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Abstract. A morbidostat is a bacteria culture device that maintains a nearly constant microbial population for the
selection of drug-resistant mutants via a feedback algorithm. In this paper, the global dynamics of a microbial species
undergoing sequential evolution are studied in detail to elucidate the operation of a morbidostat. The cultivation of
the microbes is assumed to be under periodic dilution, and a simple threshold algorithm is used as feedback. We also
prove the extinction and uniform persistence of all species with both forward and backward mutation in a sequential
evolution scenario. Numerical simulations for the case of logistic growth and the Hill function for drug inhibition
are also applied to verify our theoretical results. The theoretical framework elucidates the generic features of the
operation of a morbidostat under drug-inhibitor-induced feedback, and will provide a useful aid for the design of
experiments.
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1. Introduction. Antibiotic drug resistance is a global health problem [1]. Today, clini-
cally important bacteria are characterized by their resistance to single or multiple drugs. An-
tibiotic drug resistance mechanisms include (1) modification and deactivation of the antibiotic
by expression of certain enzymes; (2) development of an active efflux for the drug; and (3) al-
teration of the intracellular drug target such as the ribosome, metabolic enzymes, or proteins
involved in DNA replications or cell wall synthesis. The acquisition of high-level antibi-
otic resistance has been discovered in vivo. Historically, penicillin-resistant Staphylococcus
aureus was discovered soon after the introduction of penicillin in clinical environments [2].
In a more recent example, antibiotic drug resistance has been studied by running the whole
genome sequencing of clinical isolates from patients suffering from endocarditis (S. aureus
infection of the heart muscle) and undergoing antibiotic treatment [3]. Through the course
of infection over a 3-month period, a total of 35 point mutations were accumulated, many
associated with the acquisition of antibiotic resistance. Increasing minimum inhibitory con-
centrations are also observed. Although the in vivo evolution of drug resistance can be studied
retrospectively, these experiments lack systematic control over the environmental conditions
for drug resistance. Alternatively, adaptive laboratory evolution (ALE) can be used to study
the molecular evolution of a microbial species undergoing selection pressure from antibiotic
drugs [4]. Recently, many antibiotic drug-resistant evolution experiments have attempted to
elucidate the emergence of antibiotic drug resistance under well-controlled laboratory con-
ditions. For example, Austin’s group demonstrated that the drug concentration gradient can
lead to the rapid emergence of antibiotic drug resistance in microfluidic devices [5]. Hwa’s
group later developed a compartment model [6] to explain this phenomenon, based on the
earlier theoretical consideration of stochastic evolution in a source and sink scenario [7]. Ad-
vances in synthetic biology and microfluidic techniques culminated in Hwa’s work on an
experimentally validated model connecting the innate growth stability under the influence of
translation-inhibiting antibiotic chloramphenicol to detailed biophysical processes and bio-
chemistry such as passive diffusion and drug and enzyme interaction [8]. In short, during the
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FIG. 1. A schematic of the morbidostat. A morbidostat is a continuous-culture device that automatically tunes
inhibitor concentration to maintain constant growth inhibition. The assay runs in cycles of growth periods (T ) and
adds dilutions with either fresh medium (blue) or drug solution (magenta) based on a threshold feedback algorithm.
The population is diluted with drug solution when the total bacteria density exceeds the preset threshold value (U ).

microbial growth stage, the microbe can develop antibiotic drug resistance by constitutively
expressing chloramphenicol acetyltransferase (CAT), an enzyme that deactivates chloram-
phenicol. The feedback model consists of an influx of chloramphenicol, microbial growth,
and the CAT concentration.

Recently, a more advanced chemostat [9] known as a morbidostat has been developed
with the aim of imposing drug selection pressure to induce mutations in a more system-
atic fashion [10]. A morbidostat is a microbial selection device that continuously adjusts
the antibiotic concentration to maintain a nearly constant population. In one incarnation,
as illustrated by Fig.1, the microbial population can be monitored by recording the optical
density. The addition of the drug is computer-controlled based on a prescribed feedback al-
gorithm. Samples are frozen daily to serve as the “fossil record” of the evolution, and a small
fraction is used to inoculate a fresh batch of the medium and restart another growth cycle.
After the experiment has run its course, the daily frozen samples are thawed and the inhibitor
concentrations are characterized. These samples are also analyzed with whole genome se-
quencing techniques to reveal the molecular mechanism for the drug resistance. In this work,
we present a theory to not only reproduce the essential features of this mechanism, but also
yield sufficient insight to provide guidelines for the analysis of the experimental data. It is
our hope that the theory will aid the design of new experiments by identifying key parameters
based on existing experimental data in the literature. The reminder of this paper is organized
as follows. In Section 2, we specifically introduce two deterministic models for the selec-
tion of drug-resistant bacteria in the morbidostat. The first one deals with sequential forward
mutation with one wild type and N mutant species. The second model deals with the same
sequential evolution, but allows both forward and backward mutations. In Section 3, we study
the global dynamics of the morbidostat model in two cases, and state the main results of this
paper. The proofs are deferred to the Appendix in Section 6. In Section 4, we present the
results of numerical simulations with plausible parameters to verify key results on the global
dynamics. Section 5 is the section of conclusion and discussion.

2. Description of our models. In the simplest scenario, we can formulate the tran-
sition from a wild-type population to N mutant strains. In actual experiments conducted
by Kishony’s group [10], the device maintained a nearly constant population via computer-
controlled feedback. The fitness test runs in cycles of growth periods T . For the forward
mutation model (see Fig. 2) and forward-backward mutation model (see Fig. 3), the growth
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FIG. 2. Forward mutations between species. Mutant vi mutates to mutant vi+1 with a forward mutation rate
qi, and there is no backward mutations. We have v0 = u and i = 0, 1, 2, · · · , N − 1.

dynamics with the nutrient substrate S under the influence of the drug inhibitor P are given
by models (2.1) and (2.2), respectively.



dS
dt = − 1

γ g0(S)f0(P )u− 1
γ

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − qivi,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1,

dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(2.1)



dS
dt = − 1

γ g0(S)f0(P )u− 1
γ

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u+ q̃0v1,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1 − q̃N−1vN ,

dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(2.2)

where i = 1, 2, ..., N − 1, and v0 = u, u and vi are the volume densities of the wild type
and mutant populations, respectively. γ is the yield constant. In Equations (2.1) and (2.2),
the growth rates of the wild type and mutants are given by g0(S) and gi(S), which satisfy
g0(0) = 0, g′0(S) > 0, gi(0) = 0, and g′i(S) > 0. The bacteria are assumed to consume
the drug while the drug inhibits the growth of bacteria. We denote h0(P ) and hi(P ) as the
consumption rates of inhibitor P for the wild type bacteria u and mutants vi, respectively.
Furthermore, h0(P ) and hi(P ) are nonnegative functions which are increasing in P . The
effect of the drug inhibition is described by f0(P ) and fi(P ) and here we use the convention
that when P = 0, f0(0) = 1 and fi(0) = 1. Meanwhile, f ′

i(P ) < 0 since a larger drug
concentration leads to stronger inhibition of the bacteria. Because the mutants have stronger
resistance to the inhibitor than the wild type, we have f0(P ) ≤ f1(P ) ≤ · · · ≤ fN (P ). More
generally, it is reasonable to assume that the wild type grows more slowly than the mutants
in the inhibitor environment, which is our basic assumption as follows,

g0(S)f0(P ) < g1(S)f1(P ) < · · · < gN (S)fN (P ) for S ̸= 0, P ̸= 0.(2.3)

qi are the forward mutation rates while q̃i are the backward mutation rates. We assume that
the mutation rates qi and q̃i are quite small compared with the difference of growth rates
gi(S)fi(P )− gi−1(S)fi−1(P ) for all i = 1, 2, · · · , N .

The resetting of the nutrient and cells at t = Tn = nT (n = 0, 1, 2, · · ·) can be written as

 S(T+
n ) = dS(T−

n ) + (1− d)S(0),
u(T+

n ) = du(T−
n ),

vi(T
+
n ) = dvi(T

−
n ),

(2.4)

where 0 < d < 1 is the dilution ratio of the existing substrate immediately before the dilution
step. A fraction, 1 − d, of the existing substrate is removed and the fresh input substrate of
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FIG. 3. Forward-backward mutations between species. Mutant vi mutates to mutant vi+1 with a forward
mutation rate qi, while mutant vi+1 mutates to mutant vi with a backward mutation rate q̃i. We have v0 = u and
i = 0, 1, 2, · · · , N − 1.

input concentration S(0) is used to refill. As a result, this dilution step contributes a term
(1 − d)S(0). T−

n and T+
n denote the time immediately before and after the dilution step at

t = nT . In mathematical terms, the definitions for T−
n and T+

n are given by

T−
n = lim

ϵ→0−
nT + ϵ, T+

n = lim
ϵ→0+

nT + ϵ.

The resetting of the initial condition for the drug concentration P depends on the result
from a feedback algorithm. Without the drug injection, the resetting of the initial condition is
given by

P (T+
n ) = dP (T−

n ).

With the drug injection and input drug concentration P (0) during the dilution step, the reset-
ting of the initial condition is given by

P (T+
n ) = dP (T−

n ) + (1− d)P (0).

To be specific, we use a threshold algorithm as an example. The drug injection is invoked
if the following condition is fulfilled,

(u+
N∑
i=1

vi)(T
−
n ) ≥ U,(2.5)

where U is the threshold population density.

3. Statement of main results. We first do some simplifications for models (2.1) and
(2.2) more mathematically tractable. By scaling u → u

γ , vi → vi
γ , h0(P ) → γh0(P ) and

hi(P ) → γhi(P ) for i = 1, 2, 3, · · · , N , we obtain the following scaled models of models
(2.1) and (2.2), respectively,



dS
dt = −g0(S)f0(P )u−

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − qivi,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1,

dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(3.1)



dS
dt = −g0(S)f0(P )u−

∑N
i=1 gi(S)fi(P )vi,

du
dt = g0(S)f0(P )u− q0u+ q̃0v1,
dvi
dt = gi(S)fi(P )vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN
dt = gN (S)fN (P )vN + qN−1vN−1 − q̃N−1vN ,

dP
dt = −h0(P )u−

∑N
i=1 hi(P )vi,

(3.2)
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for Tn−1 < t < Tn, and the resetting conditions at t = Tn are

S(T+
n ) = dS(T−

n ) + (1− d)S(0),
u(T+

n ) = du(T−
n ),

vi(T
+
n ) = dvi(T

−
n ),

P (T+
n ) =

{
dP (T−

n ) if (u+
∑N

i=1 vi)(T
−
n ) < U,

dP (T−
n ) + (1− d)P (0) if (u+

∑N
i=1 vi)(T

−
n ) ≥ U,

(3.3)

where i = 1, 2, · · · , N − 1, and n = 1, 2, 3, · · ·.
First we state the results about the global dynamics of the morbidostat model with only

forward mutations.
THEOREM 3.1. For the model (3.1) with resetting conditions (3.3), the wild type bacteria

u and mutants vi, i = 1, 2, 3, · · · , N−1 go extinction in the long term, i.e. un → 0, (vi)n → 0
as n → ∞, i = 1, 2, 3, · · · , N − 1. Furthermore,

(i) If 0 < d < exp (−gN (S(0))T ), then (vN )n → 0 and Pn → 0 as n → ∞. In other
words, all the mutants go extinction, and inhibitor P goes to 0 in the long-term in
this case.

(ii) If exp (−gN (S(0))T ) < d < 1, then there exist 0 < d1 < d2 < 1 such that,
(a) If exp (−gN (S(0))T ) < d < d1, then we have (vN )n → ṽN > 0 and Pn → 0

as n → ∞. In this case, the most resistant microbe vN will survive while
inhibitor P goes to 0 in the long-term.

(b) If d2 < d < 1, then (vN )n → v̄N , Pn → P̄ as n → ∞. In this case, the most
resistant microbe vN and inhibitor P will persist in the morbidostat, and their
densities will be v̄N and P̄ .

(c) If d1 < d < d2, the most resistant microbe vN and inhibitor P will persist
in the morbidostat, and their densities may oscillate as the system is trying to
maintain a constant bacteria density through feedback.

REMARK 3.1. By persistence of a species we mean continued existence in the determin-
istic sense, i.e., lim supt→∞ N(t) > 0, where N(t) is the population of species N at time t
[11].

Theorem 3.1 indicates that the competitive exclusion principle holds when we consider
the case with only forward mutation in the morbidostat.

REMARK 3.2. From Theorem 3.1, there are three situations in which the most resistant
microbe vN goes extinction, those are

• when the dilution ratio d is small,
• when the the period T is small, or
• when the input nutrient concentration S(0) is small.

REMARK 3.3. When the most resistant microbe vN survives, there are three possible
outcomes for inhibitor P , which are

• There is no inhibitor pumped into the morbidostat, which corresponds to subcase
(a) in Theorem 3.1.

• The inhibitor will be pumped into the morbidostat in every dilution cycle, which
corresponds to subcase (b) in Theorem 3.1.

• The inhibitor P and most resistant microbe vN may oscillate, which corresponds to
subcase (c) in Theorem 3.1.

Next we consider the case with both of forward and backward mutations.
THEOREM 3.2. Consider the model (3.2) with resetting conditions (3.3), we have
(i) The wild type bacteria u and mutants vi, i = 1, 2, 3, · · · , N either extinct or persist.

Furthermore, in the latter case the most resistant microbe vN dominates the rest of
the other species provided the mutation rates q̃i are sufficiently small.
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(ii) There exist 0 < d̂1 < d̂2 < 1, where d̂1 = d1, d̂2 > d2, such that,
(a) If 0 < d < d̂1, then Pn → 0 as n → ∞, which indicates there is no inhibitor

pumped into morbidostat in the long-term.
(b) If d̂2 < d < 1, then Pn → P̄ > 0 as n → ∞. In this case, the inhibitor will be

pumped into the morbidostat after each dilution cycle in the long-term.
(c) If d̂1 < d < d̂2, wild type bacteria u, mutant vi, i = 1, 2, 3, · · · , N and

inhibitor P will persist in the morbidostat, and their densities may oscillate as
the system is trying to maintain constant bacteria density vN through feedback.
In this case, although the wild type u and the mutants vi, i = 1, 2, 3, · · · , N
persist, the most resistant microbe vN is in fact dominate provided the mutation
rates q̃i are sufficiently small.

Theorem 3.2 indicates that either all species go extinction or all species persist when there
are both forward and backward mutations. Remark 3.2 of Theorem 3.1 still holds for Theorem
3.2. On the other hand, due to small backward mutation rates when the species persist, the
most resistant species dominates the rest of species. Then Remark 3.3 of Theorem 3.1 still
holds for Theorem 3.2. It is noted d2 < d̂2, hence the region of hard inhibitor pumping is
smaller than the case of forward mutation case. This explains why in the operational diagrams
the region D in Fig. 15 is smaller than that of Fig. 14.

REMARK 3.4. Theorems 3.1 and 3.2 indicate that the morbidostat selects the most
resistant microbe.

4. Numerical simulation. In this section, we summarize the conditions where simula-
tions are done with realistic parameters.

For simplicity, we assume that both the wild type and the mutants have equal uptake
function and the growth takes the logistic form, namely,

g0(S) = gi(S) = mS, i = 1, 2, 3, · · · , N.(4.1)

The consumption functions h0(P ) and hi(P ) are assumed to take the Holling Type II function
form [15],

h0(P ) = hi(P ) =
rP

a+ P
, i = 1, 2, 3, · · · , N.

We assume the functions f0(P ) and fi(P ) take the Hill function form of order L, which are


f0(P ) = 1

1+
(

P
K0

)L ,

fi(P ) = 1

1+
(

P
Ki

)L ,
(4.2)

where i = 1, 2, 3, · · · , N . Note that the order L stems from the allosteric cooperativity of
the drug inhibition [18]. The drug inhibition effects depend on the detailed mechanism. For
example, they can result from the binding of the antibiotic drug to the metabolic enzyme that
synthesizes the key precursor of biomass production of the bacteria. Taking trimethoprim
(TMP) as a specific example, this antibiotic binds to dihydrofolate reductase (DHFR), an
enzyme that controls the biosynthesis of folic acid. The mutation of the gene encoding DHFR
will modify the binding affinity of TMP [10]. The parameters K0 and Ki in (4.2) can actually
be extracted from the experimental values of IC50, defined as the drug inhibitor concentration
at which the growth rate is 50% of the maximal growth rate. The sample volume in the
culture vessel of the morbidostat is 10 ml, and the confluent density of EColi is typically
109 cell/ml. For simplicity, we assume that the morbidostat operates at around 10% of the
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confluent density, which is set by the threshold population U in (2.5). We can conveniently
set the yield constant γ to be 1, so that one unit of substrate density will transform to one unit
of bacteria. With the volume units set to 0.1 nl, the input substrate S(0) = 100 corresponds
to 109 cell/ml. The constants K0 and Ki in the drug inhibition function are set to 1 and 10i,
and the order in the Hill function L = 1, 2, 3. We first consider the forward mutation rates
q = 10−4hr−1. Typically, the dilution ratio d = 0.9 and growth period T = 0.2 hr are set
such that the effective dilution rate ln(1 − d)/T = 0.5hr−1. The growth rate is set by the
constant m to be 8 × 10−3hr−1 in the logistic growth function. The initial conditions are
S(0) = 100, u(0) = 0.01, v(0) = 0, and P (0) = 0. We demonstrate our theoretical results
by conducting the following simulations.

4.1. Single mutant with forward mutations. We first assume that there is wild type u
and single mutant v in the morbidostat and there is no backward mutation. Then we have the
morbidostat model in the following form,

dS
dt = −g0(S)f0(P )u− g1(S)f1(P )v,
du
dt = g0(S)f0(P )u− qu,
dv
dt = g1(S)f1(P )v + qv,
dP
dt = −h0(P )u− h1(P )v,

(4.3)

for Tn−1 < t < Tn. The resetting conditions at t = Tn (n = 0, 1, 2, · · ·) can be written as


S(T+

n ) = dS(T−
n ) + (1− d)S(0),

u(T+
n ) = du(T−

n ),
v(T+

n ) = dv(T−
n ),

P (T+
n ) =

{
dP (T−

n ) if (u+ v)(T−
n ) < U,

dP (T−
n ) + (1− d)P (0) if (u+ v)(T−

n ) ≥ U.

(4.4)

Straightforward calculation shows that z̄ = 9.1644 and w̄ = 28.9818 by the parameters given
above and P (0) = 3, r = 0.008 and a = 0.05 when U = 10.

We first fix the threshold U = 10 and let the dilution ratio d varies from 0.85 to 0.91,
a bifurcation diagram showing the influence of d on the steady states of system (4.3) with
resetting conditions (4.4) is demonstrated in Fig.4. In this figure, we simulate the equilibrium
densities of system (4.3) with resetting conditions (4.4) for 5000 periodic cycles for different
dilution ratio d. For each d, the mutant densities and drug concentrations right after the
dilution step for the last 200 times are plotted. From Fig.4, we observe that when d < 0.86,
we have vn → 0 and Pn → 0 as n → ∞, which means both the mutant and inhibitor go
extinction in the long-term. For d ∈ (0.86, 0.872), we have vn → ṽ(d) and Pn → 0 and as
n → ∞, where ṽ(d) is a constant related to the parameter d. It implies that the mutant will be
maintained at a constant concentration which is related to the parameter d, while the inhibitor
will vanish in the long-term. When d is close to 0.872, the fixed point (ṽ(d), 0) becomes
unstable and chaotic for d ∈ (0.872, 0.899). Following, there is a fixed point (v̄, P̄ ) for the
system (4.3) with resetting conditions (4.4) for d > 0.899.

Similarly, if we fix d = 0.9, a bifurcation diagram showing the influence of U on the
steady states of system (4.3) with resetting conditions (4.4) is demonstrated in Fig.5 for U
varies from 0 to 40. We observe that there are three cases for U .

(i) When U > w̄
d = 32.202, which satisfies subcase (a) in Theorem 3.1, we have

vn → w̄ and Pn → 0 as n → ∞. More precisely, the fixed point (ṽ, 0) = (w̄, 0) =
(28.9819, 0) attracts all positive initial data, which agrees well with the theoretical
analysis.
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FIG. 4. Equilibrium densities showing the influence of d. In this figure, we fix U = 10, and obtain the
equilibrium densities of system (4.3) with resetting conditions (4.4) for 5000 periodic cycles for different dilution
ratio d. The mutant densities and the inhibitor concentrations right after the dilution step in the last 200 cycles are
plotted. When d < 0.86, both the mutant and inhibitor go extinction in the long-term; when 0.86 < d < 0.872,
the inhibitor goes extinction while the mutant persist at a fixed level for each d; when 0.872 < d < 0.899, both the
mutant and inhibitor persist and oscillate for each d; when d > 0.899, both the mutant and inhibitor persist at fixed
levels for each d. The inset figure shows the details of mutant densities when d varies from 0.87 to 0.9.

(ii) When U < z̄
d = 10.183, which satisfies subcase (b) in Theorem 3.1, we have

vn → v̄ = 10.1630 and Pn → P̄ = 2.8563 as n → ∞. More precisely, there exists
a fixed point (v̄, P̄ ) = (10.1630, 2.8563) for system (4.3) with resetting conditions
(4.4) in this case.

(iii) If 10.183 < U < 32.202, in this case, we have z̄
d < U < w̄

d , which is subcase
(c) in Theorem 3.1. From the simulation results, we can see the inhibitor concen-
tration P oscillates between 0 and P̄ , which is P ∈ (0, 2.8563) while the bacte-
ria density v will be maintained at nearly constant, and furthermore v ∈ (v̄, ṽ) =
(10.1630, 28.9819).

Next, we demonstrate the long-time dynamics of morbidostat model using different U in
three cases, respectively. We choose P (0) = 10 and d = 0.9 in the following simulations.

When U = 33, it implies z̄ < w̄ < dU , which is subcase (a) in Theorem 3.1. The
long-term dynamics of model (4.3) with resetting conditions (4.4) are shown in Fig.6. The
insets show the oscillations of the mutant and substrate concentrations in the last 100 dilution
steps. As the figure shows, vn → w̄ and Pn → 0 as n → ∞ in this case. In other words, the
fixed point (ṽ, 0) = (w̄, 0) attracts all positive initial data, which verifies Theorem 3.1.

The dynamics of model (4.3) with resetting conditions (4.4) with U = 10 is shown in
Fig.7. In this case we have dU < z̄ < w̄, and the two conditions in the subcase (b) in
Theorem 3.1 can be verified using the parameters given above. The figure shows that vn → v̄
and Pn → P̄ as n → ∞ in this case. More precisely, there exists a positive fixed point (v̄, P̄ )
for the morbidostat model (4.3) with resetting conditions (4.4), which agrees well with the
result in subcase (b) in Theorem 3.1.

Fig.8 demonstrates the long-term densities of the cells, substrate, and inhibitor of model
(4.3) with resetting conditions (4.4) when U = 15. In this case, we have z̄ < dU < w̄,
which is subcase (c) in Theorem 3.1. From the simulation results, we can see the inhibitor
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FIG. 5. Equilibrium densities showing the influence of U . In this figure, we fix d = 0.9, and obtain the
equilibrium densities of system (4.3) with resetting conditions (4.4) for 5000 periodic cycles for different threshold
U . The mutant densities and the inhibitor concentrations right after the dilution step in the last 200 cycles are plotted.
When U < 10.183, both the mutant and inhibitor persist at fixed levels for each U ; when 10.183 < U < 32.202,
both the mutant and inhibitor persist and oscillate for each U ; when U > 32.202, the inhibitor goes extinction
while the mutant persists at a fixed level for each U .

concentration P oscillates between 0 and P̄ , while the bacteria density v will be maintained
nearly constant.

To make the situations in subcase (c) in Theorem 3.1 more clearly, we choose P (0) = 10,
U = 15, and simulate the morbidostat model (4.3) with resetting conditions (4.4) with some
more parameters.

We first fix the mutation rate at q = 10−6, and let L vary from 1 to 3. Both the long-term
concentrations of nutrient, inhibitor and the cell densities are shown in Fig.9. It indicates that
the mutant v drives u to extinction in each cases, and the mutant density is maintained nearly
constant. The inhibitor concentration P oscillated between 0 and P (0). As L grows bigger,
more inhibitor P is needed to inhibit the bacteria and to maintain v at a nearly constant level.
However, the time needed for v to take over is almost same although the hill functional order
L differ.

Next, we fix the hill functional order at L = 3, and make the mutation rate q vary from
10−4 to 10−8. Both the concentrations of nutrient, inhibitor and the cell densities are shown
in Fig.10. The mutant v still drives u to extinction in each case, and the mutant density is
maintained nearly constant. It takes longer time for mutant v to take over when the mutation
rate is lower. The inhibitor concentration P oscillated between 0 and P (0). And the inhibitor
concentration P is almost same although mutation rates are different.

From Fig.6 to Fig.10, we have the mutant v will drive wild type bacteria u to extinction
in the long-term no matter what the threshold U is, and no matter how small the mutation rate
q and the Hill functional order L is. It shows that the exclusion principle holds, which agrees
well with our theoretical analysis in Theorem 3.1.

4.2. Two mutants with both forward and backward mutations. We then assume
there is wild type u and two mutants v1 and v2 in the morbidostat, and assume that the
mutants are with forward-backward mutations. Then we have the morbidostat model in the
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FIG. 6. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4) when U = 33.
The wild type u and inhibitor P go extinction in the morbidostat, while mutant v and substrate S persist at fixed
values after each dilution cycle in the long-term. The inset figure shows the mutant density (green) and substrate
concentration (blue) in the last 100 dilution cycles. In this figure, we use S(0) = 100, T = 0.2, d = 0.9, q = 10−4,
m = 0.008, r = 0.008, a = 0.05, L = 1, and K = 10.

following form,



dS
dt = −g0(S)f0(P )u− g1(S)f1(P )v1 − g2(S)f2(P )v2,
du
dt = g0(S)f0(P )u− q0u+ q̃0v1,
dv1
dt = g1(S)f1(P )v1 + q0u− q̃0v1 − q1v1 + q̃1v2,
dv2
dt = g2(S)f2(P )v2 + q1v1 − q̃1v2,
dP
dt = −h0(P )u− h1(P )v1 − h2(P )v2,

(4.5)

for Tn−1 < t < Tn. The resetting conditions at t = Tn (n = 0, 1, 2, · · ·) can be written as
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FIG. 7. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4) when U = 10.
The wild type u goes extinction in the morbidostat, while mutant v, substrate S, and inhibitor P persist at fixed
values after each dilution cycle in the long-term. The inset figure shows the mutant density (green) and inhibitor
concentration (red) in the last 100 dilution cycles. In this figure, we use S(0) = 100, T = 0.2, d = 0.9, q = 10−4,
m = 0.008, r = 0.008, a = 0.05, L = 1, and K = 10.



S(T+
n ) = dS(T−

n ) + (1− d)S(0),
u(T+

n ) = du(T−
n ),

v1(T
+
n ) = dv1(T

−
n ),

v2(T
+
n ) = dv2(T

−
n ),

P (T+
n ) =

{
dP (T−

n ) if (u+ v1 + v2)(T
−
n ) < U,

dP (T−
n ) + (1− d)P (0) if (u+ v1 + v2)(T

−
n ) ≥ U.

(4.6)

The simulation results of system (4.5) with resetting conditions (4.6) show that either all
the cells go to extinction (see Fig.11) or persist (see Fig.12 and Fig.13) in the morbidostat,
which verifies our theoretical results in Theorem 3.2. In Fig.12, the most resistant mutant
dominates the final population with the coexistence of a small fraction of other species (wild
type and mutant 1) due to the assumption of small mutation rates as compared to the growth
rates gi(S

(0)) (i = 0, 1, 2). In Fig.13, the coexistence of all the species is obvious when
q0 = q1 = q̃0 = q̃1 = 0.05.
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FIG. 8. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4) when U = 15.
The wild type u goes extinction in the morbidostat, while mutant v, substrate S, and inhibitor P oscillate in the
long-term. The inset figure shows the mutant density (green) and inhibitor concentration (red) in the last 100 dilution
cycles. In this figure, we use S(0) = 100, T = 0.2, d = 0.9, q = 10−4, m = 0.008, r = 0.008, a = 0.05,
L = 1, and K = 10.

4.3. Operation diagrams. Fig. 14 presents the operation diagrams of d-T , d-S(0), d-U
and d-P (0) for experimental use when there are only forward mutations in the morbidostat. In
the operation diagrams, logistic growth (4.1) and Hill function (4.2) are used, and m = 0.008,
K0 = 1, K1 = 10. We assume that there are only forward mutations with a mutation rate
q = 10−6. There are four regions in each diagram. Region A is the extinction region where
the last mutant vN goes to extinction. If the parameters fall in region B, then the last mutant
vN survives, while inhibitor P goes to zero in the long-term. Region C is the region where
the last mutant vN survives, and inhibitor P oscillates. Region D is the region where the last
mutant vN survives, and inhibitor P goes to a fixed value.

Fig. 15 presents the operation diagrams of d-T , d-S(0), d-U and d-P (0) for experimental
use when there are both forward and backward mutations. The parameters used are same as
in Fig. 14, and a backward mutation rate q̃ = 10−6 is considered in these four operation
diagrams. In this figure, regions A, B, C and D have the same interpretations as in Fig. 14.
It shows that backward mutations do not have any effect on regions A and B. However, they
expand region C while shrink region D in each operation diagram.
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FIG. 9. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4) when L = 1
(upper panel), 2 (middle panel), and 3(lower panel), respectively. Wild type u goes extinction in each case, while
mutant v persists at a nearly constant level. More inhibitor are needed to maintain the microbes concentration at
a nearly constant level as L becomes larger. In this figure, we use S(0) = 100, T = 0.2, d = 0.9, q = 10−6,
m = 0.008, r = 0.008, a = 0.05, and K = 10.

5. Conclusion and discussion. In conclusion, we have outlined a mechanistic theory to
describe the outcome of microbial growth in a morbidostat. The theory incorporates a sim-
ple threshold algorithm to recapitulate the feedback effects due to antibiotic drug inhibition.
In the simplest scenario, we considered the case of sequential evolution with only forward
mutation. This model serves as a concrete example for different modes of operation of the
morbidostat. The global dynamics were discussed for three cases. The main result of The-
orem 3.1 for Case (i) describes a total washout if 0 < d < exp (−gN (S(0))T ), as expected
from a serial dilution transfer cultivation [12]. And there are three possible outcomes when
the most resistant mutant survival, which are stated in Case (ii). Subcase (a) describes the
dilution of the drug and survival of the most resistant mutant. Subcase (b) describes a sys-
tem that is trying to pump as hard as possible to suppress the total population. As a result,
the final inhibitor concentration asymptotically approached the input inhibitor concentration
P (0). Subcase (c) describes the case of oscillation due to the simple threshold feedback used
in our analysis. All three subcases were verified using numerical simulations. When back-
ward mutation was included in the evolution of the mutants, the long-term outcome in the
morbidostat illustrated the uniform persistence case. We included a simple three-species case
to demonstrate these two scenarios.

Although our model considered sequential evolution with mutation, it can be generalized
to consider the microbial ecology of a serial transfer dilution bio-reactor with feedback and
constant exchange rates between the species. In real experiments, the scenario is much more
complicated than the models considered here. In general, it is possible that multiple mutants
would be accessible to the wild-type species, and a more complicated evolution could be
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FIG. 10. Cell, substrate, and inhibitor densities of system (4.3) with resetting conditions (4.4) when q = 10−4

(upper panel), 10−6 (middle panel), and 10−8 (lower panel), respectively. Wild type u goes extinction in each case,
while mutant v persists at a nearly constant level. It takes longer time for the mutant to take over as the mutation
rate becomes lower. In this figure, we use S(0) = 100, T = 0.2, d = 0.9, m = 0.008, r = 0.008, a = 0.05,
L = 3, and K = 10.
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FIG. 11. Extinction of all the microbes of system (4.5) with resetting conditions (4.6). In this case, all the cells
and inhibitor go to extinction in the morbidostat, while the substrate persists at a fixed level. In this figure, we use
S(0) = 100, T = 0.2, d = 0.8, q0 = q1 = q̃0 = q̃1 = 10−4, m = 0.008, r = 0.008, a = 0.05, L = 1,
K0 = 3, and K1 = 10.

incorporated into the simulations [19]. Experiments could also be conducted to evolve the
bacteria so as to acquire not only single drug resistance, but also multiple drug resistance. The
theory outlined here can be generalized to include these scenarios in a straightforward way
in the computer simulations. With the theory presented here, one could in principle calculate
the population dynamics step by step for a new experiment, or reconcile the experimental
results after an experiment has been completed. Finally, our model is deterministic in nature,
whereas microbial mutation is stochastic. It will be interesting to generalize our model or
simulation to take account of the stochastic nature of the mutation [8].
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FIG. 12. Persistence of the all the microbes of system (4.5) with resetting conditions (4.6). In this case, all the
microbes persist in the morbidostat. However, the most resistant microbe dominates all the species. In this figure,
we use S(0) = 100, T = 0.2, d = 0.9, q0 = q1 = q̃0 = q̃1 = 10−4, m = 0.008, r = 0.008, a = 0.05, L = 1,
K0 = 3, and K1 = 10.

6. Appendix. For the scaled models (3.1) and (3.2) with resetting conditions (3.3), we
have the following results.

LEMMA 6.1. The total population density of the nutrient and bacteria in the morbidostat
converges to S(0). In other words, we have S(T+

n ) + u(T+
n ) +

∑N
i=1 vi(T

+
n ) → S(0) as

n → ∞.

LEMMA 6.2. For the system (3.1) and (3.2) with resetting conditions (3.3), there exists
some δ > 0 such that S(t) ≥ δ > 0 for all t ≥ 0.

Lemma 6.1 states a conservation of species, while Lemma 6.2 is a technical lemma.

Proof of Lemma 6.1. Proof. Adding the first N +2 equations of models (3.1) and (3.2)
together respectively, and define

C(t) = S(t) + u(t) +
N∑
i=1

vi(t),
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FIG. 13. Persistence of the all the microbes of system (4.5) with resetting conditions (4.6). In this case, all the
microbes persist in the morbidostat. In this figure, we use S(0) = 100, T = 0.2, d = 0.9, q0 = q1 = q̃0 = q̃1 =
0.05, m = 0.008, r = 0.008, a = 0.05, L = 1, K0 = 3, and K1 = 10.

then the following single equation is obtained,

C ′(t) = S′(t) + u′(t) +
N∑
i=1

v′i(t) = 0, for 0 < t < T.

It follows at once that,

C(t) = C(0) = C(T−
1 ), for 0 < t < T.

Together with the resetting condition at t = T , leads to

C(T+
1 ) = S(T+

1 ) + u(T+
1 ) +

N∑
i=1

vi(T
+
1 )

= dS(T−
1 ) + (1− d)S(0) + du(T−

1 ) +
N∑
i=1

dvi(T
−
1 )

= dC(T−
1 ) + (1− d)S(0) = dC(0) + (1− d)S(0).
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FIG. 14. Operation diagrams when there are only forward mutations: Region A is the extinction region that
all the species go to extinction; Region B is the region only the most resistant microbe survives; Region C is the
region that the most resistant microbe survives and inhibitor oscillates; Region D is the region that the most resistant
microbe survives and inhibitor persists at a fixed value.

Similarly, the total population density of nutrient S, bacteria u and vi right after the second
period takes the following form,

C(T+
2 ) = dC(T+

1 ) + (1− d)S(0)

= d2C(0) + (1− d)(1 + d)S(0).

Let Cn = C(T+
n ) be the total population following the nth dilution cycle. Then,

Cn = C(T+
n ) = dnC(0) + (1− d)(1 + d+ · · ·+ dn−1)S(0).

It implies Cn = Sn + un +
∑N

i=1(vi)n → S(0) as n → ∞, and

S(t) + u(t) +

N∑
i=1

vi(t) ≡ Cn → S(0)(6.1)

for all t ∈ [Tn, Tn+1] as n → ∞. That completes our proof.

Proof of Lemma 6.2. Proof. For the morbisostat models (3.1) and (3.2) with condition
(3.3), we have

dS

dt
= −g0(S)f0(P )u−

N∑
i=1

gi(S)fi(P )vi
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FIG. 15. Operation diagrams when there are both forward and backward mutations: Region A is the extinction
region that all the species go to extinction; Region B is the region only the most resistant microbe survives; Region
C is the region that the most resistant microbe survives and inhibitor oscillates; Region D is the region that the most
resistant microbe survives and inhibitor persists at a fixed value.

≥ −gN (S)fN (P )(u+
N∑
i=1

vi)

≥ −gN (S)(u+
N∑
i=1

vi)

for t ∈ [T+
n , Tn+1]. From (6.1), for any ε > 0 and t ∈ [T+

n , Tn+1], there exists large enough
J0 = J0(ε) > 0 such that n ≥ J0 implies that

S(0) − S(t)− ε < u(t) +

N∑
i=1

vi(t) < S(0) − S(t) + ε.(6.2)

Therefore, for t ∈ [T+
n , T+

n+1], we have

{
dS
dt > −gN (S)(S(0) − S(t) + ε),
S(T+

n ) > (1− d)S(0).
(6.3)

Let S∗(t) be the solution of the following system,{
dS
dt = −gN (S)(S(0) − S(t) + ε),
S(0) = (1− d)S(0).

(6.4)
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Then we have S(t) > S∗(t) for all t ∈ [T+
n , T+

n+1], n ≥ J0. Choose δ > 0 such that
δ < min0≤t≤T {S∗(t)} and δ < min0≤t≤TJ0

{S(t)}, we then have S(t) > δ for all t ≥ 0.
That completes our proof.

Define a map Q by

Q(S0, u0, (v)0, P0) = (S1, u1, (v)1, P1),(6.5)

where v = (v1, v2, ..., vN ), S1 = dS(T, S0, u0, (v)0, P0) + (1− d)S(0), u1 = du(T, S0, u0,
(v)0, P0), (v)1 = dv(T, S0, u0, (v)0, P0), P1 = P (T+, S0, u0, (v)0, P0), and
(S(t, S0, u0, (v)0, P0), u(t, S0, u0, (v)0, P0), v(t, S0, u0, (v)0, P0), P (t, S0, u0, (v)0, P0))
are the solutions of (3.1) or (3.2) with initial conditions S(0) = S0, u(0) = u0, (v)(0) =
(v)0, P (0) = P0.

Let Sn = S(T+
n ), un = u(T+

n ), (v)n = (v)(T+
n ), Pn = P (T+

n ) be the values of the
vector of the population densities immediately following the nth dilution cycle, then

Q(Sn, un, (v)n, Pn) = (Sn+1, un+1, (v)n+1, Pn+1), n = 1, 2, 3, · · · .(6.6)

Global dynamics of the Morbidostat model without backward mutations. Consider
the case of the forward mutations (3.1) with the resetting conditions (3.3), we have the fol-
lowing competitive exclusion results.

LEMMA 6.3. The wild type bacteria u and mutants vi, where 1 ≤ i ≤ N − 1, go
extinction in the long-term. More precisely, un → 0, (vi)n → 0 as n → ∞, 1 ≤ i ≤ N − 1.

Proof of Lemma 6.3. Proof. From model (3.1), if letting ω(t) = u(t)+ v1(t)+ v2(t)+
· · ·+ vN−1(t), it is easy to check that

dω

dt
= g0(S)f0(P )u+ g1(S)f1(P )v1 + · · ·+ gN−1(S)fN−1(P )vN−1 − qN−1vN−1.

Since g0(S)f0(P ) ≤ g1(S)f1(P ) ≤ · · · ≤ gN−1(S)fN−1(P ) for all 0 < S ≤ S(0) and
0 ≤ P ≤ P (0), we have

dw

w
≤ (gN−1(S)fN−1(P )− qN−1

vN−1

ω
)dt.(6.7)

Integrating both sides of (6.7) over the interval (0, T ),∫ ω(T )

ω(0)

dω

ω
≤
∫ T

0

(gN−1(S)fN−1(P )− qN−1
vN−1

ω
)dt.

Which implies,

ω1

ω0
≤ d exp

(∫ T

0

gN−1(S)fN−1(P )dt

)
exp

(
−qN−1

∫ T

0

vN−1

ω
dt

)
,(6.8)

where u(0) + v1(0) + · · · + vN−1(0) = ω0, du(T ) + dv1(T ) + · · · + dvN−1(T ) = ω1 as
defined. Similarly, for the last mutants vN , we have the following equation,

(vN )1
(vN )0

= d exp

(∫ T

0

gN (S)fN (P )dt

)
exp

(
qN−1

∫ T

0

vN−1

vN
dt

)
.(6.9)
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Multiply (6.8) by (6.9), it is easy to check,

ω1

ω0
=

(vN )1
(vN )0

exp

(∫ T

0

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
exp

(
−qN−1

∫ T

0

vN−1

ω
dt

)

exp

(
−qN−1

∫ T

0

vN−1

vN
dt

)

≤ (vN )1
(vN )0

exp

(∫ T

0

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
.

We apply the same technique during the second periodic cycle (T, 2T ), then the following
inequality is obtained,

ω2

ω1
≤ (vN )2

(vN )1
exp

(∫ 2T

T

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
.

Similarly, during the ith periodic cycle ((i− 1)T, iT ), we have

ωi

ωi−1
≤ (vN )i

(vN )i−1
exp

(∫ iT

(i−1)T

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
,

where i = 1, 2, 3, · · · , n. Multiply both sides of all the inequalities above, we have

ωn

ω0
≤ (vN )n

(vN )0
exp

(∫ nT

0

(gN−1(S)fN−1(P )− gN (S)fN (P ))dt

)
.

Since S(t) ≥ δ > 0 for all t > 0 and gN−1(S(t))fN−1(P (t)) < gN (S(t))fN (P (t)), we
have ωn → 0 as n → ∞ since (vN )n ≤ S(0). Therefore un → 0 and (vi)n → 0 as n → ∞
for 1 ≤ i ≤ N − 1.

From Lemmas 6.1 and 6.3, the forward mutation morbidostat model (3.1) with resetting
conditions (3.3) can be reduced to the following limiting system.{

dvN
dt = gN (S(0) − vN )fN (P )vN , for Tn−1 < t < Tn,

dP
dt = −hN (P )vN , for Tn−1 < t < Tn,

(6.10)

with resetting conditions at t = Tn,
vN (T+

n ) = dvN (T−
n ),

P (T+
n ) =

{
dP (T−

n ) if vN (T−
n ) < U,

dP (T−
n ) + (1− d)P (0) if vN (T−

n ) ≥ U.
(6.11)

We denote (vN (t), P (t)) as the solution of model (6.10) with resetting conditions (6.11),
and ((vN )n, Pn) = (vN (T+

n ), P (T+
n )). The long-term dynamics of the morbidostat model is

our concern. In order to analyze the dynamics of the morbidostat, we will firstly study two
comparison systems.

Since

fN (P (0)) < fN (P ) ≤ 1
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for 0 ≤ P < P (0), the first comparison system to be studied is as follows,

{
dw
dt = gN (S(0) − w)w for Tn−1 < t < Tn,
w(T+

n ) = dw(T−
n ) for t = Tn.

(6.12)

Let w(t) be the solution of the problem (6.12) and denote wn as the population density right
after the n-th dilution cycle, then we know wn = w(T+

n ). Let x0 = w0, and define map Q1

by Q1(x0) = Q1(w0) = w1 = dw(T,w0). Denote Φt(x0) = (w(t, w0)) as the solution of
the following equation,

dw

dt
= gN (S(0) − w)w(6.13)

with initial condition w(0) = w0.
We will next study the existence and stability of the fixed point of system (6.12). Based

on the results in [14], we have the following results.
LEMMA 6.4. For system (6.12),
(i) If 0 < d < exp

(
−gN

(
S(0)

)
T
)
, then the extinction fixed point w̄ = 0 is globally

attracting.
(ii) If exp

(
−gN

(
S(0)

)
T
)
< d < 1, then there is a unique positive fixed point w̄ >

0 satisfying Q1(w̄) = w̄ and it attracts all positive initial data, in other words,
Q1(wn) → w̄ > 0, for all w(0) ∈ (0, S(0)).

The second comparison system is as follows ,{
dz
dt = gN (S(0) − z)fN (P (0))z for Tn−1 < t < Tn,
z(T+

n ) = dz(T−
n ) for t = Tn.

(6.14)

We denote z(t) as the solution of problem (6.14), and zn = z(T+
n ) as the population density

right after the n-th dilution cycle. Define map Q2 by Q2(z0) = z1 = dz(T, z0). For system
(6.14), we have a similar result as the first comparison system. The post-dilution density
sequence zn converges to a fixed point: zn → z̄; where Q2(z̄) = z̄. This fixed point may or
may not be the trivial fixed point z̄ = 0. And the stability of the fixed point can be given by
the following Lemma.

LEMMA 6.5. For system (6.14), we have the following two results,
(i) If 0 < d < exp

(
−gN

(
S(0)

)
fN
(
P (0)

)
T
)
, then the extinction fixed point z̄ = 0 is

globally attracting;
(ii) If exp

(
−gN

(
S(0)

)
fN
(
P (0)

)
T
)
< d < 1, then there is a unique positive fixed

point z̄ > 0 satisfying Q2(z̄) = z̄ and it attracts all positive initial data, in other
words, Q2(zn) → z̄ > 0 for all z(0) ∈

(
0, S(0)

)
. Furthermore, at the fixed point

we have d exp
(∫ T

0
gN (S(0) − z(t, z̄))fN (P (0))dt

)
= 1.

Since

gN

(
S(0) − v

)
f
(
P (0)

)
v < gN

(
S(0) − v

)
f(P )v ≤ gN

(
S(0) − v

)
v,

from(6.10), (6.12) and (6.14), it follows that

zn < (vN )n ≤ wn.

Therefore, we have z̄ ≤ (vN )n ≤ w̄ for n is sufficiently large.
For the fixed points of system (6.12) and (6.14) w̄ = w̄(d), z̄ = z̄(d), we have the

following results.
LEMMA 6.6. Let U < S(0),
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(i) w̄(d) and z̄(d) satisfy w̄(1) = z̄(1) = S(0), w̄(d∗w) = z̄(d∗z) = 0, where d∗w =
exp{−gN (S(0))T}, d∗z = exp{−gN (S(0))fN (P (0))T}, and hence d∗w < d∗z.

(ii) Both w̄(d)
d and z̄(d)

d are strictly increasing in d.

(iii) There exist 0 < d1 < d2 < 1, such that w̄(d1)
d1

= U and z̄(d2)
d2

= U .

Proof of Lemma 6.4. Proof. Clearly, Q1(0) = 0 and Q1 is strictly increasing by unique-
ness of solutions of the initial value problem (6.13). Because w = S(0) is an equilibrium of
(6.13), we have

Q1(S
(0)) = dS(0) < S(0),

which implies

0 < · · · < wn+1 < wn < wn−1 < · · · < S(0)

for all n ≥ 1. Therefore, the post-dilution density sequence converges to a fixed point: wn →
w̄; where Q1(w̄) = w̄. This fixed point may or may not be the trivial fixed point w̄ = 0. The
stability of the fixed point is determined by

Q′
1(x0) = Dx0Q1(x0).

Then the stability of the trivial fixed point is determined by

Q′
1(0) = d

∂w

∂w0
(T, 0),

where x(t) = ∂w
∂w0

(t) satisfies the variational equation

x′ = xgN (S(0)), x(0) = 1.

Noticing that Q′
1(0) = d exp

(∫ T

0
gN
(
S(0)

)
dt
)
> 0. The trivial fixed point is asymptoti-

cally stable if Q′
1(0) < 1 and unstable if Q′

1(0) > 1. That completes our proof.

Proof of Lemma 6.6. Proof. (i) As d = 1, from (6.12) and (6.14) it follows that wn →
S(0), zn → S(0) as n → ∞. Hence w̄(1) = z̄(1) = S(0). By Lemma 6.4 (i) and Lemma 6.5
(i), we have w̄(d∗w) = 0 and z̄(d∗z) = 0, where d∗w and d∗z are defined as above.

(ii) In order to prove w̄(d)
d is a strictly increasing function of d, we will first prove w̄(d)

is a strictly increasing function of d. Since w̄ is the fixed point of model (6.12), we have

w̄(d) = dw (T, w̄) .(6.15)

Differentiating both sides of (6.15) with respect to d, yields

w̄′(d) =
w(T, w̄)

1− d∂w(T,w̄)
∂w̄

.(6.16)

From (6.16), if 1− d∂w(T,w̄)
∂w̄ > 0 then w̄′(d) > 0. Since

dw(t, w0)

dt
= gN

(
S(0) − w (t, w0)

)
w (t, w0) ,(6.17)

for t ∈ (0, T ), differentiating both sides of (6.17) with respect to w0, we have{
d
dt

∂w(t,w0)
∂w0

= ∂w(t,w0)
∂w0

[gN
(
S(0) − w(t, w0)

)
− g′N

(
S(0) − w(t, w0)

)
w(t, w0)],

∂w
∂w0

(0, w0) = 1.
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Therefore,

∂w(t, w0)

∂w0
> 0,(6.18)

and

∂w(T,w0)

∂w0
= exp

(∫ T

0

(
gN

(
S(0) − w(t, w0)

)
− g′N

(
S(0) − w(t, w0)

)
w(t, w0)

)
dt

)

< exp

(∫ T

0

(
gN

(
S(0) − w(t, w0)

))
dt

)

=
1

d
.

Then, we have

∂w̄(d)

∂d
=

w(T, w̄)

1− d∂w(T,w̄)
∂w̄

> 0.(6.19)

It implies w̄(d) is a strictly increasing functions of d. Since w̄(d)
d = w (T, w̄) , by the chain

rule, we have (
w̄(d)

d

)′

=
∂w(T, w̄)

∂d
=

∂w(T, w̄)

∂w̄

∂w̄

∂d
.

Therefore, from (6.18) and (6.19) we have
(

w̄(d)
d

)′
> 0.

By applying the same procedure to the second comparison system (6.14), we have z̄(d)
d

is also an increasing function of d.
The proof of (iii) follows directly from (i) and (ii) and the assumption U < S(0). That

completes our proof.
We will now study the dynamics of the solution of the limiting system (6.10) with reset-

ting conditions (6.11). According to the relations of fixed points z̄, w̄ and threshold U , we
have the main results in the following three cases.

Case 1: no drug inhibitor case of the limiting system. If d < d1, we have z̄ < w̄ ≤
dU , and hence (vN )n ≤ dU for all large n, then the inhibitor P dilutes in every dilution cycle.
Therefore, there is no inhibitor pumped into the morbidostat. And the inhibitor concentration
Pn takes the following form after the nth dilution cycle,

Pn < dPn−1 < · · · < dnP0,

since hi(P ) ≥ 0 for i = 1, 2, 3, · · · , N. From 0 < d < 1, it is obvious that Pn → 0 as
n → ∞. System (6.10) with resetting condition (6.11) can be reduced to the limiting system
(6.12). Thus, in this case, we have (vN )n → w̄ as n → ∞. More precisely, we have the
following results.

LEMMA 6.7. For the limiting system (6.10) with resetting conditions (6.11), when d <
d1,

(i) If 0 < d < exp (−gN (S(0))T ), then the extinction fixed point (0, 0) is globally
attracting.
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(ii) If exp (−gN (S(0))T ) < d < d1, then there is a unique ṽN > 0 satisfying Q(ṽN , 0) =
(ṽN , 0) and the fixed point (ṽN , 0) attracts all positive initial data, in other words,
Q((ṽN )n, Pn) → (ṽN , 0) for all vN (0) ∈ (0, S(0)), and P (0) ∈ (0, P (0)).

REMARK 6.1. Note that if 0 < d < exp (−gN (S(0))T ), this is simply the trivial case
of total washout. if exp (−gN (S(0))T ) < d < d1, the system will end up with zero drug
inhibitor concentration. Nevertheless, the last mutant wins. This result is simply due to the
assumption of forward mutation. The system will have drug inhibitor on to drive the all the
mutant population into the most resistant mutant survival case.

Case 2: hard inhibitor pumping of the limiting system. If d > d2, we have dU <
z̄ ≤ w̄, and hence (vN )n > dU for all large n. In this case, the inhibitor P will be pumped
into the morbidostat in every dilution cycle. In other words, the resetting of inhibitor P will
always follow the rule Pn = dP (nT ) + (1− d)P (0) for n = 1, 2, 3, · · · . Thus, after the nth
dilution cycle, the inhibitor concentration Pn satisfies

Pn < dPn−1 + (1− d)P (0)

< d2Pn−2 + (1− d)(1 + d)P (0)

< · · ·
< dnP0 + (1− d)(1 + d+ · · · dn−1)P (0),

since hi(P ) ≥ 0 for i = 1, 2, 3, · · · , N. It implies Pn < P (0) as n → ∞. In this case, system
(6.10) with resetting condition (6.11) can be reduced to the following limiting system,

dvN

dt = gN (S(0) − vN )fN (P )vN , for Tn−1 < t < Tn,
dP
dt = −hN (P )vN , for Tn−1 < t < Tn,
vN (T+

n ) = dvN (T−
n ), for t = Tn,

P (T+
n ) = dP (T−

n ) + (1− d)P (0), for t = Tn,

(6.20)

where n = 1, 2, 3, · · · . We will first study the existence of positive fixed points of system
(6.20), then analyze the stability of the positive fixed point.

It is easy to check that system (6.20) is a competitive system, then by Lemma 2.2 in [16],
we have the following result. For any initial value ((vN )0, P0) ∈ R2

+, the sequence of point
Qn((vN )0, P0) converges to a fixed point of Q as n → ∞. Without loss of generality, we
denote this fixed point as (v̄N , P̄ ). Since (vN )n > dU for n large, we have v̄N > 0 and
P̄ > 0. Therefore, there exist a positive fixed point (v̄N , P̄ ) for system (6.20), and it satisfies
the following conditions.

REMARK 6.2. If hN (P ) = 0, i.e. the last mutant does not consume inhibitor, then it
is easy to verify that P̄ = P (0) and Pn → P (0) as n → ∞. Then we consider the limiting
system (6.14) from Lemma 6.5, the dynamical behavior of {(vN )n}∞n=1 follows.

Let (vN (t, v̄N ), P (t, P̄ )) be the solutions of system (6.20) with initial value (v̄N , P̄ ),
then

dvN (T, v̄N ) = v̄N ,

and

dP (T, P̄ ) + (1− d)P (0) = P̄ .

Case 3: oscillation of the limiting system. If d1 < d < d2, we have z̄ < dU < w̄ in
this case. Thus the resetting of P will follow the dilution rule Pn = dPn−1 if (vN )n−1 < dU ,
otherwise it will follow the resetting rule Pn = dPn−1+(1−d)P (0). Therefore, the inhibitor
concentration may oscillate in this case as the system is trying to maintain constant bacteria
density vN through feedback. We will also demonstrate it by numerical simulation in Section
4.
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Proof of Theorem 3.1. Based on the above analysis, we complete the proof of Theorem
3.1.�

Global dynamics of the Morbidostat model with both forward and backward mu-
tations. When there are both forward and backward mutations in the morbidostat, we have
the following lemmas and main results in two cases.

LEMMA 6.8. If (vj)n → 0 as n → ∞ for some j, 0 ≤ j ≤ N, then (vk)n → 0 as
n → ∞ for all k ̸= j, and 0 ≤ k ≤ N. This result indicates that wild type and all the
mutants will go extinction if any one of them go extinction in the long-term.

THEOREM 6.9. For the morbidostat model with both forward and backward mutations
(3.2) with resetting conditions (3.3), and A is the (N + 1) × (N + 1) matrix in (6.29), we
have

(i) If the spectral radius r(d exp (AT )) < 1, then (Sn, un, (v)n, Pn) → E0 as n → ∞,
where E0 = (S(0), 0, 0, · · · , 0) . In this case, the wild type and all the mutants go
extinct in the long-term.

(ii) If the spectral radius r(d exp (AT )) > 1, then the system (3.2) with resetting con-
ditions (3.3) is persistent. In this case, all the species coexist in the morbidostat in
the long-term. Furthermore, the last mutant vN dominates the rest of other species
if the backward mutation rates are sufficiently small.

When all the species coexist in the morbidostat, we study the density of the cells by
studying two comparison systems. Let µ(t) = u(t) + v1(t) + v2(t) + · · · + vN (t), then for
the cells in the morbidostat, we have{

dµ
dt = g0(S)f0(P )u+

∑N
i=1 gi(S)fi(P )vi for Tn−1 < t < Tn,

µ(T+
n ) = dµ(T−

n ) for t = Tn.
(6.21)

To study the limiting system (6.21), by hypothesis (2.3) we introduce two comparison
systems of it. The first comparison system is (6.12), which is the same one as in Section 6.
The second comparison system takes the form of{

dκ
dt = g0(S

(0) − κ)f0(P
(0))κ for Tn−1 < t < Tn,

κ(T+
n ) = dκ(T−

n ) for t = Tn.
(6.22)

We denote κ(t) as the solution of problem (6.22), and κn = κ(T+
n ) as the population density

right after the n-th dilution cycle. Define map Q3 by Q3(κ0) = κ1 = dκ(T, κ0). For system
(6.22), we have a similar result as the comparison systems (6.12) and (6.14). The post-dilution
density sequence κn converges to a fixed point: κn → κ̄; where Q3(κ̄) = κ̄. This fixed point
may or may not be the trivial fixed point κ̄ = 0. And the stability of the fixed point can be
given by the following Lemma.

LEMMA 6.10. For system (6.22), we have the following two results,
(i) If 0 < d < exp

(
−g0

(
S(0)

)
f0
(
P (0)

)
T
)
, then the extinction fixed point κ̄ = 0 is

globally attracting;
(ii) If exp

(
−g0

(
S(0)

)
f0
(
P (0)

)
T
)
< d < 1, then there is a unique positive fixed point

κ̄ > 0 satisfying Q3(κ̄) = κ̄ and it attracts all positive initial data, in other words,
Q3(κn) → κ̄ > 0 for all κ(0) ∈

(
0, S(0)

)
. Furthermore, at the fixed point we have

d exp
(∫ T

0
g0(S

(0) − κ(t, κ̄))f0(P
(0))dt

)
= 1.

It follows that

κn < µn ≤ wn.

Therefore, we have κ̄ ≤ µn ≤ w̄ for n is sufficiently large.
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For the fixed points of system (6.12) and (6.22) w̄ = w̄(d), κ̄ = κ̄(d), we have the
following results.

LEMMA 6.11. Let U < S(0),
(i) w̄(d) and κ̄(d) satisfy w̄(1) = κ̄(1) = S(0), w̄(d∗w) = κ̄(d∗κ) = 0, where d∗w =

exp{−gN (S(0))T}, d∗κ = exp{−g0(S
(0))f0(P

(0))T}, and hence d∗w < d∗κ.

(ii) Both w̄(d)
d and κ̄(d)

d are strictly increasing in d.

(iii) There exist 0 < d̂1 < d̂2 < 1, such that w̄(d̂1)

d̂1
= U and κ̄(d̂2)

d̂2
= U .

The proof of Lemma 6.11 is similar with the proof of Lemma 6.6, therefore we omit the
details of the proof here.

REMARK 6.3. From the basic assumption (2.3), comparing (6.14) with (6.22) yields that
d2 < d̂2. When d > d̂2, we have dU < κ̄ < w̄. Thus wn > dU for all large n. It implies that
the inhibitor P will be pumped into the morbidostat in every dilution cycle in this case.

Proof of Lemma 6.8. Proof. We may assume 0 < j < N, the proofs for the cases with
j = 0 or j = N are the same as that for 0 < j < N. Since (vj)n → 0 as n → ∞, then
for any ϵ > 0, there exists Nj > 0 such that 0 < (vj)n < ϵ for n ≥ Nj . From Lemma 6.2
S(t) ≥ δ > 0, 0 < P (t) < P (0) for all t > 0, then gj(S(t))fj(P (t))− (q̃j+1 + qj) > 0 for
t ∈ [T+

n , Tn+1], where qi and q̃i are sufficiently small for 0 ≤ i ≤ N.
We have

dvj
dt

= (gj(S)fj(P )− (q̃j−1 + qj))vj + (qj−1vj−1 + q̃jvj+1) > 0,(6.23)

for t ∈ [T+
n , Tn+1], and vj(T

+
n ) = (vj)n, vj(Tn+1) =

1
d (vj)n+1.

From (6.23) it follows that vj(t) is strictly increasing on [T+
n , Tn+1] and 0 < vj(t) <

1
d (vj)n+1 < 1

dϵ for t ∈ [T+
n , Tn+1] and n ≥ Nj . From (6.23), we have

d2vj
dt2

= (gj(S)fj(P )− (q̃j−1 + qj))v
′
j + (g′j(S)S

′fj(P ) + gj(S)f
′
j(P )P ′)vj

+ (qj−1v
′
j−1 + q̃jv

′
j+1).

It is easy to verify that from the equations of (3.2) and Lemma 6.1, we have

|S′| ≤
(

max
δ≤S≤S(0),0≤P<P (0)

{fN (P )gN (S)}
)
S(0),

and

|v′j−1|, |v′j |, |v′j+1| ≤
(

max
δ≤S≤S(0),0≤P<P (0)

{fN (P )gN (S)}+ max
0≤i≤N

{q̃i−1 + qi}
)
S(0).

Since |gj(S)fj(P )| ≤
(
maxδ≤S≤S(0),0≤P<P (0){fN (P )gN (S)}

)
, and f ′

j(P ) < 0, we have

|d
2vj
dt2 | ≤ Mj for some Mj > 0. Let |dvjdt | take its maximum in [T+

n , Tn+1] at t = ξ. If
Tn < ξ < Tn+1, then we choose a, b, such that a ≤ ξ ≤ b, (a, b) ⊂ (Tn, Tn+1) and
b− a =

√
ϵ. By the arguments in [16],

vj(b)− vj(ξ) = (b− ξ)v′j(ξ) +
1

2
(b− ξ)2v′′j (η1),(6.24)

vj(a)− vj(ξ) = (a− ξ)v′j(ξ) +
1

2
(a− ξ)2v′′j (η2),(6.25)
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where a < η2 < ξ < η1 < b.
Subtracting equation (6.25) from (6.24), we get

vj(b)− vj(a)− (b− a)v′j(ξ) =
1

2
[v′′j (η1)(b− ξ)2 − v′′j (η2)(a− ξ)2].

Since (b − ξ)2 + (a − ξ)2 ≤ (b − a)2, a ≤ ξ ≤ b, it follows that |v′j(ξ)| ≤
|vj(b)|+|vj(a)|

b−a +

1
2Mj(b− a) ≤

2
d ϵ√
ϵ
+

Mj

2

√
ϵ =

√
ϵ( 2d +

Mj

2 ).

Hence on [T+
n , Tn+1], from (6.23),

√
ϵ( 2d +

Mj

2 ) ≥ (gj(S)fj(P ) − (q̃j−1 + qj))vj +
qj−1vj−1 + q̃jvj+1 ≥ O(1)ϵ + qj−1vj−1 + q̃jvj+1. Therefore, when t = Tn+1, we have
qj−1

1
d (vj−1)n+1+q̃j

1
d (vj+1)n+1 ≤ O(1)

√
ϵ for n ≥ Nj . Hence, we have (vj−1)n, (vj+1)n→

0 as n → ∞.
If ξ = nT or (n + 1)T , then we consider equation (6.25) with ξ = a, b − a =

√
ϵ

or ξ = b, b − a =
√
ϵ, respectively. Following the same procedure we are able to prove

(vj−1)n, (vj+1)n → 0 as n → ∞. That completes our proof.

Proof of Theorem 6.9. Proof. (i) Compare the model (3.2) with resetting conditions
(3.3) with the following system (6.26) with resetting conditions (3.3).

dS
dt = 0,
du
dt = g0(S)u− q0u+ q̃0v1,
dvi

dt = gi(S)vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN

dt = gN (S)vN + qN−1vN−1 − q̃N−1vN ,
dP
dt = 0.

(6.26)

By letting X = (S, u, v1, · · · , vN , P ), we write (3.2) as dX
dt = F (X) and (6.26) as dX

dt =
G(X). It is obvious that F (X) ≤ G(X). Note that (6.26) is a cooperative system, by
Kamke’s Theorem, we have

(Sn, un, (v)n, Pn) ≤ (Ŝn, ûn, (v̂)n, P̂n),(6.27)

where (Ŝn, ûn, (v̂)n, P̂n) = Q̂(n)(Ŝ0, û0, (v̂)0, P̂0), and (Ŝ0, û0, (v̂)0, P̂0) = (S0, u0, (v)0, P0).
Consider the extinction fixed point (S(0), 0, 0, · · · , 0, 0) of the system (6.26) with resetting
conditions (3.3), we have ŜN → S(0) as n → ∞. Then we study the limiting system of the
cooperative system (6.26) with resetting conditions (3.3),

du
dt = g0(S

(0))u− q0u+ q̃0v1,
dvi
dt = gi(S

(0))vi + qi−1vi−1 − q̃i−1vi − qivi + q̃ivi+1,
dvN
dt = gN (S(0))vN + qN−1vN−1 − q̃N−1vN .

(6.28)

Let x = (u, v1, · · · , vN ), then (6.28) can be written as

dx

dt
= Ax,

where

A =


A11 q̃0 0 0 0 · · · 0
q0 A22 q̃1 0 0 · · · 0
0 q1 A33 q̃2 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 0 qN−1 AN+1N+1

 ,(6.29)
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Aii = gi−1(S
(0))− (q̃i−2 + qi−1) for i = 2, 3, · · · , N, A11 = g0(S

0)− q0 and AN+1N+1 =
gN (S0)−q̃N−1. Since the mutation rates qi and q̃i are small for 0 ≤ i ≤ N , hence q̃i−1+qi <
gi(S

(0)) for all 1 ≤ i ≤ N. Then the map induced by (6.28) and (3.3)

Q̃x⃗0 = d exp (AT )x⃗0,

it follows that

x⃗n = Q̃nx⃗0 = (d exp (AT ))nx⃗0.

Since A is a positive matrix, if the spectral radius r(d exp (AT )) is less than 1, then x⃗n → 0
as n → ∞, or (ûn, (v̂)N ) → (0, 0, · · · , 0) as n → ∞. In this case, by (6.27) we have
(un, (v)N ) → (0, 0, · · · , 0) as n → ∞.

(ii) We will prove the persistence of models (3.2) and (3.3) in the following two cases.
Case 1. If u(Tn+1) +

∑N
i=1 vi(Tn+1) < U for all n, then Pn → 0 as n → ∞. Since

the matrix d exp (AT ) is a positive irreducible matrix, the spectral radius r(d exp (AT )) > 1
is an eigenvalue with positive eigenvalue w⃗. Since E0 = (S(0), 0, 0, · · · , 0) ∈ RN+2 is the
only fixed point on the boundary ∂RN+2, we can verify W s(E0) ∩ Int(RN+2) = ∅. Hence
the systems (3.2) and (3.3) is persistent.

Case 2. If u(Tn+1) +
∑N

i=1 vi(Tn+1) ≥ U for some n > 0. Then the iterates (Sn, un,

(vi)n,pn) may iterates about the boundary u+
∑N

i=1 vi = U . From Lemma 6.8, we know that
either (vi)n → 0 as n → ∞ for all 0 ≤ i ≤ N or (vi)n 9 0 as n → ∞ for all 0 ≤ i ≤ N .
Thus if r(d exp (AT )) > 1, the system (3.2) with resetting conditions (3.3) is persistent.

We will next prove that the last mutant vN dominates the other populations if the back-
ward mutation rates are sufficiently small. Let (S̃n, ũn, (ṽ)n, P̃n) be the solution of system
(3.1) with resetting conditions (3.3). From Lemma 6.3, ũn +

∑N−1
i=1 (ṽi)n → 0 as n → ∞.

Hence given ϵ > 0, there exists n0 > 0 such that 0 < ũn +
∑N−1

i=1 (ṽi)n < ϵ for all n ≥ n0.
Consider the fixed interval [n0T, 2n0T ] and the solution (Sn, un, (v)n, Pn) of the system
(3.2) with resetting conditions (3.3). From continuous dependence properties on parameters
[17], it follows that if the backward mutation rates q̃0, q̃1,· · ·, q̃N−1 are sufficiently close to
0, then |(Sn, un, (v)n, Pn) − (S̃n, ũn, (ṽ)n, P̃n)| < ϵ for all n ∈ [n0, 2n0]. It implies that
0 < un +

∑N−1
i=1 (vi)n < 2ϵ for n ∈ [n0, 2n0]. Since all the species u, v1, · · · , vN coexist in

the morbidostat, we have the last mutant vN dominates the population u +
∑N−1

i=1 vi. That
completes our proof.

Proof of Theorem 3.2. By Theorem 6.9, Lemma 6.10, Lemma 6.11 and Remark 6.3,
we complete the proof of Theorem 3.2. �
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