N2 = 0, x ∈ (0,1)

(3.23)

with the boundary conditions (3.2). Next, we show that T (σ ) has no fixed point on ∂O+
δ (E1) ∩

W . Otherwise, it follows from the first and second equations of (3.23) that (N1, U1) = (N∗
1 , U∗

1 ), 
and hence (N2, U2) satisfies (3.22). Similar arguments as before indicate that (N2, U2) ≡ (0, 0)

when �0
2 �= 0. Hence the only fixed point of T (σ ) on ∂O+

δ (E1) is E1, a contradiction. On the 
other hand, it is easy to see that

F(0) = T (0), T (1) = T1 × T2,
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where

T1(N1,U1) = (−d
d2

dx2 + M)−1

(
μ1(

U1
N1

)N1 + MN1

f1(z − U1,
U1
N1

)N1 + MU1

)
,

T2(N2,U2) = (−d
d2

dx2 + M)−1

(
μ2(

U2
N2

)N2 + MN2

f2(z − U∗
1 , U2

N2
)N2 + h(N∗

1 )U∗
1 N2 + MU2

)
,

and (T1 × T2)(N1, U1, N2, U2) = (T1(N1, U1), T2(N2, U2)). Hence, by the homotopy invariance 
of topological degree and the product theorem for fixed points that

index(F (0),E1,W) = index(T (0),E1,W) = index(T (1),E1,W)

= index(T1, (N
∗
1 ,U∗

1 ),W1) · index(T2, (0,0),W2).

Next, we show that index(T1, (N∗
1 , U∗

1 ), W1) = 1. Let � = 2 max{1, 1
Qmin,1

}‖z‖, P� =
{(N1, U1) ∈ W1 : ‖N1‖ + ‖U1‖ ≤ �}, ∂P� = {(N1, U1) ∈ W1 : ‖N1‖ + ‖U1‖ = �}. For λ ≥ 1, 
T1(N1, U1) = λ(N1, U1) leads to{

dN ′′
1 + 1

λ
μ1(

U1
N1

)N1 = (1 − 1
λ
)MN1 ≥ 0, x ∈ (0,1),

dU ′′
1 + 1

λ
f1(z(x) − U1,

U1
N1

)N1 = (1 − 1
λ
)MU1 ≥ 0, x ∈ (0,1),

with the usual boundary conditions. By the similar arguments as in the proof of Lemma 3.1, we 
can show that ‖N1‖ < �

2 , ‖U1‖ < �
2 . Hence for λ ≥ 1, T1(N1, U1) = λ(N1, U1) has no solution 

on ∂P�. It follows from Lemma 2.2 that

index(T1,P�,W1) = 1.

Let 0 < δ0 ≤ 1
2 min[0,1]{N∗

1 , U∗
1 }. Observe that χ = 2 + γ − γ x2 > 0 on [0, 1]. Hence, 

(χ, Qmin,1χ) ∈ W1. Suppose that for λ ≥ 0, the equation (N1, U1) −T1(N1, U1) = λ(χ, Qmin,1χ)

has a solution (N1, U1) on ∂Pδ0 . Then we have{
dN ′′

1 + μ1(
U1
N1

)N1 = λ(dχ ′′ − Mχ) ≤ 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U1,

U1
N1

)N1 = λQmin,1(dχ ′′ − Mχ) ≤ 0, x ∈ (0,1),

with the usual boundary conditions, which implies that (N1, U1) is a super-solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dN̂ ′′

1 + μ1(
Û1

N̂1
)N̂1 = 0, x ∈ (0,1),

dÛ ′′
1 + f1(z(x) − Û1,

Û1

N̂1
)N̂1 = 0, x ∈ (0,1),

N̂ ′
1(0) = 0, N̂ ′

1(1) + γ N̂1(1) = 0, x ∈ (0,1),

Û ′
1(0) = 0, Û ′

1(1) + γ Û1(1) = 0, x ∈ (0,1).

By the monotone method and the uniqueness of (N∗
1 , U∗

1 ), one can conclude that (N1, U1) ≥
(N∗, U∗). This is a contradiction to ‖N1‖ + ‖U1‖ = δ0. Hence,
1 1
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index(T1,Pδ0 ,W1) = 0.

Since (N∗
1 , U∗

1 ) is the unique fixed point of T1 in P� \ Pδ0 , we have

index(T1, (N
∗
1 ,U∗

1 ),W1) = index(T1,P� \ Pδ0,W1)

= index(T1,P�,W1) − index(T1,Pδ0,W1) = 1.

Next, we claim that

index(T2, (0,0),W2) =
{

1 provided �0
2 < 0,

0 provided �0
2 > 0.

We first consider the case of �0
2 < 0. Suppose that for λ ≥ 1, T2(N2, U2) = λ(N2, U2) has a 

solution (N2, U2) on ∂O+
2 (0, 0), where O+

2 (0, 0) is a small neighborhood of (0, 0) in W2. Then 
we have ⎧⎪⎨⎪⎩

dN ′′
2 + μ2(

U2
N2

)N2 = (1 − 1
λ
)(M + μ2(

U2
N2

)N2, x ∈ (0,1),

dU ′′
2 + f2(z(x) − U∗

1 , U2
N2

)N2 + h(N∗
1 )U∗

1 N2

= (1 − 1
λ
)(MU2 + f2(z(x) − U∗

1 , U2
N2

)N2 + h(N∗
1 )U∗

1 N2), x ∈ (0,1)

with the usual boundary conditions, which implies that{
dN ′′

2 + μ2(
U2
N2

)N2 ≥ 0, x ∈ (0,1),

dU ′′
2 + f2(z(x) − U∗

1 , U2
N2

)N2 + h(N∗
1 )U∗

1 N2 ≥ 0, x ∈ (0,1).

Therefore, (N2, U2) is a lower solution to the following cooperative parabolic system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ñ2
∂t

= d ∂2Ñ2
∂x2 + μ2(

Ũ2
Ñ2

)Ñ2, x ∈ (0,1), t > 0

∂Ũ2
∂t

= d ∂2Ũ2
∂x2 + f2(z(x) − U∗

1 , Ũ2
Ñ2

)Ñ2 + h(N∗
1 )U∗

1 Ñ2, x ∈ (0,1), t > 0,

∂Ñ2
∂x

(0, t) = 0, ∂Ñ2
∂x

(1, t) + γ Ñ2(1, t) = 0, t > 0,

∂Ũ2
∂x

(0, t) = 0, ∂Ũ2
∂x

(1, t) + γ Ũ2(1, t) = 0, t > 0,

Ñ2(x,0) = N2(x), Ũ2(x,0) = U2(x), x ∈ [0,1].

(3.24)

Meanwhile, observing that (N2, U2) ∈ ∂O+
2 (0, 0), there exists an α2 > 0 such that (N2, U2) ≤

(α2�2, α2
2), where (�2, 
2) is the strongly positive eigenfunction associated with �0
2. Let 

(N̂2(x, t), Û2(x, t)) = (α2e
�0

2t�2, α2e
�0

2t
2). Then it is easy to see that (N̂2(x, t), Û2(x, t)) is 
an upper solution to (3.24) based on �0

2 < 0. It follows from the comparison principle for coop-
erative parabolic system that

(N2,U2) ≤ (N̂2(x, t), Û2(x, t)) = (α2e
�0

2t�2, α2e
�0

2t
2)

for all x ∈ [0, 1] and t > 0. Letting t → ∞ in the above inequality, and using �0
2 < 0, 

we deduce that (N2, U2) = (0, 0) on [0, 1], contradicting the fact (N2, U2) ∈ ∂O+(0, 0). 
2
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Hence, T2(N2, U2) = λ(N2, U2) has no solution on ∂O+
2 (0, 0), and index(T2, (0, 0), W2) = 1

by Lemma 2.2(i).
In the case of �0

2 > 0, let χ = 2 + γ − γ x2 on [0, 1]. Then (χ, Qmin,2χ) ∈ W2. Suppose for 
λ ≥ 0, (N2, U2) − T2(N2, U2) = λ(χ, Qmin,2χ) has a solution (N2, U2) on ∂O+

2 (0, 0). Then we 
have{

dN ′′
2 + μ2(

U2
N2

)N2 = λ(dχ ′′ − Mχ) ≤ 0, x ∈ (0,1),

dU ′′
2 + f2(z(x) − U∗

1 , U2
N2

)N2 + h(N∗
1 )U∗

1 N2 = λQmin,2(dχ ′′ − Mχ) ≤ 0, x ∈ (0,1)

with the usual boundary conditions, which implies (N2, U2) is a upper solution of (3.24). 
Meanwhile, observing that (N2, U2) ∈ ∂O+

2 (0, 0), there exists an ε > 0 such that (N2, U2) ≥
ε(�2, 
2). In view of �0

2 > 0, it is easy to check that (εe�0
2t�2, εe�0

2t
2) is a lower solution of 
(3.24). It follows from the comparison principle for cooperative parabolic system that

(N2,U2) ≥ (εe�0
2t�2, εe

�0
2t
2)

for all x ∈ [0, 1] and t > 0. Letting t → ∞ in the above inequality, and using �0
2 > 0, we deduce 

that (N2, U2) is unbounded. This contradicts the fact (N2, U2) ∈ ∂O+
2 (0, 0). Hence, for λ ≥ 0, 

(N2, U2) − T2(N2, U2) = λ(χ, Qmin,2χ) has no solution on ∂O+
2 (0, 0) when �0

2 > 0. It follows 
from Lemma 2.2(ii) that index(T2, (0, 0), W2) = 0 when �0

2 > 0.
Combining the above results, we obtain

index(F,O+
δ (E1),W) = index(F (0),O+

δ (E1),W) = index(F (0),E1,W)

= index(T (1),E1,W)

= index(T1, (N
∗
1 ,U∗

1 ),W1) · index(T2, (0,0),W2)

=
{

1 provided �0
2 < 0,

0 provided �0
2 > 0.

�
Lemma 3.6. Suppose 0 < d < d0,2. Then for δ > 0 small enough

index(F,O+
δ (E2),W) =

{
1 if �0

1 < 0,

0 if �0
1 > 0,

where O+
δ (E2) = {(N1, U1, N2, U2) ∈ W : ‖N1‖ + ‖U1‖ + ‖N2 − N∗

2 ‖ + ‖U2 − U∗
2 ‖ < δ}.

Proof. For τ ∈ [0, 1], define

F̃ (τ )

⎛⎜⎜⎝
N1
U1
N2
U2

⎞⎟⎟⎠ = (−d
d2

dx2 + M)−1

⎛⎜⎜⎜⎝
μ1(

U1
N1

)N1 − τg(N1)N2 + MN1

f1(z(x) − τU1 − U2,
U1
N1

)N1 − τh(N1)U1N2 + MN2

μ2(
U2
N2

)N2 + MU1

f2(z(x) − τU1 − U2,
U2
N2

)N2 + τh(N1)U1N2 + MU2

⎞⎟⎟⎟⎠ ,

where M is large enough such that (3.15) holds for all (N1, U1, N2, U2) ∈ �. At first, we claim 
that F̃ (τ ) has no fixed point on ∂O+(E2) if �0 �= 0. Here ∂O+(E2) = {(N1, U1, N2, U2) ∈
δ 1 δ
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W : ‖N1‖ + ‖U1‖ + ‖N2 − N∗
2 ‖ + ‖U2 − U∗

2 ‖ = δ}. Otherwise, there exists (N1, U1, N2, U2) ∈
∂O+

δ (E2) such that F̃ (τ )(N1, U1, N2, U2) = (N1, U1, N2, U2), which leads to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dN ′′

1 + μ1(
U1
N1

)N1 − τg(N1)N2 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − τU1 − U2,

U1
N1

)N1 − τh(N1)U1N2 = 0, x ∈ (0,1),

dN ′′
2 + μ2(

U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2(z(x) − τU1 − U2,

U2
N2

)N2 + τh(N1)U1N2 = 0, x ∈ (0,1)

(3.25)

with the boundary conditions (3.2).
For τ = 0, we can find that (N2, U2) = (N∗

2 , U∗
2 ) based on 0 < d < d0,2, and (N1, U1) ∈ W1

satisfies {
dN ′′

1 + μ1(
U1
N1

)N1 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U∗

2 , U1
N1

)N1 = 0, x ∈ (0,1)

with the usual boundary conditions, which implies �0
1 = 0, a contradiction to �0

1 �= 0.
For τ > 0, in view of (N1, U1, N2, U2) ∈ ∂O+

δ (E2), we get

0 ≤ N1 ≤ δ, 0 ≤ U1 ≤ δ, N∗
2 − δ ≤ N2 ≤ N∗

2 + δ, U∗
2 − δ ≤ U2 ≤ U∗

2 + δ. (3.26)

Thus it follows from (3.25) that

dN ′′
1 + μ1(

U1
N1

)N1 ≥ 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) + δ − U∗

2 , U1
N1

)N1 ≥ 0, x ∈ (0,1)

with the usual boundary conditions. Hence, (N1, U1) is a lower solution to the following coop-
erative parabolic system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N̂1
∂t

= d ∂2N̂1
∂x2 + μ1(

Û1

N̂1
)N̂1, x ∈ (0,1), t > 0,

∂Û1
∂t

= d ∂2Û1
∂x2 + f1(z(x) + δ − U∗

2 , Û1

N̂1
)N̂1, x ∈ (0,1), t > 0,

∂N̂1
∂x

(0, t) = 0, ∂N̂1
∂x

(1, t) + γ N̂1(1, t) = 0, t > 0,

∂Û1
∂x

(0, t) = 0, ∂Û1
∂x

(1, t) + γ Û1(1, t) = 0, t > 0,

N̂1(x,0) = N1(x), Û1(x,0) = U1(x), x ∈ [0,1].

(3.27)

If �0
1 < 0, by choosing δ small enough, we have �δ

1 < 0, where �δ
1 is the principal eigen-

value of the following eigenvalue problem with the corresponding strongly positive eigenfunction 
(�δ

1, 

δ
1) ⎧⎪⎪⎪⎨⎪⎪⎪⎩

�δ
1�

δ
1 = d�δ

1xx + μ1(

δ

1
�δ

1
)�δ

1, x ∈ (0,1),

�δ
1


δ
1 = d
δ

1xx + f1(z + δ − U∗
2 ,


δ
1

�δ
1
)�δ

1, x ∈ (0,1),

�δ (0) = �δ (1) + γ�δ(1) = 0, 
δ (0) = 
δ (1) + γ
δ(1) = 0.
1x 1x 1 1x 1x 1
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In view of (3.26), there exists an α1 > 0 such that (N1, U1) ≤ (α1�
δ
1, α1


δ
1). Let (N̂1(x, t),

Û1(x, t)) = (α1e
�δ

1t�δ
1, α1e

�δ
1t
δ

1). Then it is easy to see that (N̂1(x, t), Û1(x, t)) is an upper 
solution to (3.27). It follows from the comparison principle for cooperative parabolic system that

(N1,U1) ≤ (N̂1(x, t), Û1(x, t)) = (α1e
�δ

1t�δ
1, α1e

�δ
1t
δ

1)

for all x ∈ [0, 1] and t > 0. Since �0
1 < 0, we immediately deduce that (N1, U1) = (0, 0) on [0, 

1] after we let t → ∞ in the above inequality. It follows from (3.25) that (N2, U2) = (N∗
2 , U∗

2 )

based on 0 < d < d0,2. That is, (N1, U1, N2, U2) = E2, a contradiction to (N1, U1, N2, U2) ∈
∂O+

δ (E2).
If �0

1 > 0, then there exists ρ1 > 0 small such that �̃ρ
1 > 0 for all ρ ∈ [0, ρ1), where �̃ρ

1 is 
the principal eigenvalue of the following eigenvalue problem with the corresponding strongly 
positive eigenfunction (�̃ρ

1 , ̃
ρ
1 ):⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̃
ρ
1 �̃

ρ
1 = d�̃δ

1xx + μ1(

̃

ρ
1

�̃
ρ
1
)�̃

ρ
1 − ρ�̃

ρ
1 , x ∈ (0,1),

�̃
ρ
1 
̃

ρ
1 = d
̃δ

1xx + (f1(z − U∗
2 ,


̃
ρ
1

�̃
ρ
1
) − ρ)�̃

ρ
1 − ρ
̃

ρ
1 , x ∈ (0,1),

�̃
ρ
1x(0) = �̃

ρ
1x(1) + γ �̃

ρ
1 (1) = 0, 
̃

ρ
1x(0) = 
̃

ρ
1x(1) + γ 
̃

ρ
1 (1) = 0.

Consider the following cooperative system⎧⎨⎩dÑ ′′
1 + (μ1(

Ũ1
Ñ1

) − ρ)Ñ1 = 0, x ∈ (0,1),

dŨ ′′
1 + (f1(z(x) − U∗

2 − Ũ1,
Ũ1
Ñ1

) − ρ)Ñ1 − ρŨ1 = 0, x ∈ (0,1)
(3.28)

with the usual boundary conditions. Noting that �̃ρ
1 > 0, for ε1 > 0 small, it is easy to check 

that (ε1�̃
ρ
1 , ε1
̃

ρ
1 ) is a lower solution of (3.28). Furthermore, by similar arguments as in 

Lemma 2.1, one can conclude that (3.28) has a unique positive solution (Ñ1,ρ, ̃U1,ρ). More-
over, (Ñ1,ρ, ̃U1,ρ) → (N∗

1 , U∗
1 ) as ρ → 0 by standard elliptic regularity theory. Hence, by further 

choosing ρ > 0 small, we have (Ñ1,ρ, ̃U1,ρ) > 1
2 (N∗

1 , U∗
1 ) on [0, 1].

In view of (3.26), we conclude that for ρ > 0 given above, there exists δ0 > 0 small such that

g(N1)N2 = h(N1)N2 · N1 ≤ ρN1,

h(N1)U1N2 = h(N1)N2 · U1 ≤ ρU1,

f1(z − τU1 − U2,
U1
N1

) > f1(z − U∗
2 − τU1,

U1
N1

) − ρ

and

(N1,U1) <
1

2
(N∗

1 ,U∗
1 ) (3.29)

hold for all (N1, U1, N2, U2) ∈ ∂O+
δ (E2) and δ ∈ (0, δ0]. It follows from (3.25) that

dN ′′
1 + (μ1(

U1
N1

) − ρ)N1 ≤ 0, x ∈ (0,1),

dU ′′ + (f (z(x) − U∗ − τU , U1 ) − ρ)N − ρU ≤ 0, x ∈ (0,1)
1 1 2 1 N1 1 1
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with the usual boundary conditions. Hence, (τN1, τU1) is an upper solution to (3.28). Recall 
that (ε1�̃

ρ
1 , ε1
̃

ρ
1 ) is a lower solution of (3.28). It follows from the monotone method and the 

uniqueness of positive solutions to (3.28) that (τN1, τU1) ≥ (Ñ1,ρ, ̃U1,ρ). Hence, (τN1, τU1) >
1
2 (N∗

1 , U∗
1 ), which contradicts (3.29). Therefore, F̃ (τ ) has no fixed point on ∂O+

δ (E2) if �0
1 �= 0.

By the homotopy invariance of topological degree that

index(F,O+
δ (E2),W) = index(F̃ (1),O+

δ (E2),W) = index(F̃ (0),O+
δ (E2),W),

where

F̃ (0)

⎛⎜⎜⎝
N1
U1
N2
U2

⎞⎟⎟⎠ = (−d
d2

dx2 + M)−1

⎛⎜⎜⎜⎝
μ1(

U1
N1

)N1 + MN1

f1(z(x) − U2,
U1
N1

)N1 + MU1

μ2(
U2
N2

)N2 + MN2

f2(z(x) − U2,
U2
N2

)N2 + MU2

⎞⎟⎟⎟⎠ .

It remains to calculate index(F̃ (0), O+
δ (E2), W). To this end, we first work out the fixed 

points (N1, U1, N2, U2) of F̃ (0). Suppose (N1, U1, N2, U2) is a fixed point of F̃ (0) in O+
δ (E2). 

Then N1 ≥ 0, U1 ≥ 0, N2 > 0, U2 > 0, Qmin,1 ≤ U1
N1

≤ Q∗
1, Qmin,2 ≤ U2

N2
≤ Q∗∗

2 and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dN ′′

1 + μ1(
U1
N1

)N1 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U2,

U1
N1

)N1 = 0, x ∈ (0,1),

dN ′′
2 + μ2(

U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2(z(x) − U2,

U2
N2

)N2 = 0, x ∈ (0,1)

with the boundary conditions (3.2). It is easy to see that (N2, U2) = (N∗
2 , U∗

2 ) based on 0 < d <

d0,2, and (N1, U1) ∈ W1 satisfies{
dN ′′

1 + μ1(
U1
N1

)N1 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − U∗

2 , U1
N1

)N1 = 0, x ∈ (0,1)
(3.30)

with the usual boundary conditions. Similar arguments as before implies that (N1, U1) = (0, 0)

when �0
1 �= 0. That is, E2 is the unique fixed point of F̃ (0) in O+

δ (E2), and

index(F̃ (0),O+
δ (E2),W) = index(F̃ (0),E2,W).

For σ ∈ [0, 1], let T̃ (σ ) be defined by

T̃ (σ )

⎛⎜⎜⎝
N1
U1
N2
U2

⎞⎟⎟⎠ = (−d
d2

dx2 + M)−1

⎛⎜⎜⎜⎝
μ1(

U1
N1

)N1 + MN1

f1(z − [(1 − σ)U2 + σU∗
2 ], U1

N1
)N1 + MU1

μ2(
U2
N2

)N2 + MN2

f2(z − U2,
U2
N2

)N2 + MU2

⎞⎟⎟⎟⎠ .

Then T̃ (σ )(N1, U1, N2, U2) = (N1, U1, N2, U2) satisfies
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dN ′′

1 + μ1(
U1
N1

)N1 = 0, x ∈ (0,1),

dU ′′
1 + f1(z(x) − [(1 − σ)U2 + σU∗

2 ], U1
N1

)N1 = 0, x ∈ (0,1),

dN ′′
2 + μ2(

U2
N2

)N2 = 0, x ∈ (0,1),

dU ′′
2 + f2(z − U2,

U2
N2

)N2 = 0, x ∈ (0,1)

(3.31)

with the boundary conditions (3.2). First, we show that T̃ (σ ) has no fixed point on ∂O+
δ (E2). 

Otherwise, it follows from the last two equations of (3.31) that (N2, U2) = (N∗
2 , U∗

2 ), and hence 
(N1, U1) satisfies (3.30). Similar arguments as before indicate that (N1, U1) ≡ (0, 0) when �0

1 �=
0. Hence the only fixed point of T̃ (σ ) on ∂O+

δ (E2) is E2, a contradiction. On the other hand, it 
is easy to see that

F̃ (0) = T̃ (0), T̃ (1) = T̃1 × T̃2,

where

T̃1(N1,U1) = (−d
d2

dx2 + M)−1

(
μ1(

U1
N1

)N1 + MN1

f1(z − U∗
2 , U1

N1
)N1 + MU1

)
,

T̃2(N2,U2) = (−d
d2

dx2 + M)−1

(
μ2(

U2
N2

)N2 + MN2

f2(z − U2,
U2
N2

)N2 + MU2

)
,

and (T̃1 × T̃2)(N1, U1, N2, U2) = (T̃1(N1, U1), ̃T2(N2, U2)). Hence, by the homotopy invariance 
of topological degree and the product theorem for fixed points that

index(F̃ (0),E2,W) = index(T̃ (0),E2,W) = index(T̃ (1),E2,W)

= index(T̃1, (0,0),W1) · index(T̃2, (N
∗
2 ,U∗

2 ),W2).

By similar arguments as in Lemma 3.5, we can show index(T̃2, (N∗
2 , U∗

2 ), W2) = 1, and

index(T̃1, (0,0),W1) =
{

1 provided �0
1 < 0,

0 provided �0
1 > 0.

In summary, we obtain

index(F,O+
δ (E2),W) = index(F̃ (0),O+

δ (E2),W) = index(T̃ (1),O+
δ (E2),W)

= index(T̃1, (0,0),W1) · index(T̃2, (N
∗
2 ,U∗

2 ),W2)

=
{

1 provided �0
1 < 0,

0 provided �0
1 > 0.

�
Theorem 3.1. Suppose 0 < d < min{d0,1, d0,2}. Then the steady state system (3.1)–(3.2) has 
positive solution if �0

1 < 0, �0
2 < 0 or �0

1 > 0, �0
2 > 0.

Proof. It follows from Lemma 3.1 that (N1, U1, N2, U2) is a positive solution to system 
(3.1)–(3.2) if and only if it is a fixed point of the operator F in �̇. Assume that F has no fixed 
point in �̇. Then F has only a trivial solution E0 and two semi-trivial solutions E1(x) and E2(x). 
It follows from the additivity of the fixed point index that
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index(F, �̇,W) = index(F,Wδ(E0),W)

+index(F,O+
δ (E1),W) + index(F,O+

δ (E2),W).

If �0
1 < 0, �0

2 < 0, it follows from Lemmas 3.3, 3.4, 3.5 and 3.6 that

index(F,Wδ(E0),W) + index(F,O+
δ (E1),W) + index(F,O+

δ (E2),W) = 2,

which contradicts index(F, �̇, W) = 1.
If �0

1 > 0, �0
2 > 0, it follows from Lemmas 3.3, 3.4, 3.5 and 3.6 that

index(F,Wδ(E0),W) + index(F,O+
δ (E1),W) + index(F,O+

δ (E2),W) = 0.

This also contradicts index(F, �̇, W) = 1, which implies the conclusion holds. �
4. Discussion

In this paper, we focus on the investigation of the existence of positive steady-state solu-
tions of system (1.5)–(1.7) (or (1.8)–(1.10)) describing the interactions of an intraguild preda-
tor (Ochromonas) and an intraguild prey (Microcystis) when grown in ammonium. System 
(1.5)–(1.7) was extended from the ordinary differential equation (1.1) in [20] by incorporating 
the spatial factors. As pointed out in the previous works [7–9], the main difficulties in mathemati-
cal analysis of system (1.5)–(1.7) are caused by the singularity in the ratios U1/N1 and U2/N2 at 
the trivial or semitrivial steady states with (U1, N1) = (0, 0) or (U2, N2) = (0, 0). Thus, standard 
technique such as linearization can not be applied here.

Instead of doing linearization around semitrivial steady states of system (1.5)–(1.7), the au-
thors in [11] directly used the following cooperative systems⎧⎪⎨⎪⎩

∂N1
∂t

= d ∂2N1
∂x2 + μ1(

U1
N1

)N1, x ∈ (0,1), t > 0,

∂U1
∂t

= d ∂2U1
∂x2 + f1(z(x) − U∗

2 (x), U1
N1

)N1, x ∈ (0,1), t > 0,
∂w
∂x

(0, t) = ∂w
∂x

(1, t) + γw(1, t) = 0, t > 0, w = N1, U1,

(4.1)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂N2
∂t

= d ∂2N2
∂x2 + μ2(

U2
N2

)N2, x ∈ (0,1), t > 0,

∂U2
∂t

= d ∂2U2
∂x2 + f2(z(x) − U∗

1 (x), U2
N2

)N2

+h(N∗
1 (x))U∗

1 (x)N2, x ∈ (0,1), t > 0,
∂w
∂x

(0, t) = ∂w
∂x

(1, t) + γw(1, t) = 0, t > 0, w = N2, U2,

(4.2)

to determine the conditions such that two semitrivial steady states are “uniform weak re-
pellers”, respectively (see also [8]). Note that the nonlinear eigenvalue problem (3.19) (resp. 
(3.20)) comes from system (4.1) (resp. (4.2)) and admits the principal eigenvalue �0

1 (resp. 
�0

2). Such kinds of nonlinear eigenvalue problems were also studied in [8]. Under the condi-
tion 0 < d < min{d0,1, d0,2}, we see that both of the semitrivial steady-state solutions exist, that 
is, each species can survive alone in the absence of its competitor. Then the authors in [11] es-
tablished the existence of a (robust) coexistence steady state of system (1.5)–(1.7) by applying 
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the theory of uniform persistence, provided that �0
1 > 0 and �0

2 > 0, which corresponds to the 
case where both of the semitrivial steady-state solutions are uniform weak repellers. Under the 
condition 0 < d0,2 < d < d0,1, we see that the semi-trivial solution E1(x) exists but E2(x) does 
not exist. This means the intraguild prey can survive in the absence of predator, but the intraguild 
predator can not survive in the absence of prey. Then another interesting case of coexistence 
for system (1.5)–(1.7) can also occur when E1(x) is a uniform weak repeller (i.e. �0

2 > 0). We 
note that this case is also included in [11], and it can be established by the theory of uniform 
persistence.

Ecologically, we also expect another case that if both of the semitrivial steady-state solutions 
exist (i.e. 0 < d < min{d0,1, d0,2}) and neither of the semitrivial steady states can be invaded, 
then positive steady-state solutions of system (1.5)–(1.7) can also exist. By using the theory of 
the fixed point index in cones, we proved our main results in Theorem 3.1 of this paper, where 
we showed that a positive steady state solution (should be unstable) of system (1.5)–(1.7) ex-
ists if �0

1 < 0 and �0
2 < 0, which usually corresponds to the case where both of the semitrivial 

steady-state solutions are locally asymptotically stable. In the Appendix section, we will rigor-
ously show that the semi-trivial solution E2(x) (resp. E1(x)) is locally asymptotically stable for 
system (1.8)–(1.10) if �0

1 < 0 (resp. �0
2 < 0). Thus, this study may answer the possibility of 

bistability for system (1.5)–(1.7).
The sharp a priori estimates for nonnegative solutions of the system (3.1)–(3.2) assure that any 

nonnegative solution of (3.1)–(3.2) belongs to the special cone W . Thus we only need to search 
positive solutions of (3.1)–(3.2) in this special cone W . The selection of this special cone ensures 
the existence of M satisfying (3.15), and guarantees F(�) ⊂ W , which enables us to apply the 
topological fixed point theorems in the cone W (see Lemma 2.2) to establish the existence of 
positive solutions to (3.1)–(3.2).

5. Appendix

In this section, we shall prove that the semi-trivial solution E2(x) (resp. E1(x)) is locally 
asymptotically stable for system (1.8)–(1.10) if �0

1 < 0 (resp. �0
2 < 0).

Proposition 5.1. Suppose 0 < d < d0,2. Then the semi-trivial solution E2(x) = (0, 0, N∗
2 (x),

U∗
2 (x)) is locally asymptotically stable if �0

1 < 0.

Proof. Recall that D := C0([0, 1], R2+) and ≥D is the partial order in C0([0, 1], R2). Let the 
cone K :=D × (−D). Then K generates a partial order on C0([0, 1], R4) as follows

(N1,U1,N2,U2) ≤K (Ñ1, Ũ1, Ñ2, Ũ2) ⇔ (N1,U1) ≤D (Ñ1, Ũ1) and (N2,U2) ≥D (Ñ2, Ũ2).

For δ > 0, we assume that (N1(x, t), U1(x, t), N2(x, t), U2(x, t)) is a solution of (1.8)–(1.9) with 
initial condition

(N1(x,0),U1(x,0),N2(x,0),U2(x,0)) = (N0
1 (x),U0

1 (x),N0
2 (x),U0

2 (x)) ∈ O+
δ (E2).

Then (N1(x, t), U1(x, t), N2(x, t), U2(x, t)) ≥ 0 for all t > 0 and x ∈ [0, 1]. Moreover, it is easy 
to see that
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂N1
∂t

≤ d ∂2N1
∂x2 + μ1(

U1
N1

)N1, t > 0, x ∈ (0,1),

∂U1
∂t

≤ d ∂2U1
∂x2 + f1(z(x) − U1 − U2,

U1
N1

)N1, t > 0, x ∈ (0,1),

∂N2
∂t

≥ d ∂2N2
∂x2 + μ2(

U2
N2

)N2, t > 0, x ∈ (0,1),

∂U2
∂t

≥ d ∂2U2
∂x2 + f2(z(x) − U1 − U2,

U2
N2

)N2, t > 0, x ∈ (0,1).

(5.1)

Hence, for all t > 0, it follows that

(N1(x, t),U1(x, t),N2(x, t),U2(x, t)) ≤K (Ň1(x, t), Ǔ1(x, t), Ň2(x, t), Ǔ2(x, t)) on [0,1],
(5.2)

where (Ň1(x, t), Ǔ1(x, t), Ň2(x, t), Ǔ2(x, t)) is a solution of the following system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Ň1
∂t

= d ∂2Ň1
∂x2 + μ1(

Ǔ1

Ň1
)Ň1, t > 0, x ∈ (0,1),

∂Ǔ1
∂t

= d ∂2Ǔ1
∂x2 + f1(z(x) − Ǔ1 − Ǔ2,

Ǔ1

Ň1
)Ň1, t > 0, x ∈ (0,1),

∂Ň2
∂t

= d ∂2Ň2
∂x2 + μ2(

Ǔ2

Ň2
)Ň2, t > 0, x ∈ (0,1),

∂Ǔ2
∂t

= d ∂2Ǔ2
∂x2 + f2(z(x) − Ǔ1 − Ǔ2,

Ǔ2

Ň2
)Ň2, t > 0, x ∈ (0,1),

(5.3)

with the boundary conditions (1.9) and the initial condition (Ň1, Ǔ1, Ň2, Ǔ2)(x, 0) = (N0
1 (x),

U0
1 (x), N0

2 (x), U0
2 (x)) on [0, 1]. We note that system (5.3) is monotone under the partial order 

≤K (see, e.g., [7,17]), and hence, the inequality in (5.2) holds (see, e.g., [17, Theorem 7.3.4]).
For small ε > 0, we define (N1, U1, N2, U2) = (εη�1, εη
1, (1 − ε)N∗

2 (x), (1 − ε)U∗
2 (x)), 

where η > 0 is small such that U∗
2 (x) − η
1 > 0 on [0, 1]. If �0

1 < 0 and ε > 0 is small enough, 
we can show that (N1, U1, N2, U2) is an upper solution of (5.3) with the boundary conditions 
(1.9) under the partial order ≤K in the following sense,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(N1)xx + μ1(
U1
N1

)N1 = εη
[
d(�1)xx + μ1(


1
�1

)�1

]
= εη�0

1�1 < 0,

d(U1)xx + f1(z(x) − U1 − U2,
U1
N1

)N1

= εη
[
�0

1
1 + (f1(z(x) − U∗
2 + ε(U∗

2 − η
1),

1
�1

) − f1(z(x) − U∗
2 , 
1

�1
))�1

]
< 0,

d(N2)xx + μ2(
U2
N2

)N2 = (1 − ε)
[
d(N∗

2 )xx + μ2(
U∗

2
N∗

2
)N∗

2

]
= 0,

d(U2)xx + f2(z(x) − U1 − U2,
U2
N2

)N2

= (1 − ε)
[
d(U∗

2 )xx + f2(z − U∗
2 + ε(U∗

2 − η
1),
U∗

2
N∗

2
)N∗

2

]
> 0.

(5.4)

Since (N0
1 (x), U0

1 (x), N0
2 (x), U0

2 (x)) ∈ O+
δ (E2), we can choose a smaller δ > 0 such that

(N0
1 (x),U0

1 (x),N0
2 (x),U0

2 (x)) ≤K (N1,U1,N2,U2) on [0,1],
where (N1, U1, N2, U2) satisfies (5.4). Thus, for all t > 0 and x ∈ [0, 1], we have

(N1,U1,N2,U2)(x, t) ≤K (Ň1, Ǔ1, Ň2, Ǔ2)(x, t) ≤K (N1,U1,N ,U )(x).
2 2
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That is,

0 ≤D (N1,U1)(x, t) ≤D ε(η�1, η
1) and (N2,U2)(x, t) ≥D (1 − ε)(N∗
2 ,U∗

2 ) (5.5)

for all t > 0 and x ∈ [0, 1]. Hence, there exists a positive constant H such that h(N1)U1 ≤ Hε

for all t > 0 and x ∈ [0, 1], which implies that{
∂N2
∂t

≤ d ∂2N2
∂x2 + μ2(

U2
N2

)N2, t > 0, x ∈ (0,1),

∂U2
∂t

≤ d ∂2U2
∂x2 + (f2(z(x) − U2,

U2
N2

) +Hε)N2, t > 0, x ∈ (0,1).

It follows that (N2(x, t), U2(x, t)) ≤D (Ñ2,ε(x, t), ̃U2,ε(x, t)) for all t > 0 and x ∈ [0, 1], where 
(Ñ2,ε(x, t), ̃U2,ε(x, t)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ñ2,ε

∂t
= d

∂2Ñ2,ε

∂x2 + μ2(
Ũ2,ε

Ñ2,ε
)Ñ2,ε, t > 0, x ∈ (0,1),

∂Ũ2,ε

∂t
= d

∂2Ũ2,ε

∂x2 + (f2(z(x) − Ũ2,ε ,
Ũ2,ε

Ñ2,ε
) +Hε)Ñ2,ε , t > 0, x ∈ (0,1),

∂Ñ2,ε

∂x
(0, t) = 0,

∂Ñ2,ε

∂x
(1, t) + γ Ñ2,ε(1, t) = 0, t > 0,

∂Ũ2,ε

∂x
(0, t) = 0,

∂Ũ2,ε

∂x
(1, t) + γ Ũ2,ε(1, t) = 0, t > 0,

Ñ2,ε(x,0) = N0
2 (x), Ũ2,ε(x,0) = U0

2 (x), x ∈ [0,1].

(5.6)

Since 0 < d < d0,2, we may use the similar arguments as in Lemma 2.1 (see also [9, Theo-
rem 2.2]) together with perturbation theory to deduce that

(Ñ2,ε(x, t), Ũ2,ε(x, t)) → (Ñ∗
2,ε(x), Ũ∗

2,ε(x)) on [0,1] as t → ∞,

where (Ñ∗
2,ε(x), ̃U∗

2,ε(x)) is the unique positive steady state solution of (5.6). By standard regu-

larity theory, it is easy to deduce that (Ñ∗
2,ε(x), ̃U∗

2,ε(x)) → (N∗
2 (x), U∗

2 (x)) on [0, 1] as ε → 0. 
Hence, there exists T0 > 0 such that (Ñ2,ε(x, t), ̃U2,ε(x, t)) ≤D (1 + ε)(N∗

2 (x), U∗
2 (x)) for all 

t ≥ T0 and x ∈ [0, 1], which implies that

(N2(x, t),U2(x, t)) ≤D (1 + ε)(N∗
2 (x),U∗

2 (x)), ∀ t ≥ T0, x ∈ [0,1]. (5.7)

In view of (5.5) and (5.7), we can conclude that the semi-trivial solution E2(x) = (0, 0, N∗
2 (x),

U∗
2 (x)) is locally stable when �0

1 < 0.
We next show that the solutions of (N1(x, t), U1(x, t)) in system (1.8)–(1.10) exponentially 

decay to zero as t → ∞, by constructing exponentially decaying in time solution associated with 
suitable eigenfunctions. In view of the first two equations of system (1.8)–(1.10) and (5.5), we 
have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂N1
∂t

≤ d ∂2N1
∂x2 + μ1(

U1
N1

)N1, t > 0, x ∈ (0,1),

∂U1
∂t

≤ d ∂2U1
∂x2 + f1(z(x) − (1 − ε)U∗

2 − U1,
U1
N1

)N1, t > 0, x ∈ (0,1),
∂N1
∂x

(0, t) = 0, ∂N1
∂x

(1, t) + γN1(1, t) = 0, t > 0,
∂U1 (0, t) = 0, ∂U1 (1, t) + γU (1, t) = 0, t > 0.

(5.8)
∂x ∂x 1
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Since �0
1 < 0, we may assume that ε > 0 in the previous discussions is small enough such that 

�ε
1 < 0, where �ε

1 is the principal eigenvalue of the following eigenvalue problem

⎧⎪⎪⎨⎪⎪⎩
�ε

1�
ε
1 = d�ε

1xx + μ1(

ε

1
�ε

1
)�ε

1, x ∈ (0,1),

�ε
1


ε
1 = d
ε

1xx + f1(z − (1 − ε)U∗
2 ,


ε
1

�ε
1
)�ε

1, x ∈ (0,1),

�ε
1x(0) = �ε

1x(1) + γ�ε
1(1) = 0, 
ε

1x(0) = 
ε
1x(1) + γ
ε

1(1) = 0.

Let (�ε
1, 


ε
1) be a strongly positive eigenfunction associated with �ε

1 < 0. Clearly, there exists a 
β1 > 0 such that

(N0
1 (x),U0

1 (x)) ≤D β1(�
ε
1,


ε
1) on [0,1]. (5.9)

Let (Ñ1(x, t), ̃U1(x, t)) = (β1e
�ε

1t�ε
1, β1e

�ε
1t
ε

1). Then (Ñ1(x, t), ̃U1(x, t)) satisfies the follow-
ing system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ñ1
∂t

= d ∂2Ñ1
∂x2 + μ1(

Ũ1
Ñ1

)Ñ1, x ∈ (0,1), t > 0,

∂Ũ1
∂t

= d ∂2Ũ1
∂x2 + f1(z − (1 − ε)U∗

2 , Ũ1
Ñ1

)Ñ1, x ∈ (0,1), t > 0,

∂Ñ1
∂x

(0, t) = 0, ∂Ñ1
∂x

(1, t) + γ Ñ1(1, t) = 0, t > 0,

∂Ũ1
∂x

(0, t) = 0, ∂Ũ1
∂x

(1, t) + γ Ũ1(1, t) = 0, t > 0,

Ñ1(x,0) = β1�
ε
1, Ũ1(x,0) = β1


ε
1, x ∈ [0,1].

(5.10)

It follows from (5.8)–(5.10) and the comparison principle that for t > 0 and x ∈ [0, 1], we have

(0,0) ≤D (N1(x, t),U1(x, t)) ≤D (Ñ1(x, t), Ũ1(x, t)) = β1e
�ε

1t (�ε
1,


ε
1).

Since �ε
1 < 0, it follows from the above inequality that (N1(x, t), U1(x, t)) → (0, 0) uni-

formly on [0, 1] as t → ∞. Thus, we have proved that the solutions of (N1(x, t), U1(x, t))
in system (1.8)–(1.10) exponentially decay to zero as t → ∞. Then (N2(x, t), U2(x, t)) in sys-
tem (1.8)–(1.10) is asymptotic to the system (2.1) with i = 2. Since 0 < d < d0,2, it follows 
from the theory for asymptotically autonomous semiflows (see, e.g., [19, Corollary 4.3]) and 
Lemma 2.1 (ii) that (N2(x, t), U2(x, t)) → (N∗

2 (x), U∗
2 (x)) uniformly on [0, 1] as t → ∞. 

Hence, the semi-trivial solution E2(x) = (0, 0, N∗
2 (x), U∗

2 (x)) is locally asymptotically stable 
if �0

1 < 0. �
Next, we are in a position to investigate the local stability of E1(x). Since the function h(N1)

is non-monotone with respect to N1, we note that the arguments in Proposition 5.1 don’t work 
for this case. We first consider the following auxiliary nonlinear system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N1
∂t

= d ∂2N1
∂x2 +

[
μ1(

U∗
1

N∗
1
) − U∗

1
N∗

1
μ′

1(
U∗

1
N∗

1
)
]
N1 + μ′

1(
U∗

1
N∗

1
)U1 − g(N∗

1 )N2,

∂U1
∂t

= d ∂2U1
∂x2 +

[
f1(z(x) − U∗

1 ,
U∗

1
N∗

1
) − ∂f1

∂Q1
(z(x) − U∗

1 ,
U∗

1
N∗

1
)
U∗

1
N∗

1

]
N1

+
[
− ∂f1

∂R
(z(x) − U∗

1 ,
U∗

1
N∗

1
)N∗

1 + ∂f1
∂Q1

(z(x) − U∗
1 ,

U∗
1

N∗
1
)
]
U1

−h(N∗
1 )U∗

1 N2 − ∂f1
∂R

(z(x) − U∗
1 ,

U∗
1

N∗
1
)N∗

1U2,

∂N2
∂t

= d ∂2N2
∂x2 + μ2(

U2
N2

)N2,

∂U2
∂t

= d ∂2U2
∂x2 + f2(z(x) − U∗

1 , U2
N2

)N2 + h(N∗
1 )U∗

1 N2,

(5.11)

for (x, t) ∈ (0, 1) × (0, ∞) with boundary conditions (1.9). Just as before, the functions 
μ2 (U2/N2)N2 and f2(z(x) − U∗

1 , U2/N2)N2 can be respectively extended to those similar to 
Eq. (4.9) and Eq. (4.10) in [8], if necessary. Hence, we call (N1, U1, N2, U2) ≡ (0, 0, 0, 0) a 
steady state solution of (5.11) on [0, 1] with boundary conditions (1.9). Substituting

(N1(x, t),U1(x, t),N2(x, t),U2(x, t)) = e�t (θ1(x),ϑ1(x), θ2(x),ϑ2(x))

into (5.11) with (θ2(x), ϑ2(x)) ∈ W2 ⊂ D := C0([0, 1], R2+), we obtain the associated nonlinear 
eigenvalue problem

�

(
θ1
ϑ1

)
= L1

(
θ1
ϑ1

)
−

(
g(N∗

1 ) 0

h(N∗
1 )U∗

1
∂f1
∂R

(z(x) − U∗
1 ,

U∗
1

N∗
1
)N∗

1

)(
θ2
ϑ2

)
, x ∈ (0,1),

�

(
θ2
ϑ2

)
= L2

(
θ2
ϑ2

)
, x ∈ (0,1), (5.12)

∂w

∂x
(0) = ∂w

∂x
(1) + γw(1) = 0, w = θ1, ϑ1, θ2, ϑ2,

where

L1

(
θ1
ϑ1

)
=

⎛⎜⎜⎜⎝
dθ ′′

1 +
[
μ1(

U∗
1

N∗
1
) − U∗

1
N∗

1
μ′

1(
U∗

1
N∗

1
)
]
θ1 + μ′

1(
U∗

1
N∗

1
)ϑ1,

dϑ ′′
1 +

[
f1(z(x) − U∗

1 ,
U∗

1
N∗

1
) − ∂f1

∂Q1
(z(x) − U∗

1 ,
U∗

1
N∗

1
)
U∗

1
N∗

1

]
θ1

+
[
− ∂f1

∂R
(z(x) − U∗

1 ,
U∗

1
N∗

1
)N∗

1 + ∂f1
∂Q1

(z(x) − U∗
1 ,

U∗
1

N∗
1
)
]
ϑ1

⎞⎟⎟⎟⎠
and

L2

(
θ2
ϑ2

)
=

(
dθ ′′

2 + μ2(
ϑ2
θ2

)θ2

dϑ ′′
2 + f2(z(x) − U∗

1 , ϑ2
θ2

)θ2 + h(N∗
1 )U∗

1 θ2

)
.

Clearly, the eigenvalues of (5.12) consist of the eigenvalues of L1 and L2. It follows from the 
proof of Lemma 2.1 in [9] that the principal eigenvalue �1(L1) < 0 of the cooperative linear 
operator L1. Meanwhile, it is easy to see that the principal eigenvalue �1(L2) = �0

2 < 0. Hence, 
the steady state solution (0, 0, 0, 0) of (5.11) is exponentially stable. Finally, we will show that the 
exponential stability of the steady state solution (0, 0, 0, 0) to (5.11) implies the local asymptotic 
stability of the semi-trivial solution E1(x) to system (1.8)–(1.10). That is, we have the following 
result.
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Proposition 5.2. Suppose 0 < d < d0,1. Then the semi-trivial solution E1(x) = (N∗
1 (x), U∗

1 (x),

0, 0) is locally asymptotically stable if �0
2 < 0.

Proof. For δ > 0, let (N1(x, t), U1(x, t), N2(x, t), U2(x, t)) be a solution of (1.8)–(1.9) with 
initial condition

(N1(x,0),U1(x,0),N2(x,0),U2(x,0)) = (N0
1 (x),U0

1 (x),N0
2 (x),U0

2 (x)) ∈ O+
δ (E1).

Then (N1(x, t), U1(x, t), N2(x, t), U2(x, t)) ≥ 0 for all t > 0 and x ∈ [0, 1]. Let

V (x, t) = (V1(x, t),V2(x, t),V3(x, t),V4(x, t))

= (N1(x, t),U1(x, t),N2(x, t),U2(x, t)) − (N∗
1 (x),U∗

1 (x),0,0).

By using the Taylor expansion at E1(x) = (N∗
1 (x), U∗

1 (x), 0, 0), we have

μ1(
U1

N1
)N1 = μ1(

U∗
1

N∗
1
)N∗

1 +
[
μ1(

U∗
1

N∗
1
) − U∗

1

N∗
1
μ′

1(
U∗

1

N∗
1
)

]
V1 + μ′

1(
U∗

1

N∗
1

)V2 + o(‖V1‖ + ‖V2‖),

f1(z(x) − U1 − U2,
U1
N1

)N1

= f1(z(x) − U∗
1 ,

U∗
1

N∗
1
)N∗

1 +
[
f1(z(x) − U∗

1 ,
U∗

1
N∗

1
) − ∂f1

∂Q1
(z(x) − U∗

1 ,
U∗

1
N∗

1
)
U∗

1
N∗

1

]
V1

=
[
− ∂f1

∂R
(z(x) − U∗

1 ,
U∗

1
N∗

1
)N∗

1 + ∂f1
∂Q1

(z(x) − U∗
1 ,

U∗
1

N∗
1
)
]
V2 − ∂f1

∂R
(z(x) − U∗

1 ,
U∗

1
N∗

1
)N∗

1 V4

+o(‖V1‖ + ‖V2‖ + ‖V4‖),
g(N1) = g(N∗

1 ) + O(‖V1‖), h(N1)U1 = h(N∗
1 )U∗

1 + O(‖V1‖ + ‖V2‖),
f2(z(x) − U1 − U2,

U2

N2
)N2 = f2(z(x) − U∗

1 ,
U2

N2
)N2 + o(‖N2‖).

Hence, V (x, t) satisfies

∂

∂t

(
V1
V2

)
= L1

(
V1
V2

)
+

(
�1(V )

�2(V )

)
, t > 0, x ∈ (0,1),

∂

∂t

(
V3
V4

)
= L2

(
V3
V4

)
+

(
0

�4(V )

)
, t > 0, x ∈ (0,1), (5.13)

∂Vi

∂x
(0, t) = ∂Vi

∂x
(1, t) + γVi(1, t) = 0, i = 1,2,3,4, t > 0,

where

�1(V ) = −g(N∗
1 )V3 + o(‖V1‖ + ‖V2‖) + O(‖V1‖)V3,

�2(V ) = −h(N∗
1 )U∗

1 V3 − ∂f1

∂R
(z(x) − U∗

1 ,
U∗

1

N∗
1
)N∗

1 V4 + o(‖V ‖),

�4(V ) = o(‖N2‖) + O(‖V1‖ + ‖V2‖)V3,

with initial condition V (x, 0) := V 0(x) = (N0
1 (x) − N∗

1 , U0
1 (x) − U∗

1 , N0
2 (x), U0

2 (x)). Here we 
comment on the problem in linearizing system (1.8)–(1.9) around E1(x). Since both of N∗(x)
1
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and U∗
1 (x) are strictly positive everywhere in x, we can linearize the first two equations of 

(1.8)–(1.9) around E1(x). This corresponds to the equations of V1 and V2 in (5.13). However, the 
linearization of the last two equations in (1.8)–(1.9) around E1(x) fails, due to the singularity in 
the ratio of U2/N2 at (N2, U2) = (0, 0). Thus, one needs to introduce the 1-homogeneous opera-
tor L2 for the equations of V3 and V4 in (5.13). We rewrite system (5.13) as the abstract ordinary 
differential equation in C([0, 1], R2) × W2 and the so-called mild solutions can be obtained for 
any given initial data. More precisely,

(
V1
V2

)
= G1(t)

(
V 0

1
V 0

2

)
+

t∫
0

G1(t − s) ·
(
�1(V (s))

�2(V (s))

)
ds,

(
V3
V4

)
= G2(t)

(
N0

2
U0

2

)
+

t∫
0

G2(t − s) ·
(

0
�4(V (s))

)
ds,

where G1(t) is the positive, non-expansive, analytic semigroup on C([0, 1], R2) (see, e.g., Chap-
ter 7 in [17]) such that (V1, V2)

ᵀ = G1(t) · (V 0
1 , V 0

2 )ᵀ satisfies the linear initial value problem

∂

∂t

(
V1
V2

)
= L1

(
V1
V2

)
, t > 0, x ∈ (0,1),

∂Vi

∂x
(0, t) = ∂Vi

∂x
(1, t) + γVi (1, t) = 0, i = 1,2, t > 0,

V1(x,0) = V 0
1 (x), V2(x,0) = V 0

2 (x), x ∈ [0,1],

and G2(t) is the continuous, compact, homogeneous of degree one and D-strongly-order-
preserving semiflow on W2 (see Lemma 5.1 in [8]) such that (V3, V4)

ᵀ = G2(t) · (V 0
3 , V 0

4 )ᵀ
satisfies the initial value problem

∂

∂t

(
V3
V4

)
= L2

(
V3
V4

)
, t > 0, x ∈ (0,1),

∂Vi

∂x
(0, t) = ∂Vi

∂x
(1, t) + γVi (1, t) = 0, i = 3,4, t > 0,

V3(x,0) = V 0
3 (x), V4(x,0) = V 0

4 (x), x ∈ [0,1].

Note that the positive steady state solution (N∗
1 (·), U∗

1 (·)) is globally asymptotically stable in 
�1 for system (2.1) with i = 1 (see Lemma 2.1), and the principal eigenvalue of the cooperative 
linear operator L1 is negative, that is, �1(L1) < 0. Clearly, the principal eigenvalue �1(L2) =
�0

2 < 0. By arguments analogous to those in Theorem 9.6.3 of [24], one may deduce that the 
semi-trivial solution E1(x) is locally asymptotically stable. �
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