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ing from a mathematical model of two microbial species competing
for two complementary resources with internal storage in an un-
stirred chemostat. The governing system can be reduced to a lim-
iting system based on two uncoupled conservation principles. One
of main technical difficulties in our analysis is the singularities in
the reaction terms. Conditions for persistence of one population
and coexistence of two competing populations are derived from
eigenvalue problems, maximum principle and the theory of mono-
tone dynamical systems.
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1. Introduction

The understanding of competition between species for resources is one of the challenging aspects
of mathematical ecology. The chemostat (see, e.g., [17]) is a piece of laboratory apparatus, yet it
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plays a central role in mathematical biology. The basic chemostat consists of three vessels. The first
vessel, the feed bottle, contains all of the needed nutrients for growth. The nutrients are pumped
at a constant rate into the second, called the culture vessel or bio-reactor. The culture vessel whose
volume is constant contains microorganisms which compete for nutrient. The contents of the culture
vessel are pumped at the same constant rate into the third vessel, called the overflow vessel. It is a
model of a simple lake in which the competition is purely exploitative in the sense that organisms
simply consume the nutrient, thereby making it unavailable for competitors.

The classical Monod model of microbial growth on a single limiting resource was proposed in [14].
In this model, the basic assumption is that the nutrient uptake rate is proportional to the reproductive
rate, that is, growth is directly coupled to nutrient uptake. Since the constant of proportionality is
usually called the yield constant, the classical Monod model is sometimes referred to as the “constant-
yield model”. In phytoplankton ecology, it has long been known that the yield is not a fixed constant.
It can vary depending on the growth rate of species. This led to the formulation of the “variable-
yield model” [4]. The second extension of the Monod model is to include multiple potentially limiting
nutrients, such as nitrogen and phosphorus. When both nutrients are essential for growth, typically
the nutrient in shortest supply limits growth, known as Liebig’s law of the minimum [5].

The mathematical theory and biological implications of both modifications of the Monod model
have been studied extensively for the cases of growth of a single species and competition between
two species [12,13]. The authors in [13] investigated the following model for two phytoplankton
species with variable internal stores of two essential resources:

dS

dt
= (

S(0) − S
)

D − f S1(S, Q S1)u1 − f S2(S, Q S2)u2,

dR

dt
= (

R(0) − R
)

D − f R1(R, Q R1)u1 − f R2(R, Q R2)u2,

dQ Si

dt
= f Si(S, Q Si) − min

{
μSi(Q Si),μRi(Q Ri)

}
Q Si,

dQ Ri

dt
= f Ri(R, Q Ri) − min

{
μSi(Q Si),μRi(Q Ri)

}
Q Ri,

dui

dt
= [

min
{
μSi(Q Si),μRi(Q Ri)

} − D
]
ui,

S(0) � 0, R(0) � 0, Q Si(0) � 0, Q Ri(0) � 0, ui(0) � 0, i = 1,2. (1.1)

Here S(t) and R(t) denote the concentrations of the limiting resources in the chemostat at time t .
ui(t) denotes the concentration of species i at time t . Q Si (Q Ri) represents the amount of cell quota
of resource S (R) per individual of species i at time t . μSi(Q Si) and μRi(Q Ri) are the growth rates
of species i as a function of cell quota Q Si and Q Ri , respectively. f Si(S, Q Si) ( f Ri(R, Q Ri)) is the per
capita uptake rate of species i as a function of resource concentration S (R) and cell quota Q Si (Q Ri).
D is the dilution rate of the chemostat. Each nutrient is supplied at the rate D , and both input
concentrations are S(0) and R(0) respectively. Q min,Ni denotes threshold cell quota below which no
growth of species i occurs, where N = S, R . Growth rate for species is determined by the minimum
of two Droop functions, that is, “Liebig’s Law of the Minimum” is used to describe the dependence
of species growth on cell quotas. This law reflects that the two resources are complementary, not
substitutable.

According to [3–5], for N = S, R and i = 1,2, the growth rate μi(Q Ni) takes the forms:

μi(Q Ni) = μ∞,Ni

(
1 − Q min,Ni

Q Ni

)
,

or
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μi(Q Ni) = μ∞,Ni
(Q Ni − Q min,Ni)+

KNi + (Q Ni − Q min,Ni)+
, (1.2)

where Q min,Ni is the minimum cell quota necessary to allow cell division and (Q Ni − Q min,Ni)+ is
the positive part of (Q Ni − Q min,Ni) and μ∞,Ni is the maximal growth rate at infinite quotas (i.e., as
Q Ni → ∞) of the species i.

According to Grover [6], for N = S, R and i = 1,2, the uptake rate f Ni(N, Q Ni) takes the form:

f Ni(N, Q Ni) = ρNi(Q Ni)
N

kNi + N
(1.3)

where ρNi(Q Ni) is defined as follows

ρNi(Q Ni) = ρ
high
max,Ni − (

ρ
high
max,Ni − ρ low

max,Ni

) Q Ni − Q min,Ni

Q max,Ni − Q min,Ni
,

or

ρNi(Q Ni) = ρmax,Ni
Q max,Ni − Q Ni

Q max,Ni − Q min,Ni

here Q min,Ni � Q Ni � Q max,Ni . Cunningham and Nisbet [1,2] took ρNi(Q Ni) to be a constant.
Motivated by the above classical models, we assume that for each i = 1,2 and N = S, R , μNi(Q Ni)

is defined and continuously differentiable for Q Ni � Q min,Ni > 0 and satisfies

(H1) μNi(Q Ni) � 0, μ′
Ni(Q Ni) > 0 and is continuous for Q Ni � Q min,Ni , μNi(Q min,Ni) = 0.

We also assume that f Ni(N, Q Ni) is continuously differentiable for N > 0 and Q Ni � Q min,Ni and
satisfies

(H2) f Ni(0, Q Ni) = 0,
∂ f Ni

∂N
> 0,

∂ f Ni

∂ Q Ni
� 0.

Let U Si = ui Q Si and U Ri = ui Q Ri be the total amount of stored nutrient at time t for S and R ,
respectively, i = 1,2 (see, e.g., [13]). Then system (1.1) can be rewritten as follows

dS

dt
= (

S(0) − S
)

D − f S1

(
S,

U S1

u1

)
u1 − f S2

(
S,

U S2

u2

)
u2,

dR

dt
= (

R(0) − R
)

D − f R1

(
R,

U R1

u1

)
u1 − f R2

(
R,

U R2

u2

)
u2,

dU Si

dt
= −DU Si + f Si

(
S,

U Si

ui

)
ui,

dU Ri

dt
= −DU Ri + f Ri

(
R,

U Ri

ui

)
ui,

dui

dt
=

[
min

{
μSi

(
U Si

ui

)
,μRi

(
U Ri

ui

)}
− D

]
ui,

S(0) � 0, R(0) � 0, U Si(0) � 0, U Ri(0) � 0, ui(0) � 0, i = 1,2. (1.4)

It is not hard to see that the following conservation properties hold (see, e.g., [13, Eq. (2.4)]):
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S + U S1 + U S2 = S(0) + O
(
e−Dt) as t → ∞,

and

R + U R1 + U R2 = R(0) + O
(
e−Dt) as t → ∞.

Thus, system (1.4) can be reduced into a limiting system which is a type-K monotone system (see,
e.g., [13, Eq. (3.1)]).

Although the chemostat above provides us a simple model for the study of microbial growth,
the assumption of “well-mixed” is often questionable, and several models have been introduced where
the environment is partially mixed. In [11], the authors considered a constant-yield model in the
unstirred chemostat, where flow enters at one boundary supplying nutrient, and exits at another, re-
moving nutrients and organisms, while diffusion transports organisms and nutrient across the habitat
domain. The specific question of how storage of nutrient resources affects competition in spatially
variable habitats is challenging and very significant for mathematical ecology. Based on this motiva-
tion, Grover [7] did numerical simulations and obtained some interesting results in this topic. Note
that Grover’s model cannot be mathematically formulated and his results are numerical, not analytic.
The authors in [9] investigated a mathematical model of two microbial species competing for a single-
limited nutrient with internal storage in an unstirred chemostat and provided the results on washout,
one species survival and the other washout and coexistence.

The current paper is a continuation of [9] and we shall consider two complementary nutrients rather
than the single-limited nutrient. In other words, we will introduce the “spatially variable habitats” into
system (1.1). Thus, we consider the following system of partial differential equations:

St = dSxx − f S1

(
S,

U S1

u1

)
u1 − f S2

(
S,

U S2

u2

)
u2,

Rt = dRxx − f R1

(
R,

U R1

u1

)
u1 − f R2

(
R,

U R2

u2

)
u2,

(U Si)t = d(U Si)xx + f Si

(
S,

U Si

ui

)
ui,

(U Ri)t = d(U Ri)xx + f Ri

(
R,

U Ri

ui

)
ui,

(ui)t = d(ui)xx + min

{
μSi

(
U Si

ui

)
,μRi

(
U Ri

ui

)}
ui, i = 1,2 (1.5)

in (0,1) × (0,∞) with boundary conditions

Sx(0, t) = −S(0), Sx(1, t) + γ S(1, t) = 0,

Rx(0, t) = −R(0), Rx(1, t) + γ R(1, t) = 0,

(U Si)x(0, t) = 0, (U Si)x(1, t) + γ U Si(1, t) = 0,

(U Ri)x(0, t) = 0, (U Ri)x(1, t) + γ U Ri(1, t) = 0,

(ui)x(0, t) = 0, (ui)x(1, t) + γ ui(1, t) = 0, i = 1,2 (1.6)

and initial conditions
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S(x,0) = S0(x) � 0, R(x,0) = R0(x) � 0,

U Si(x,0) = U 0
Si(x) � 0, U 0

Si(x) �≡ 0,

U Ri(x,0) = U 0
Ri(x) � 0, U 0

Ri(x) �≡ 0,

ui(x,0) = u0
i (x) � 0, u0

i (x) �≡ 0, i = 1,2. (1.7)

Here the functions μNi and f Ni satisfy (H1) and (H2) respectively, for N = S, R; i = 1,2. The constants
d and γ represent the diffusion coefficient and the washout constant, respectively. S(0) and R(0) are
the nutrient flux.

Let

zS(x) := S(0)

(
1 + γ

γ
− x

)
, zR(x) := R(0)

(
1 + γ

γ
− x

)
, 0 < x < 1. (1.8)

Introducing the new variable

ΛN(x, t) = N + U N1 + U N2, ∀N = S, R

into (1.5)–(1.7), one shall have the following linear equation with boundary condition:

∂ΛN

∂t
= d

∂2ΛN

∂x2
, x ∈ (0,1), t > 0,

∂ΛN

∂x
(0, t) = −N(0),

∂ΛN

∂x
(1, t) + γ ΛN(1, t) = 0.

Thus ΛN (x, t) satisfies limt→∞ ΛN (x, t) = zN (x) uniformly in x ∈ [0,1], N = S, R . Therefore, we con-
clude that the limiting system for (1.5)–(1.7) takes the form

(ui)t = d(ui)xx + min

{
μSi

(
U Si

ui

)
,μRi

(
U Ri

ui

)}
ui,

(U Si)t = d(U Si)xx + f Si

(
zS(x) − U S1 − U S2,

U Si

ui

)
ui,

(U Ri)t = d(U Ri)xx + f Ri

(
zR(x) − U R1 − U R2,

U Ri

ui

)
ui, i = 1,2 (1.9)

in (0,1) × (0,∞) with boundary conditions

(ui)x(0, t) = 0, (ui)x(1, t) + γ ui(1, t) = 0,

(U Si)x(0, t) = 0, (U Si)x(1, t) + γ U Si(1, t) = 0,

(U Ri)x(0, t) = 0, (U Ri)x(1, t) + γ U Ri(1, t) = 0, i = 1,2 (1.10)

and initial conditions

ui(x,0) = u0
i (x) � 0, u0

i (x) �≡ 0,

U Si(x,0) = U 0
Si(x) � 0, U 0

Si(x) �≡ 0,

U Ri(x,0) = U 0
Ri(x) � 0, U 0

Ri(x) �≡ 0, i = 1,2. (1.11)
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In this paper, we will determine the global dynamics of the system (1.9)–(1.11). Since U Ni
ui

with
U Ni = 0 and ui = 0 produces a singularity in the reaction terms, this makes the analysis more dif-
ficult and we are unable to do the bifurcation analysis and linearization at the origin. To overcome
this difficulty, technical construction of suitable upper-lower solutions near the singularity is needed.
Roughly speaking, we shall construct upper-lower solutions with those components sufficiently small,
each of which has singularity at zero, and replace the linearization tool by the combination of the
constructed upper-lower solutions, maximum principle and the theory of monotone dynamical sys-
tem. These upper-lower solutions play a role of eigenfunctions in some extent.

The organization of the paper is as follows. In Section 2, we consider two invariant subsystems
which describe the single population growth corresponding to the system (1.9)–(1.11). We can show
uniqueness of the positive steady state. The results for the single population are almost sharp: either
washout of the organism or survival of the organism occurs, as expected. We determine the conditions
for both of the washout and survival of the organisms. Section 3 is devoted to the study of two
competing species model. It is remarkable that some extinction results can be established based on
the previous results in [9] and the comparison principle. We also prove the existence of coexistence
for the model of two competing species. The main result is given in case both organisms are viable
(able to survive in absence of competition) and this is a persistence result requiring that each single-
species population can be invaded by its competitor. In this case, almost all solutions converge to
a positive steady state although there may be several such steady states. What is achieved strongly
depends on the construction of upper-lower solutions, the maximum principle and the theory of
monotone dynamical systems. The routine proof about “the invariance of the feasible domain” is
collected in Appendix A.

2. Single population growth

The system (1.9)–(1.11) has two invariant subsystems with respect to (u1, U S1, U R1) and
(u2, U S2, U R2), respectively, which describe the growth of a single species on two essential resources
based on internal storage. Both invariant subsystems have the following form:

ut = duxx + min

{
μS

(
U S

u

)
,μR

(
U R

u

)}
u,

(U S)t = d(U S)xx + f S

(
zS(x) − U S ,

U S

u

)
u, x ∈ (0,1), t > 0,

(U R)t = d(U R)xx + f R

(
zR(x) − U R ,

U R

u

)
u (2.1)

with boundary conditions

ux(0, t) = 0, ux(1, t) + γ u(1, t) = 0,

(U S)x(0, t) = 0, (U S)x(1, t) + γ U S(1, t) = 0,

(U R)x(0, t) = 0, (U R)x(1, t) + γ U R(1, t) = 0 (2.2)

and initial conditions

u(x,0) = u0(x) � 0, u0(x) �≡ 0,

U S(x,0) = U 0
S(x) � 0, U 0

S(x) �≡ 0,

U R(x,0) = U 0
R(x) � 0, U 0

R(x) �≡ 0. (2.3)

Here μN and f N satisfy (H1) and (H2) respectively, N = S, R .
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The feasible domain for initial value functions should be

� =
{(

u0, U 0
S , U 0

R

) ∈ (
C
([0,1]))3 ∣∣ u0(x) > 0, 0 < U 0

N(x) � zN(x),

U 0
N(x)

u0(x)
� Q min,N on [0,1], N = S, R

}
,

which is our phase space. It is easy to check by definition that � is convex. Denote by Φt the solution
semiflow generated by (2.1)–(2.3). Then we have

Proposition 2.1. The phase space � is positively invariant under the semiflow Φt .

The proof of this proposition is contained in Appendix A.
From now on, we restrict our attention to the system (2.1)–(2.3) with initial condition in the

feasible set �. We show next that the system (2.1)–(2.3) is monotone. It is well known that [16] if
� is convex, a sufficient condition for this to happen is that the system satisfies the Kamke condition.
Denote the reaction terms in (2.1) by

H(u, U S , U R) = (
H1(u, U S , U R), H2(u, U S , U R), H3(u, U S , U R)

)
,

where

H1(u, U S , U R) = min

{
μS

(
U S

u

)
,μR

(
U R

u

)}
u,

H2(u, U S , U R) = f S

(
zS(x) − U S ,

U S

u

)
u,

H3(u, U S , U R) = f R

(
zR(x) − U R ,

U R

u

)
u.

By the monotonicity assumptions (H1) and (H2), Hi satisfies Kamke condition for each i. The Jacobian
matrix of H at almost all points in the phase space � is cooperative, and irreducible at almost all
interior points of �. Thus

Proposition 2.2. The solution semiflow Φt is monotone on �, and strongly monotone in the interior of �.

Let η0 > 0 be the principal eigenvalue of the problem

dφ′′
1 (x) + η0φ1(x) = 0, x ∈ (0,1),

φ′
1(0) = φ′

1(1) + γ φ1(1) = 0 (2.4)

with the corresponding positive eigenfunction φ1(x) uniquely determined by the normalization
max[0,1]φ1(x) = 1. Suppose that there exists a unique constant number Q c,S � Q min,S , Q c,R � Q min,R
satisfying

μS(Q c,S) = μR(Q c,R) = η0. (2.5)
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Remark 2.1. As in [9, Remark 2.1], if we choose the following functions μ(Q N ) = μ∞,N (1 − Q min,N
Q N

) as
defined in (1.2), it is easy to see that (2.5) holds provided that the asymptotic growth rate μ∞,N is
large enough, for either N = S, R .

In order to give a sufficient condition for the non-existence of a nontrivial steady state for
(2.1)–(2.3), we need some results in [9]. In [9, Section 2], the authors considered the following sys-
tem:

ut = duxx + μN

(
U N

u

)
u, x ∈ (0,1), t > 0,

(U N)t = d(U N)xx + f N

(
zN(x) − U N ,

U N

u

)
u, x ∈ (0,1), t > 0 (2.6)

with boundary conditions

ux(0, t) = 0, ux(1, t) + γ u(1, t) = 0,

(U N)x(0, t) = 0, (U N)x(1, t) + γ U N(1, t) = 0 (2.7)

and initial conditions

u(x,0) = u0(x) � 0, u0(x) �≡ 0,

U N(x,0) = U 0
N(x) � 0, U 0

N(x) �≡ 0, (2.8)

where zN (x) = N(0)(
1+γ
γ − x).

Lemma 2.1. (See [9, Theorem 2.1].) Suppose η0 is defined in (2.4) and μN (Q c,N) = η0 . Then:

(i) If minx∈[0,1] f N (zN (x), Q c,N ) > η0 Q c,N , then the system (2.6)–(2.8) has a unique positive steady state
which is globally asymptotically stable in its feasible set.

(ii) If maxx∈[0,1] f N (zN (x), Q c,N ) � η0 Q c,N , then there is no steady state in its feasible set and every solution
of the system (2.6)–(2.8) with initial condition in the feasible set satisfies (u(·, t), U N (·, t)) → (0,0) as
t → ∞.

Theorem 2.1. Let maxx∈[0,1] f S (zS (x), Q c,S ) � η0 Q c,S or maxx∈[0,1] f R(zR(x), Q c,R) � η0 Q c,R . Then there
is no steady state in � and every solution of the system (2.1)–(2.3) with initial condition in � satisfies
(u(·, t), U S (·, t), U R(·, t)) → (0,0,0) as t → ∞.

Proof. Without loss of generality, one may assume that maxx∈[0,1] f S (zS (x), Q c,S ) � η0 Q c,S . From
(2.1)–(2.3), we have the following inequalities

ut = duxx + min

{
μS

(
U S

u

)
,μR

(
U R

u

)}
u � duxx + μS

(
U S

u

)
u,

(U S)t = d(U S)xx + f S

(
zS(x) − U S ,

U S

u

)
u,

(U R)t = d(U R)xx + f R

(
zR(x) − U R ,

U R

u

)
u.
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By comparison theorem [16, p. 130, Theorem 3.4] and Lemma 2.1(ii) with N = S , we have
limt→∞(u(x, t), U S (x, t)) = (0,0) uniformly in x ∈ [0,1]. Therefore, the limiting equation for the third
equation in (2.1) becomes

(U R)t = d(U R)xx

with the usual boundary condition (2.2) and initial condition (2.3). Hence,

lim
t→∞ U R(x, t) = 0

uniformly in x ∈ [0,1]. We complete the proof. �
In the following, we shall construct upper and lower solutions for the elliptic equations associated

with (2.1)–(2.3).

Lemma 2.2. Suppose (ū, Ū S , Ū R) = (min{ S(0)

Q min,S
, R(0)

Q min,R
}( 1+γ

γ − x), zS (x), zR(x)). Then (ū, Ū S , Ū R) is a

strict upper solution for the elliptic equations associated with the system (2.1)–(2.3), where zS (x) and zR(x)
are defined in (1.8).

Proof. Obviously, Ū S
ū = S(0)

min{ S(0)

Q min,S
, R(0)

Q min,R
}
� Q min,S and Ū R

ū = R(0)

min{ S(0)

Q min,S
, R(0)

Q min,R
}
� Q min,R . This proves

that

(ū, Ū S , Ū R) ∈ �.

Clearly,

−ū′(0) = min

{
S(0)

Q min,S
,

R(0)

Q min,R

}
> 0, ū′(1) + γ ū(1) = 0,

−Ū ′
N(0) = N(0) > 0, Ū ′

N(1) + γ Ū N(1) = 0, ∀N = S, R

where ū′(0) is the outer normal derivative for ū at 0, ū′(1) et al. being similar. We note that if
S(0)

Q min,S
� R(0)

Q min,R
( S(0)

Q min,S
� R(0)

Q min,R
), then Ū S

ū = Q min,S ( Ū R
ū = Q min,R ). This shows that min{μS(

Ū S
ū ),

μR( Ū R
ū )} = 0. By calculation, we have

dū′′ + min

{
μS

(
Ū S

ū

)
,μR

(
Ū R

ū

)}
ū = 0 + 0 = 0,

and

dŪ ′′
N + f N

(
zN(x) − Ū N ,

Ū N

ū

)
ū = 0 + f N

(
0,

Ū N

ū

)
ū = 0, ∀N = S, R,

which proves our lemma. �
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Lemma 2.3. Let minx∈[0,1] f N (zN (x), Q c,N ) > η0 Q c,N with N = S, R. Then for ε sufficiently small,

(u, U S , U R) = (εφ1, εQ c,Sφ1, εQ c,Rφ1)

is a strict lower solution for the elliptic equations associated with the system (2.1)–(2.3).

Proof. Obviously, (u, U S , U R) ∈ � satisfies the boundary conditions (2.2). It remains to show the
following inequalities:

du′′ + min

{
μS

(
U S

u

)
,μR

(
U R

u

)}
u � 0, (2.9a)

dU ′′
N + f N

(
zN(x) − U N ,

U N

u

)
u � 0, ∀N = S, R. (2.9b)

By calculation, we have

du′′ + min

{
μS

(
U S

u

)
,μR

(
U R

u

)}
u = εdφ′′

1 + min
{
μS(Q c,S),μR(Q c,R)

}
εφ1

= ε
[
dφ′′

1 (x) + η0φ1(x)
] = 0,

and

dU ′′
N + f N

(
zN(x) − U N ,

U N

u

)
u = εQ c,Ndφ′′

1 + ε f N
(
zN(x) − εQ c,Nφ1, Q c,N

)
φ1

= εQ c,N(−η0φ1) + ε f N
(
zN(x) − εQ c,Nφ1, Q c,N

)
φ1

= ε
[−Q c,Nη0 + f N

(
zN(x) − εQ c,Nφ1, Q c,N

)]
φ1 > 0,

provided that minx∈[0,1] f N (zN (x), Q c,N ) > η0 Q c,N and ε > 0 is small enough, for N = S, R . This
proves (2.9a) and (2.9b). �
Theorem 2.2. The system (2.1)–(2.3) has at most one nontrivial steady state in the phase space � which is
globally asymptotically stable if it exists, otherwise, the origin is globally attractive. A sufficient condition for
the existence of a nontrivial steady state is that

min
x∈[0,1] f N

(
zN(x), Q c,N

)
> η0 Q c,N , for N = S, R.

Proof. Let V = (u, U S , U R) and rewrite the system (2.1)–(2.3) in vector form:

G(V ) := (
G1(V ), G2(V ), G3(V )

)
:=

(
min

{
μS

(
U S

u

)
,μR

(
U R

u

)}
u, f S

(
zS(x) − U S ,

U S

u

)
u, f R

(
zR(x) − U R ,

U R

u

)
u

)
.

Then (2.1)–(2.3) takes the form

Vt = dV xx + G(V ), 0 < x < 1, t > 0,

V x(0, t) = 0, V x(1, t) + γ V (1, t) = 0.
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Next, we verify the following sublinear property of G: for any 0 < α < 1,

G(αV ) > αG(V ).

By calculation, we have

G1(αV ) = min

{
μS

(
αU S

αu

)
,μR

(
αU R

αu

)}
(αu) = αG1(V ),

G2(αV ) = f S

(
zS(x) − αU S ,

αU S

αu

)
(αu) > f S

(
zS(x) − U S ,

U S

u

)
(αu) = αG2(V ),

and

G3(αV ) > αG3(V ).

This shows that G(αV ) > αG(V ) for any 0 < α < 1.
One can use the same arguments in [9] to show that the solution semiflow Φt has the property:

Φt(αP ) > αΦt(P ) for 0 < α < 1 and P := (
u0, U 0

S , U 0
R

) ∈ �. (2.10)

(2.10) is a so-called sublinear property. Therefore, the system (2.1)–(2.3) has at most one positive
steady-state solution (see, e.g., the proof of [9, Theorem 2.1]).

We note that the upper solution (ū, Ū S , Ū R) in Lemma 2.2 is the greatest point in � with respect
to the order �. So by the invariance of the solution semiflow, Φt(P ) � (ū, Ū S , Ū R) for any t > 0 and
P ∈ �. Thus all solutions are bounded. Thus, P∗ is globally asymptotically stable in � if a positive
steady state P∗ exists (see [10, Theorem D]). Otherwise, suppose that there is no steady state in �.
Then we claim that every omega set from initial point in � is the origin. Let P ∈ � and ω(P ) be its
ω-limit set. Suppose that ω(P ) �= {0}. Then since � is convex, ω(P ) has the least upper bound Q ∈ �.
Thus Φt(ω(P )) � Φt(Q ) for all t and ω(P ) � Φt(Q ) by the invariance of ω-limit set. It follows that
Q � Φt(Q ). Therefore, by Convergence Criterion (see [16, p. 3, Theorem 2.1]), Φt(Q ) converges to a
steady state P∗ 
 0, contradicting the fact that there is no steady state in �.

Suppose that the conditions are true in the theorem. Then by Lemma 2.3, the system (2.1)–(2.3)
has a lower solution P (ε) = (u, U S , U R) = (εφ1, εQ c,Sφ1, εQ c,Rφ1) for sufficiently small ε . Thus
Φt(P (ε)) increasingly tends to a unique steady state P∗ . This completes the proof. �
Remark 2.2. Since zN (x)=N(0)(

1+γ
γ −x) and f (N, Q N ) satisfies (H2), it follows that minx∈[0,1] f (zN (x),

Q c,N ) = f (zN (1), Q c,N ) and maxx∈[0,1] f (zN (x), Q c,N ) = f (zN (0), Q c,N ).

Remark 2.3 (Biological interpretation for Theorems 2.1–2.2). As in [9, Remark 2.3], it is easy to see that
η0 := η0(d, γ ) is increasing in d and γ respectively and η0(d, γ ) → 0 as d → 0 or γ → 0. From (1.3),
we assume f (zN (x), Q N ) takes the form

f
(
zN(x), Q N

) = ρmax,N
Q max,N − Q N

Q max,N − Q min,N

zN(x)

kN + zN(x)
.

Since zN (x) = N(0)(
1+γ
γ − x), it follows from Remark 2.2 that

min
x∈[0,1] f

(
zN(x), Q c,N

) = ρmax,N
Q max,N − Q c,N

Q max,N − Q min,N

N(0)

γ

kN + N(0)
γ
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and

max
x∈[0,1] f

(
zN(x), Q c,N

) = ρmax,N
Q max,N − Q c,N

Q max,N − Q min,N

N(0) 1+γ
γ

kN + N(0) 1+γ
γ

.

Thus, the condition for the existence of a nontrivial steady state in Theorem 2.2 is equivalent to

ρmax,N
Q max,N − Q c,N

Q max,N − Q min,N

N(0)

γ

kN + N(0)

γ

> η0(d, γ )Q c,N , for N = S, R,

it means that if the maximal uptake rates ρmax,S and ρmax,R are both larger, the diffusion coefficient
d is smaller, the washout constant γ is smaller then the species survives.

Since maxx∈[0,1] f N (zN (x), Q c,N ) � η0 Q c,N is equivalent to

ρmax,N
Q max,N − Q c,N

Q max,N − Q min,N

N(0) 1+γ
γ

kN + N(0) 1+γ
γ

� η0(d, γ )Q c,N ,

and hence, Theorem 2.1 means that if one of the maximal uptake rates ρmax,S and ρmax,R is smaller,
one of the nutrient fluxes S(0) and R(0) is smaller, one of the half-saturation constants kS and kR is
larger then the species goes to extinction.

3. Two species competition

The feasible domain for initial value functions of (1.9)–(1.11) is

Σ =
{(

u0
1(x), U 0

S1(x), U 0
R1(x), u0

2(x), U 0
S2(x), U 0

R2(x)
) ∈ (

C
([0,1]))6 ∣∣ u0

i (x) > 0, U 0
Ni(x) > 0,

U 0
N1(x) + U 0

N2(x) � zN(x),
U 0

Ni(x)

u0
i (x)

� Q min,Ni, on [0,1], N = S, R, i = 1,2

}
.

It is not difficult to examine by definition that Σ is convex. Denote by Ψt the solution semiflow
generated by (1.9)–(1.11). Then we have

Proposition 3.1. Σ is positively invariant under the semiflow Ψt .

The proof of Proposition 3.1 is collected in Appendix A.
The assumptions (H1) and (H2) imply the Kamke condition holds for the system (1.9)–(1.11)

in the sense of type-K order below. The Jacobian matrix of reaction terms at almost all points in
the phase space � is cooperative, and irreducible at almost all interior points of � due to min{·,·}
functions. The Jacobian of reaction terms in (1.9) with respect to (u1, U S1, U R1, u2, U S2, U R2) in Σ (if
it exists) has the form

J =

⎛
⎜⎜⎜⎜⎜⎝

∗ + + 0 0 0
aS1 ∗ 0 0 − 0
aR1 0 ∗ 0 0 −

0 0 0 ∗ + +
0 − 0 aS2 ∗ 0

⎞
⎟⎟⎟⎟⎟⎠ .
0 0 − aR2 0 ∗
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Note that for each i = 1,2 and N = S, R , there holds

aNi = f Ni

(
zN (x) − U N1 − U N2,

U Ni

ui

)
− U Ni

ui

∂ f Ni

∂ Q Ni

(
zN(x) − U N1 − U N2,

U Ni

ui

)

� f Ni

(
zN (x) − U N1 − U N2,

U Ni

ui

)
� 0.

Obviously, J has the block structure characteristic of type K monotone system [16], consisting of
diagonal 3 × 3 blocks with nonnegative off-diagonal entries and off-diagonal 3 × 3 non-positive
blocks, where K = {(u0

1, U 0
S1, U 0

R1, u0
2, U 0

S2, U 0
R2) ∈ (C([0,1]))6 | u0

1 � 0, U 0
S1 � 0, U 0

R1 � 0; u0
2 � 0,

U 0
S2 � 0, U 0

R2 � 0}. Thus, the semiflow generated by the system (1.9)–(1.11) is monotone [16] under
the partial order �K . Furthermore, if

U S1 + U S2 < zS(x) and U R1 + U R2 < zR(x) for x ∈ [0,1],
then J is irreducible (there is a simple test to show J is irreducible (see, e.g., [17, p. 256])), which
implies that such a semiflow is strongly monotone in the interior of Σ . Thus, we have

Lemma 3.1. Σ is convex, and Ψt : Σ → Σ is strongly monotone in the type K -order.

Proof. From the above discussion, it suffices to show that for any initial data P = (u0
1, U 0

S1, U 0
R1, u0

2,

U 0
S2, U 0

R2) ∈ Σ with U 0
S1(x0) + U 0

S2(x0) = zS (x0) for some x0 ∈ [0,1], we have

U S1(x, t, P ) + U S2(x, t, P ) < zS(x) for any t > 0, x ∈ [0,1].
If not, then there is a t̄ > 0, and x̄ ∈ [0,1] such that

U S1(x̄, t̄, P ) + U S2(x̄, t̄, P ) = zS(x̄).

Let Y S (x, t) = zS (x) − U S1(x, t, P ) − U S2(x, t, P ). Then

d(Y S)xx − (Y S)t = f S1

(
Y S(x, t),

U S1(x, t)

u1(x, t)

)
u1(x, t) + f S2

(
Y S(x, t),

U S2(x, t)

u2(x, t)

)
u2(x, t)

on Ωt̄ , where Ωt � (0,1) × (0, t]. Denote

h(x, t) = u1

1∫
0

∂ f S1

∂ S

(
τ Y S ,

U S1

u1

)
dτ + u2

1∫
0

∂ f S2

∂ S

(
τ Y S ,

U S2

u2

)
dτ .

Then h(x, t) � 0. By the invariance of the solution semiflow on Σ (see Proposition 3.1), zero is the
minimum value for Y S (x, t) on Ω̄t̄ at (x̄, t̄), and

d(Y S)xx − (Y S)t − h(x, t)Y S = 0 on Ωt̄ .

Applying maximum principle, we obtain a contradiction. Similarly, for any initial data P = (u0
1, U 0

S1,

U 0
R1, u0

2, U 0
S2, U 0

R2) ∈ Σ with U 0
R1(x̃0) + U 0

R2(x̃0) = zR(x̃0) for some x̃0 ∈ [0,1], we have

U R1(x, t, P ) + U R2(x, t, P ) < zR(x) for any x ∈ [0,1] and t > 0.

Thus we conclude that Ψt : Σ → Σ is strongly monotone.
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Suppose that there exists a unique constant number Q c,Si � Q min,Si , Q c,Ri � Q min,Ri satisfying

μSi(Q c,Si) = μRi(Q c,Ri) = η0, i = 1,2,

where η0 > 0 is the principal eigenvalue of the problem (2.4). In order to state our results, we require
the following conditions:

(A) min
x∈[0,1] f S1

(
zS(x), Q c,S1

)
> η0 Q c,S1 and min

x∈[0,1] f R1
(
zR(x), Q c,R1

)
> η0 Q c,R1;

(A′) max
x∈[0,1] f S1

(
zS(x), Q c,S1

)
� η0 Q c,S1 or max

x∈[0,1] f R1
(
zR(x), Q c,R1

)
� η0 Q c,R1;

(B) min
x∈[0,1] f S2

(
zS(x), Q c,S2

)
> η0 Q c,S2 and min

x∈[0,1] f R2
(
zR(x), Q c,R2

)
> η0 Q c,R2;

(B′) max
x∈[0,1] f S2

(
zS(x), Q c,S2

)
� η0 Q c,S2 or max

x∈[0,1] f R1
(
zR(x), Q c,R2

)
� η0 Q c,R2. �

Let the condition (A) hold. Then from Theorem 2.2, the system (2.1)–(2.3) with μN = μN1 and
f N = f N1 for N = S, R has a unique positive steady state (u∗

1, U∗
S1, U∗

R1) which is globally asymptot-
ically stable in its feasible region. Similarly, if the condition (B) holds, then the system (2.1)–(2.3)

with μN = μN2 and f N = f N2 for N = S, R has a unique positive steady state (u∗
2, U∗

S2, U∗
R2) which

is globally asymptotically stable in its feasible region. In the following, we will use the notations for
both steady states.

Theorem 3.1. The following statements hold:

(i) if the conditions (A′) and (B′) hold, then every solution (u1, U S1, U R1, u2, U S2, U R2) for the system
(1.9)–(1.11) with initial data in Σ satisfies

lim
t→∞

(
u1(x, t), U S1(x, t), U R1(x, t), u2(x, t), U S2(x, t), U R2(x, t)

) = (0,0,0,0,0,0)

uniformly in x ∈ [0,1];
(ii) if the conditions (A) and (B′) hold, then there is a semi-trivial solution (u∗

1, U∗
S1, U∗

R1,0,0,0) for the
system (1.9)–(1.11) which is globally attractive in Σ ;

(iii) if the conditions (A′) and (B) hold, then there is a semi-trivial solution (0,0,0, u∗
2, U∗

S2, U∗
R2) for the

system (1.9)–(1.11) which is globally attractive in Σ .

Proof. (i) Suppose that the condition (B′) holds. From (1.9), we have the following inequalities

(u2)t = d(u2)xx + min

{
μS2

(
U S2

u2

)
,μR2

(
U R2

u2

)}
u2,

(U S2)t = d(U S2)xx + f S2

(
zS(x) − U S1 − U S2,

U S2

u2

)
u2

� d(U S2)xx + f S2

(
zS(x) − U S2,

U S2

u2

)
u2,

(U R2)t = d(U R2)xx + f R2

(
zR(x) − U R1 − U R2,

U R2

u2

)
u2

� d(U R2)xx + f R2

(
zR(x) − U R2,

U R2

u

)
u2.
2
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By comparison theorem and Theorem 2.1, limt→∞(u2(x, t), U S2(x, t), U R2(x, t)) = 0 uniformly in x ∈
[0,1]. Similarly, limt→∞(u1(x, t), U S1(x, t), U R1(x, t)) = (0,0,0) uniformly in x ∈ [0,1] if the condition
(A′) holds.

(ii) Obviously, from the condition (B′) and the proof of (i), (u2, U S2, U R2) goes to extinction, and
therefore, the limiting equations for the first three equations in (1.9) become

(u1)t = d(u1)xx + min

{
μS1

(
U S1

u1

)
,μR1

(
U R1

u1

)}
u1,

(U S1)t = d(U S1)xx + f S1

(
zS(x) − U S1,

U S1

u1

)
u1, x ∈ (0,1), t > 0,

(U R1)t = d(U R1)xx + f R1

(
zR(x) − U R1,

U R1

u1

)
u1

with the usual boundary conditions and initial conditions. By the condition (A) and Theorem 2.2,
the above system has a unique steady state (u∗

1, U∗
S1, U∗

R1) which is globally asymptotically stable
in its feasible domain. Thus, (u∗

1, U∗
S1, U∗

R1,0,0,0) is a semi-trivial solution for system (1.9)–(1.11).
The global attraction for the semi-trivial steady state (u∗

1, U∗
S1, U∗

R1,0,0,0) follows from the limiting
equation theory.

(iii) The proof for (iii) is similar. �
In order to present our final result on coexistence or persistence, we need some notations and

preliminary results.
Set C := (C([0,1]))6. For P , Q ∈ C with P �K Q , define type-K order intervals

[P , Q ]K = {R ∈ C | P �K R �K Q },

and

[[P , Q ]]K = {R ∈ C | P �K R �K Q }.

Let P∗ = (0,0,0, u∗
2, U∗

S2, U∗
R2) and Q ∗ = (u∗

1, U∗
S1, U∗

R1,0,0,0). Then

Lemma 3.2. ω(P ) ⊂ [P∗, Q ∗]K for any P ∈ Σ .

Proof. Fix a point P = (u0
1, U 0

S1, U 0
R1, u0

2, U 0
S2, U 0

R2) ∈ Σ . Let

Ψt(P ) = (
u1(., t, P ), U S1(., t, P ), U R1(., t, P ), u2(., t, P ), U S2(., t, P ), U R2(., t, P )

)
be the solution with initial data P . For i = 1,2, it follows that

(
ui(., t, P ), U Si(., t, P ), U Ri(., t, P )

)
satisfies

(ui)t = d(ui)xx + min

{
μSi

(
U Si

ui

)
,μRi

(
U Ri

ui

)}
ui,

(U Si)t � d(U Si)xx + f Si

(
zS(x) − U Si,

U Si

u

)
ui, x ∈ (0,1), t > 0,
i
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(U Ri)t � d(U Ri)xx + f Ri

(
zR(x) − U Ri,

U Ri

ui

)
ui,

(ui)x(0, t) = 0, (ui)x(1, t) + γ ui(1, t) = 0,

(U Si)x(0, t) = 0, (U Si)x(1, t) + γ U Si(1, t) = 0,

(U Ri)x(0, t) = 0, (U Ri)x(1, t) + γ U Ri(1, t) = 0,

ui(.,0) = u0
i , U Si(.,0) = U 0

Si, U Ri(.,0) = U 0
Ri .

From [16, p. 130, Theorem 3.4] it follows that for any t > 0

(
ui(., t, P ), U Si(., t, P ), U Ri(., t, P )

)
� Ψ

(i)
t

(
u0

i , U 0
Si, U 0

Ri

)
,

where Ψ
(i)

t (u0
i , U 0

Si, U 0
Ri) (i = 1,2) is the solutions for (2.1)–(2.3) resulting from putting μN = μNi

and f N = f Ni , for N = S, R . Thus, applying Theorem 2.2, we obtain that

P (i)ω(P ) �
(
u∗

i , U∗
Si, U∗

Ri

)
,

where

P (i)(u0
1, U 0

S1, U 0
R1, u0

2, U 0
S2, U 0

R2

) = (
u0

i , U 0
Si, U 0

Ri

)
, i = 1,2

are projection mappings, that is,

ω(P ) ⊂ [
P∗, Q ∗]

K . �
Lemma 3.3. The following statements hold.

(i) Suppose that the condition (B) holds, minx∈[0,1] f N1(zN (x) − U∗
N2, Q c,N1) > η0 Q c,N1 for N = S, R and

let

P̄ (ε) := (u1, U S1, U R1, ū2, Ū S2, Ū R2) = (
εφ1, εQ c,S1φ1, εQ c,R1φ1, u∗

2, U∗
S2, U∗

R2

)
.

Then for ε > 0 sufficiently small, P̄ (ε) is a strict lower solution for the elliptic system associated with
(1.9)–(1.11) in the type K -order.

(ii) Suppose that the condition (A) holds, minx∈[0,1] f N2(zN (x) − U∗
N1, Q c,N2) > η0 Q c,N2 for N = S, R and

let

Q̄ (ε) := (ū1, Ū S1, Ū R1, u2, U S2, U R2) = (
u∗

1, U∗
S1, U∗

R1, εφ1, εQ c,S2φ1, εQ c,R2φ1
)
.

Then for ε > 0 sufficiently small, Q̄ (ε) is a strict upper solution for the elliptic system associated with
(1.9)–(1.11) in the type K -order.

Proof. It is not difficult to show that P (ε) ∈ Σ for ε > 0 sufficiently small. Obviously, P (ε) satisfies
the boundary conditions. It remains to show the following inequalities:
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du′′
1 + min

{
μS1

(
U S1

u1

)
,μR1

(
U R1

u1

)}
u1 = 0 � 0,

dU ′′
N1 + f N1

(
zN(x) − U N1 − Ū N2,

U N1

u1

)
u1 � 0, ∀N = S, R,

dū′′
2 + min

{
μS2

(
Ū S2

ū2

)
,μR2

(
Ū R2

ū2

)}
ū2 = 0 � 0,

dŪ ′′
N2 + f N2

(
zN(x) − U N1 − Ū N2,

Ū N2

ū2

)
ū2 < 0, ∀N = S, R. (3.1)

By calculation, we have

du′′
1 + min

{
μS1

(
U S1

u1

)
,μR1

(
U R1

u1

)}
u1 = ε

[
dφ′′

1 + min
{
μS1(Q c,S1),μR1(Q c,R1)

}
φ1

] = 0,

and

dU ′′
N1 + f N1

(
zN(x) − U N1 − Ū N2,

U N1

u1

)
u1

= εQ c,N1dφ′′
1 + f N1

(
zN(x) − εQ c,N1φ1 − U∗

N2, Q c,N1
)
εφ1

= εφ1
[

f N1
(
zN(x) − εQ c,N1φ1 − U∗

N2, Q c,N1
) − η0 Q c,N1

]
> 0,

provided that f N1(zN (x) − U∗
N2, Q c,N1) > η0 Q c,N1 and ε > 0 is small enough for N = S, R . Further-

more,

dū′′
2 + min

{
μS2

(
Ū S2

ū2

)
,μR2

(
Ū R2

ū2

)}
ū2 = d

(
u∗

2

)′′ + min

{
μS2

(
U∗

S2

u∗
2

)
,μR2

(
U∗

R2

u∗
2

)}
u∗

2 = 0,

and

dŪ ′′
N2 + f N2

(
zN(x) − U N1 − Ū N2,

Ū N2

ū2

)
ū2 < d

(
U∗

N2

)′′ + f N2

(
zN(x) − U∗

N2,
U∗

N2

u∗
2

)
u∗

2 = 0

for either N = S, R . Thus, P (ε) is a strict lower solution for the elliptic system associated with (1.9)–
(1.11) in the type K -order. We have proved (3.1) and then complete the proof of part (i). Part (ii) can
be proved in a similar way and we omit it. �

The following results show that coexistence of two competing species occurs if each can be in-
vaded by its competitor.

Theorem 3.2. Suppose that the conditions (A), (B) and

min
x∈[0,1] f Ni

(
zN(x) − U∗

N j, Q c,Ni
)
> η0 Q c,Ni, for i �= j, i, j = 1,2; N = S, R

hold. Then there are a minimal steady state E− ∈ Σ which is lower asymptotically stable and a maximal steady
state E+ ∈ Σ which is upper asymptotically stable such that

ω(P ) ⊂ [
E−, E+] ∩ Σ for any P ∈ Σ.
K
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The system (1.9)–(1.11) is uniformly persistent and Ψt(P ) tends to a steady state for P in an open and dense
subset in Σ .

Proof. Combining Lemma 3.3, [16, Theorem 3.4], Lemma 3.2 and strong monotonicity for Ψt , one gets
the results from the theory of strongly monotone dynamical systems (see, e.g., [16] and the proof of
[9, Theorem 3.2]). �
Remark 3.1. We note that one can use the similar argument as that in [9, Theorem 3.3] to lift the
dynamics of the limiting system (1.9)–(1.11) to the full system (1.5)–(1.7).
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Appendix A. The invariance on the feasible domains

In this appendix, we will prove the positive invariance for the solution semiflows of (2.1)–(2.3)

and (1.9)–(1.11) on their feasible domains. Because the proofs of both positive invariance results are
exactly the same, we only give the proof of Proposition 3.1 which is more complicated.

In order to give rigorous proof of the positive invariance, we need to extend definition for related
functions involving in (1.9)–(1.11).

For i = 1,2 and N = S, R , define

F Ni(N, Q Ni) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f Ni(N, Q Ni) for N � 0, Q Ni � Q min,Ni,

− f Ni(| N |, Q Ni) for N < 0, Q Ni � Q min,Ni,

f Ni(N, Q min,Ni) for N � 0, Q Ni < Q min,Ni,

− f Ni(| N |, Q min,Ni) for N < 0, Q N < Q min,Ni

and

μ̃Ni(Q Ni) =
{

μNi(Q Ni) for Q Ni � Q min,Ni,

μ′
Ni(Q min,Ni)(Q Ni − Q min,Ni) for Q Ni < Q min,Ni .

Hence,

μ̃Ni(Q Ni) = G Ni(Q Ni)(Q Ni − Q min,Ni),

where G Ni(Q Ni) = ∫ 1
0 μ̃′

Ni(τ Q Ni + (1 − τ )Q min,Ni)dτ > 0.

For i = 1,2 and N = S, R , we introduce

W Ni = U Ni − Q min,Niui,

and we get that

μ̃Ni

(
U Ni

ui

)
= G Ni

(
U Ni

ui

)
W Ni

ui
.
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Now, we consider the extended system

(ui)t = d(ui)xx + min

{
μ̃Si

(
U Si

ui

)
, μ̃Ri

(
U Ri

ui

)}
ui,

(U Si)t = d(U Si)xx + F Si

(
zS(x) − U S1 − U S2,

U Si

ui

)
ui, x ∈ (0,1), t > 0,

(U Ri)t = d(U Ri)xx + F Ri

(
zR(x) − U R1 − U R2,

U Ri

ui

)
ui, i = 1,2 (A.1)

with the usual boundary conditions (1.10) and initial conditions (1.11).
Without causing confusion, we drop the notation tilde in the following. Furthermore, we introduce

Y N = zN(x) − U N1 − U N2, N = S, R.

Proof of Proposition 3.1. By the theory of semilinear parabolic differential equations (see [8]), it fol-
lows that for every initial value data

P0 = (
u0

1, U 0
S1, U 0

R1, u0
2, U 0

S2, U 0
R2

) ∈ Σ,

the system (A.1) has a unique regular solution

(
u1(x, t, P0), U S1(x, t, P0), U R1(x, t, P0), u2(x, t, P0), U S2(x, t, P0), U R2(x, t, P0)

)
with the maximal interval of existence [0, τ (P0)) and τ (P0) = ∞ provided

(
u1(x, t, P0), U S1(x, t, P0), U R1(x, t, P0), u2(x, t, P0), U S2(x, t, P0), U R2(x, t, P0)

)
has an L∞-bound on [0, τ (P0)). The solution semiflow is defined by

Ψt(P0) = (
u1(., t, P0), U S1(., t, P0), U R1(., t, P0), u2(., t, P0), U S2(., t, P0), U R2(., t, P0)

)
.

It suffices to show that Σ is positively invariant under the semiflow Ψt generated by the sys-
tem (A.1).

We first notice that if Ψt(u0
1, U 0

S1, U 0
R1, u0

2, U 0
S2, U 0

R2) ∈ Σ (t > 0) for any initial data P0 =
(u0

1, U 0
S1, U 0

R1, u0
2, U 0

S2, U 0
R2) in IntΣ satisfying U 0

S1(x) + U 0
S2(x) < zS(x), U 0

R1(x) + U 0
R2(x) < zR(x),

U 0
Si (x)

u0
i (x)

> Q min,Si and
U 0

Ri(x)

u0
i (x)

> Q min,Ri for 0 � x � 1 and i = 1,2 then the conclusion of Proposition 3.1

holds. Suppose not. Then there is a point P0 = (u0
1, U 0

S1, U 0
R1, u0

2, U 0
S2, U 0

R2) ∈ ∂Σ so that at least one
of the above inequalities become equal and a τ > 0 such that Ψτ (u0

1, U 0
S1, U 0

R1, u0
2, U 0

S2, U 0
R2) /∈ Σ .

Thus, by the continuity of solutions with respect to initial points, one can finds a point P̃0 =
(ũ0

1, Ũ 0
S1, Ũ 0

R1, ũ0
2, Ũ 0

S2, Ũ 0
R2) ∈ Int Σ such that Ψτ ( P̃0) goes out of Σ , a contradiction. Therefore, with-

out loss of generality, we may assume that P0 = (u0
1, U 0

S1, U 0
R1, u0

2, U 0
S2, U 0

R2) ∈ Int Σ .
Suppose that the proposition is false. Let

t∗ = sup
{
τ

∣∣ Ψt
(
u0

1, U 0
S1, U 0

R1, u0
2, U 0

S2, U 0
R2

) ∈ Σ on [0, τ ]}.
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Then 0 < t∗ < τ(P0). This implies that one of the following twelve cases must occur:

(I) U S1(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ with U S1(x∗, t∗) = 0 for some x∗ in [0,1], and
U R1(x, t) � 0, u1(x, t) � 0, U S2(x, t) � 0, U R2(x, t) � 0, u2(x, t) � 0, Y S (x, t) � 0, Y R(x, t) � 0,
W S1(x, t) � 0, W S2(x, t) � 0, W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(II) U R1(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ with U R1(x∗, t∗) = 0 for some x∗ in [0,1], and
U S1(x, t) > 0, u1(x, t) � 0, U S2(x, t) � 0, U R2(x, t) � 0, u2(x, t) � 0, Y S (x, t) � 0, Y R(x, t) � 0,
W S1(x, t) � 0, W S2(x, t) � 0, W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(III) u1(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ with u1(x∗, t∗) = 0 for some x∗ in [0,1], and
U S1(x, t) > 0, U R1(x, t) > 0, U S2(x, t) � 0, U R2(x, t) � 0, u2(x, t) � 0, Y S (x, t) � 0, Y R(x, t) � 0,
W S1(x, t) � 0, W S2(x, t) � 0, W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(IV) U S2(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ with U S2(x∗, t∗) = 0 for some x∗ in [0,1], and
U S1(x, t) > 0, U R1(x, t) > 0, u1(x, t) > 0, U R2(x, t) � 0, u2(x, t) � 0, Y S (x, t) � 0, Y R(x, t) � 0,
W S1(x, t) � 0, W S2(x, t) � 0, W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(V) U R2(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ with U R2(x∗, t∗) = 0 for some x∗ in [0,1], and
U S1(x, t) > 0, U R1(x, t) > 0, u1(x, t) > 0, U S2(x, t) > 0, u2(x, t) � 0, Y S (x, t) � 0, Y R(x, t) � 0,
W S1(x, t) � 0, W S2(x, t) � 0, W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(VI) u2(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ with u2(x∗, t∗) = 0 for some x∗ in [0,1], and
U S1(x, t) > 0, U R1(x, t) > 0, u1(x, t) > 0, U S2(x, t) > 0, U R2(x, t) > 0, Y S (x, t) � 0, Y R(x, t) � 0,
W S1(x, t) � 0, W S2(x, t) � 0, W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(VII) Y S (x, t) > 0 for all 0 � x � 1, 0 � t < t∗ , for any t > t∗ sufficiently close to t∗ there
is a point (x̄, t̄) ∈ [0,1] × (t∗, t) such that Y S (x̄, t̄) < 0, and U S1(x, t) > 0, U R1(x, t) > 0,
u1(x, t) > 0, U S2(x, t) > 0, U R2(x, t) > 0, u2(x, t) > 0, Y R(x, t) � 0, W S1(x, t) � 0, W S2(x, t) � 0,
W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(VIII) Y R(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ , for any t > t∗ sufficiently close to t∗ there
is a point (x̄, t̄) ∈ [0,1] × (t∗, t) such that Y R(x̄, t̄) < 0, and U S1(x, t) > 0, U R1(x, t) > 0,
u1(x, t) > 0, U S2(x, t) > 0, U R2(x, t) > 0, u2(x, t) > 0, Y S (x, t) > 0, W S1(x, t) � 0, W S2(x, t) � 0,
W R1(x, t) � 0, W R2(x, t) � 0 on [0,1] × [0, t∗];

(IX) W S1(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ , for any t > t∗ sufficiently close to t∗ there is a
point (x̄, t̄) ∈ [0,1]× (t∗, t) such that W S1(x̄, t̄) < 0, and U S1(x, t) > 0, U R1(x, t) > 0, u1(x, t) > 0,
U S2(x, t) > 0, U R2(x, t) > 0, u2(x, t) > 0, Y S (x, t) > 0, Y R(x, t) > 0, W S2(x, t) � 0, W R1(x, t) � 0,
W R2(x, t) � 0 on [0,1] × [0, t∗];

(X) W S2(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ , for any t > t∗ sufficiently close to t∗ there is a
point (x̄, t̄) ∈ [0,1]× (t∗, t) such that W S2(x̄, t̄) < 0, and U S1(x, t) > 0, U R1(x, t) > 0, u1(x, t) > 0,
U S2(x, t) > 0, U R2(x, t) > 0, u2(x, t) > 0, Y S (x, t) > 0, Y R(x, t) > 0, W S1(x, t) > 0, W R1(x, t) � 0,
W R2(x, t) � 0 on [0,1] × [0, t∗];

(XI) W R1(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ , for any t > t∗ sufficiently close to t∗ there is a
point (x̄, t̄) ∈ [0,1]× (t∗, t) such that W R1(x̄, t̄) < 0, and U S1(x, t) > 0, U R1(x, t) > 0, u1(x, t) > 0,
U S2(x, t) > 0, U R2(x, t) > 0, u2(x, t) > 0, Y S (x, t) > 0, Y R(x, t) > 0, W S1(x, t) > 0, W S2(x, t) > 0,
W R2(x, t) � 0 on [0,1] × [0, t∗];

(XII) W R2(x, t) > 0 for all 0 � x � 1, 0 � t < t∗ , for any t > t∗ sufficiently close to t∗ there is a
point (x̄, t̄) ∈ [0,1]× (t∗, t) such that W R2(x̄, t̄) < 0, and U S1(x, t) > 0, U R1(x, t) > 0, u1(x, t) > 0,
U S2(x, t) > 0, U R2(x, t) > 0, u2(x, t) > 0, Y S (x, t) > 0, Y R(x, t) > 0, W S1(x, t) > 0, W S2(x, t) > 0,
W R1(x, t) > 0 on [0,1] × [0, t∗].

Let Ωt = (0,1) × (0, t]. In each case, we shall deduce a contradiction via various maximum princi-
ples as follows.

Suppose that the case I occurs. Then

Y S(x, t) = zS(x) − U S1(x, t) − U S2(x, t) � 0 in Ω̄t∗ ,

and
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d(U S1)xx − (U S1)t = −F S1

(
zS(x) − U S1 − U S2,

U S1

u1

)
u1(x, t)

= −F S1

(
Y S(x, t),

U S1(x, t)

u1(x, t)

)
u1(x, t) � 0 on Ωt∗ .

If 0 < x∗ < 1, then from the strong maximum principle (see [15, pp. 168–169, Theorem 2]), we obtain
that U S1(x, t) ≡ 0 on Ω̄t∗ which is impossible because U S1(x,0) = U 0

S1(x) > 0 on [0,1]. Thus x∗ = 0
or 1. If x∗ = 0, then (U S1)x(0, t∗) > 0 [15, p. 170, Theorem 3], contradicting the boundary condi-
tion (1.10). If x∗ = 1, that is, U S1(1, t∗) = 0, then (U S1)x(1, t∗) < 0 by the same theorem in [15]. How-
ever, from the boundary condition (U S1)x(1, t∗) + γ U S1(1, t∗) = 0, we deduce that (U S1)x(1, t∗) = 0,
a contradiction. The cases II, IV, V can be treated analogously.

Suppose the case III occurs. Then

U S1(x, t)

u1(x, t)
� Q min,S1,

U R1(x, t)

u1(x, t)
� Q min,R1 on Ωt∗ ,

and

d(u1)xx − (u1)t = −min

{
μS1

(
U S1(x, t)

u1(x, t)

)
,μR1

(
U R1(x, t)

u1(x, t)

)}
u1(x, t) � 0 on Ωt∗ .

From the strong maximum principle and Hopf boundary lemma, one obtains contradictions again.
The case VI can be treated analogously.

Suppose the case VII occurs. Then

d(Y S)xx − (Y S)t = [−d(U S1)xx + (U S1)t
] + [−d(U S2)xx + (U S2)t

]
= F S1

(
Y S(x, t),

U S1(x, t)

u1(x, t)

)
u1(x, t) + F S2

(
Y S(x, t),

U S2(x, t)

u2(x, t)

)
u2(x, t)

=
[

u1

1∫
0

∂ F S1

∂ S

(
τ Y S ,

U S1

u1

)
dτ + u2

1∫
0

∂ F S2

∂ S

(
τ Y S ,

U S2

u2

)
dτ

]
Y S on Ωt̄ .

Let h(x, t) � u1
∫ 1

0
∂ F S1
∂ S (τ Y S ,

U S1
u1

)dτ + u2
∫ 1

0
∂ F S2
∂ S (τ Y S ,

U S2
u2

)dτ . Then h(x, t) � 0 on Ωt̄ and Y S (x, t)
satisfies

d(Y S)xx − (Y S)t − h(x, t)Y S = 0 on Ωt̄ .

Suppose Y S (x, t) gets the minimum at the point P̃ = (x̃, t̃) on Ω̄t̄ . If 0 < x̃ < 1, then the maxi-
mum principle in [15, p. 172, Theorem 4] implies that Y S (x, t) ≡ Y S ( P̃ ) for t � t̃ and x ∈ [0,1],
which contradicts the boundary condition of U S1 and U S2 at x = 0. If x̃ = 0, then by the bound-
ary conditions (1.10), (Y S )x(0, t̃) = −S(0) − (U S1)x(0, t̃) − (U S2)x(0, t̃) = −S(0) < 0. Therefore, Y S (x, t̃)
is strictly decreasing as 0 < x � 1, contradicting that Y S attains a minimum at (0, t̃). If x̃ = 1,
then (Y S )x(1, t̃) = −S(0) − (U S1)x(1, t̃) − (U S2)x(1, t̃) = −S(0) + γ U S1(1, t̃) + γ U S2(1, t̃) � 0. But

0 > Y S (1, t̃) = S(0)

γ − U S1(1, t̃) − U S2(1, t̃), equivalently, −S(0) + γ U S1(1, t̃) + γ U S2(1, t̃) > 0, a con-
tradiction the above inequality. The case VIII can be treated analogously.

We consider the case IX. From the assumptions of case IX, we may assume that Y S (x, t) > 0 on
[0,1]× [0, t∗ +ε] with ε > 0 sufficiently small. We fix t∗ < t < t∗ +ε and the corresponding t̄ is given
in the assumptions. By calculation,
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d(W S1)xx − (W S1)t

= −F S1

(
Y S(x, t),

U S1(x, t)

u1(x, t)

)
u1(x, t) + Q min,S1 min

{
G S1

(
U S1

u1

)
W S1

u1
, G R1

(
U R1

u1

)
W R1

u1

}
u1

� −F S1

(
Y S(x, t),

U S1(x, t)

u1(x, t)

)
u1(x, t) + Q min,S1G S1

(
U S1

u1

)
W S1 on Ωt̄,

that is,

d(W S1)xx − (W S1)t − Q min,S1G S1

(
U S1

u1

)
W S1

� −F S1

(
Y S(x, t),

U S1(x, t)

u1(x, t)

)
u1(x, t) � 0 on Ωt̄,

with the boundary conditions

(W S1)x(0, t) = 0, (W S1)x(1, t) + γ W S1(1, t) = 0.

The assumptions for case IX imply that W S1(x, t) attains a negative minimum at a point P̃ = (x̃, t̃)
on Ω̄t̄ . If 0 < x̃ < 1, then due to h = −Q min,S1G S1(

U S1
u1

) < 0 by assumptions in case IX, a maximum
principle in [15, p. 174, Theorem 7] is applied to this case to conclude that

W S1(x, t) ≡ W S1( P̃ ) < 0 on Ω̄t̄

which leads to a contradiction that

W S1(x,0) = U 0
S1(x) − Q min,S1u0

1(x) > 0 on [0,1].

If x̃ = 0, then again using [15, p. 174, Theorem 7], we have (W S1)x(0, t̃) > 0, contradicting to
the boundary condition (W S1)x(0, t) = 0. If x̃ = 1, then [15, p. 174, Theorem 7] implies that
(W S1)x(1, t̃) < 0. But W S1(1, t̃) < 0, it follows from the boundary condition for W S1 that

(W S1)x(1, t̃) = −γ W S1(1, t̃) > 0,

a contradiction. The cases X, XI, XII can be treated analogously. Thus we complete the proof of Propo-
sition 3.1. �
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