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Abstract. A model of competition in the chemostat with an inhibitor is 
combined with a model of competition in the chemostat between plasmid- 
bearing and plasmid-free organism to produce a model that more closely 
approximates the way chemostat-like devices are used in biotechnology. The 
asymptotic behavior of the solutions of the resulting system of nonlinear 
differential equations is analyzed as a function of the relevant parameters. The 
techniques are those of dynamical systems although perturbation techniques 
are used when the parameter reflecting plasmid-loss is small. 

1 Introduction 

The chemostat is a model for the manufacture of products by genetically 
altered organisms. The new product is coded by the insertion of a plasmid, 
a piece of genetic material, into the cell. This genetic material is reproduced 
when the cell divides. The organism carrying the plasmid, the plasmid-bearing 
organism, is likely to be a lesser competitor than one without, the plasmid-free 
organism, because of the added load on its metabolic machinery. The survival 
of the organism without the plasmid, reduces the efficiency of the production 
process, and, if it is a sufficiently better competitor, eliminates the altered 
organisms from the chemostat, halting production. Unfortunately, a small 
fraction of the plasmids are lost during reproduction, introducing the plasmid- 
free organisms into the chemostat. To compensate for this, an additional piece 
of genetic material is added to the plasmid, one that codes for resistance to an 
inhibitor (an antibiotic) and the inhibitor is added to the feed bottle of the 
chemostat. A very complete description of the chemostat and various models 
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can be found in [-SW]; see also the survey articles [FS], [W]. Plasmid models 
are discussed in [SL], [SSD], [MEW], [LuoH], [RD], [Si], [SEa], [LH], 
[HW], and [HWW]. 

A mathematical model of competing plasmid-bearing and plasmid-free 
competition was proposed by [SLa] where a local analysis was given. A glo- 
bal analysis of the behavior of the model equations was given in [HWW]. 
Although the basic model was described by a system of three nonlinear 
differential equations, the three dimensional system was reduced to a two 
dimensional one through a conservation principle inherent in the chemostat. 
A model of the chemostat with an inhibitor was proposed by [-LH], and 
a computer simulation of various cases performed. A more complete math- 
ematical analysis was given in [-HW]. In this case the model consists of four 
nonlinear differential equations and the usual chemostat reduction still leaves 
a three dimensional system. That system, however, was competitive and the 
general theory of competitive systems could be applied. In particular the three 
dimensional Poincar6-Bendixson theory of Hirsch [H] and Smith [S1] could 
be applied. 

In this paper, we put the two models together. A chemostat model is 
proposed which includes (i) the plasmid and its loss and (ii) the inhibitor and 
its effect on one of the populations. The same reduction to a system of one 
dimension less occurs as above; however, the resulting three dimensional 
nonlinear system of ordinary differential equations is not competitive, so the 
theory for such systems is not helpful to the analysis. 

2 The model 

The model presented here is an amalgamation of two chemostat models, one 
concerning the competition of plasmid-bearing and plasmid-free organisms 
and one concerning the competition of two organisms in the presence of an 
inhibitor affecting one. We describe the two models separately before combin- 
ing them. 

Stephanopoulis and Lapidus proposed a model of plasmid-bearing, 
plasmid-free competition of the form 

S' = (S ~°) - S )D - f l  (S) x~ - f 2 ( S )  x2 
7 Y 

xrl = xI(fl(S)(1 - q) - D) (2.1) 

x'2 = x2 ( f2 (S )  - D) + q x l f l ( S )  

S(O) = So > O, xi(O) > O, i = l , 2  

where S is the limiting nutrient, xl is the plasmid-bearing organism, xz  is the 
plasmid-free organism, 7 is a yield constant and q is a parameter which reflects 
the loss of the plasmid. The function x~f~(S) is the nutrient uptake and growth 
is presumed proportional to uptake. S ¢°) is the input concentration of the 
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nutrient and D is the washout rate; S (°) and D are under the control of the 
experimenter. The system (2.1) can be reduced to a two dimensional system 
that has no limit cycles [HWW],  and all solutions tend to equilibria. A typical 
f ( S )  would be of the form miS/(ai + S) but other functions are also important. 
Note that the cell that looses the plasmid (x0 reappears as an x2. This small 
change from the standard chemostat destroys the strict competitiveness of the 
system. 

Lenski and Hattingh [LH] considered the effect of an inhibitor on two 
populations and proposed a model of the form (ignoring the yield constant) 

S' = (S (°) - S)D m l X l S  mzxzS  e_Up 
al + S a2 + S 

(_ ls ) 
X ' l = X a \ a l + S  D (2.2) 

, ( m2S e-"P--D) 
x2 = x2 \ae  + S / 

p, = (p(O) _ p)D 6Xlp  
K + p  

S(0 )>0 ,  x i (0)>0 ,  p ( 0 ) > 0 ,  i = 1 , 2 .  

The parameters are the same as before but a new substance, the inhibitor, 
denoted by p, appears. The inhibitor is input into the chemostat at a constant 
concentration and at the same flow rate as the nutrient. The inhibitor is taken 
up by the xl population without harm (in a Michaels Menten way) but the 
presence of the inhibitor affects the growth rate of the population x2. 

As noted in the introduction, we wish to combine the two - in particular, 
the effect of the inhibitor and the plasmid loss. The model takes the form 

S' = (S ~°) - S)D - f l  (S) x~ _ e_,p  f2(S ) x._~2 . 
7 Y 

x'l = Xl [(1 - q)f l  (S) - D] (2.3) 

X~2 = x2[e-UP f2(S  ) -- D] + qfa(S)xa 

p, (p(O)_ p)D 6p 
K + p  

S(O) >= O, p(O) >= O, xi(O) > O, i = 1 , 2 ,  

with J~(S) = ,,,s ~q-?;X, i = 1, 2. 
If, in (2.3), p~O) = p(0) = 0, then p(t) =- 0 and (2.3) reduces to (2.1). If q = 0, 

(2.3) reduces to (2.2). Moreover, if both sets of conditions hold, then (2.3) 
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becomes  the " s tandard"  chemos ta t  

X1 
S' = (S (°) - S)D - f l ( S )  T - f z ( S )  

x'l = x ,  [fa(S) - D] (2.4) 

t 
xz  = x2 [ f z ( S )  - D] 

S(O) > O, xi(O) > O, i = 1 , 2 .  

miS 
f i (S)  - i = 1 , 2 .  

a i +  S '  

The behav ior  of  (2.4) m a y  be summar ized  as follows [SW]:  
i) If  mi <= D, limt-.ooxi(t) = 0, i = 1, 2 independent  of compet i t ion  

a.D > 
ii) I f m i  > D, define 2i = ~ .  If 2i = S (°), limt-~ooXi(t) = O, i = 1,2, inde- 

pendent  of  compet i t ion.  
iii) If  0 < 21 < 22 < S (°), then 

limt-+ ~ xl  (t) = 21 

l i m t - ~ x 2 ( t )  = 0 . 

It  is convenient  to scale the var iables  in (2.2) as follows: 

s(O), p(O), 7S(O), 

mi ai 
= Dt,  rhi = - ~ ,  8i = ,~a), 

13 5, v 

8 = Y3S(°) K - K 
D ' p(O) 

The new system (dropping the bars) becomes  

S' = 1 - S - f t ( S ) x l  - e - U P f 2 ( S ) x  2 

x'~ = xl  [(1 - q ) f t ( S )  - 1] (2.5) 

x'2 = x2[e -UPf2(S)  - 1] + q f l ( X ) x 1  

6p 
p ' = l - p  - - X  1 . 

K + p  

The pa ramete r s  have changed their meaning  but  the system is m a t h e m a t -  
ically cleaner. This is the system we investigate. 
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3 Simplification 

Define Z ( t )  = 1 - x , ( t )  - x2 ( t )  - S( t ) .  Then the system (2.5) m a y  be wri t ten 

S '  = - S, 

x'l = x l [ (1  - q)f l (1  - xl  - x2 - S)  - 1] (3.1) 

x'2 = x 2 [ e - U P f 2 ( 1  - x l  - -  x 2  - -  z ~ , )  - -  1] + q x ~ f l ( 1  - x ,  - x 2 - S )  

6p  
p ' =  1 - p - - - x  I . 

K + p  

Clearly l i m t ~ Z ( t ) =  0 and the convergence is exponential .  One  m a y  
consider  the last three equat ions with X ( t ) =  Z ( O ) e  - t  as an asymptot ica l ly  
a u t o n o m o u s  system. The  limiting system then is 

x'l = xl  [(1 - q)fl(1 - x l  - x2) - 1] 

X~ = x2[-e-~Pf2(1 -- x 1 -- x2) - -  1 1  + q x l A ( 1  - -  x ,  - -  x z )  
(3.2) 

6p  
p ' - =  1 - p  - - x ~  

K + p  

xi(O) > O, p(O) >= O, 0 < x l  + x2  < 1 . 

The region F = {(Xx, x2 ,p ) [O  < x l  + x 2  < 1, 1 > p > 0} is positively in- 
variant.  The condit ions for the dynamics  of (3.2) to be the same as that  of (3.1) 
is given in the work  of Thieme [Th l ] .  Clearly the global a t t rac tor  for (3.1) lies 
in the hyperp lane  X = 0, where (3.2) holds. 

Fo r  the p rob lem to be interesting it is necessary that  the x~-popula t ion  
survive. We have a l ready noted that  we m a y  assume that  0 < p( t )  < 1. Solu- 
t ions of  (3.2) satisfy 

x'l = x , [ (1  - q)fl(1 - x l  - x2) - -  1] (3.3) 

x2' => x 2 [ e - ~ ' f 2 ( 1  - X l  - x2)  - 1] 

This system m a y  be compared  to the compet i t ive  system 

z~ = zl [-(1 -- q)f l(1 -- z I - -  Z 2 )  - -  1] (3.4) 

Z'2 = Z z [ e - U  f 2 ( 1  - -  Zl - -  z2) - -  1] 

(3.4) m a y  be viewed as a chemosta t  with ml replaced by ( 1 -  q ) m l  and 
m2 replaced by e - " m 2 .  Thus  for zl to survive in the chemostat ,  one needs 

a l  m l ( 1 - - q ) >  1 and  0 < m l ( l _ q ) _  1 < 1. As one would  expect for q large 
(1 >q_-> 1 -  1/ml) nothing interesting happens  in (3.4). Similarly, if 

al 
q < 1 - -  1 / m l  but  ml(~-o)-~ > 1, Zx(t) also tends to zero. This last condi t ion 
can be expressed as (1 - q)fi(1) < 1. 

Since the system (3.4) is competi t ive,  it is a generalized K a m k e  system 
with the order  being that  generated by using the four th  quadran t  in the 
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p lane as a cone. Specifically, if limt-~o~zl(t) = 0, then l imt-,~Xl(t)  = 0. [SW, 
Appendix  B] or  [$3]. Hence  we shall assume that  

(1 - - q ) f ~ ( 1 ) >  1 .  (3.5) 

(Note  this encompasses  bo th  conditions.) W h a t  happens  to x2(t) 
when l i m t _ . ~ x l ( t ) = 0  similarly depends on whether  f 2 ( 1 ) < e  ~. If  so, 
limt-.oo Xz(t) = 0 and both  compet i tors  wash out of the chemostat .  If  f2(1) > e", 
then limt-.®x2(t) = x* > 0. Of  course, limt-~ oo p(t) = 1 when l im t~ox l ( t )  = 0. 
F o r  the remainder  of the paper ,  (3.5) will be a s tandard  hypothesis.  

4 Principal results 

The system (3.2) has a rest point  at  E0 = (0, 0, 1) where bo th  compet i to rs  wash 
out  of the system. The  condi t ion (3.5) makes  Eo unstable.  There  can be a rest 
poin t  E~ = (0, x*, 1) where x~ is a posit ive root  of 

This can be writ ten as 
e-U f2(1 - z) = 1 . 

x* = 1 - f2 -1 (e u) 

or  in terms of the scaled system pa ramete r s  as 

X* = m2e-t~ -- (1 + a2) 

m2 e -u  -- 1 

Thus,  f2(1) > e u guarantees  the existence of El;  the reversal of the in- 
equali ty precludes the existence of El.  I f f 2 ( 1 ) >  e ", the stable manifold  of 
Eo consists of the p-axis (the set x l  = x2 = 0). All trajectories in this set except 
the rest poin t  are unbounded .  Iff2(1) < e ~, the stable manifold  of Eo lies the 
X z - p  plane (the set Xl = 0). Again, all non-tr ivial  orbi ts  in the positive 
quad ran t  of this plane are unbounded .  The  But le r -McGehee  T h e o r e m  
[SW, p. 12] then insures that  no t ra jectory with xi(O) > 0, i = 1, 2, has Eo as an 
omega  limit point.  

Define 2", 2* by 

1 
A(2*)  -- 1 -- q '  f2(2") = e ~' • 

Since popu la t ion  xa carries the p lasmid (and manufac tures  the product) ,  
the following theorem cor responds  to the extinction of the p lasmid-bear ing  
organism. 

Theorem 4.1 Let  (3.5) hold and suppose that f2(1) > e u. I f 2 *  < 2", then E~ is 
globally asymptotically stable ( for F). 
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Proof .  Divide the relevant  por t ion  of the positive cone into three disjoint 
regions: 

f2 = { ( x t , x z ,  p)l 1 - Xl - x2 = 2"},  

~ +  = { ( X 1 ,  X 2 ,  P) I  1 - x l  - x2 > 2"},  

= { ( x , , X e , p ) l  1 - x l  - x 2  < 

In  the region ~2 +, x ' x ( t ) >  0 for any trajectory. Hence,  if a t ra jectory 
7(0  = ( x l ( t ) , x 2 ( t ) , p ( t ) )  remains  in Q+ (a bounded  region) then 
lim,_ oo xl  (t) = c > 0. The  quant i ty  in square brackets  on the right hand  side of 
the x l - equa t ion  in (3.2) is integrable (in t) since the above limit exists and is 
uniformly cont inuous  (since thef~'s are cont inuously  differentiable), and so has 
limit zero as t - -+ov .  Thus,  lim~_~oox'l(t)=0 or l i m , - + o o [ 1 - X l ( t ) -  
Xz(t)] = 2 * .  One  always has p ' < l - p  and if x l  (t) ---, O, then one has 
p' > 1 - e - p for every e > 0. Hence,  limt-+~op(t) = 1. We seek to show that  
under  the assumpt ion  that  the t rajectory ~ remains in ~?+ for all large time, 
x2(t) is unbounded ,  and  thus reach a contradict ion.  

Since 2* < 21, f2(21) > f2 ( )~* )  --= e u. Hence, for 5 > 0 and sufficiently small, 

f2(2~ -- 5) > e "(1+~) 

Fix such an 5 > 0. Fo r  t large, 1 - x l ( t )  --  Xz( t )  > R~ - 5 and p(t)  < 1 + e. 
Hence for t sufficiently large 

X'z(t) = x z [ e - U P f 2 ( 1  -- x l  - -  X 2 )  - -  1] + q f1(1 - xa -- x2)xl 

> x2[e-U¢l+*) f2 (2*  -- 5) --  1] 

=> ~X 2 

where e > 0. Thus  x2(t) is unbounded ,  con t ra ry  to the assumpt ion  that  the 
t ra jectory lies in ~2 + for all future time. 

Suppose  a t ra jectory lies in f2- for all t > to. Then  X ' l ( t ) <  0 and 
lim,_~oXl(t) = c > 0 (since the wedge xl  > 0, x z  > O, is posit ively invariant). 
If  c > 0 ,  then one argues as above  that  l imt+oox ' t ( t )=0  or 
lim,-,oo [1 - x , ( t )  - Xz(t)] = 2~ > 23. Previous  a rguments  imply that  x2(t) is 
unbounded ,  a contradict ion.  Thus,  every omega  limit point  of a t ra jectory that  
remains  in f2-  is of the form (0, 22, !3). The only invar iant  set in the interior of 
this face is (0, x*,  1) and the theorem is established for such trajectories. (We 
remind the reader  that  we have already noted the Eo cannot  be in the omega  
limit set.) 

Suppose  now that  a t rajectory intersects the surface ~ at  a point  
(21, 22,/5) = (xl (to), x2(to) ,p(to)) .  The ou tward  unit no rmal  to this hyperplane  

' 1 is ~ (  , 1,0). The project ion of the vector  field onto  the no rma l  at a point  of 

f2 is (since x'l = 0 there) 

X'2(to) = 22 [e - UPf2 (1 - -  2 1 ,  - -  2 2 )  - -  1] > 22[e-Uf2(2 *) -- 1] 

+ q 2 1 f l ( 1  -- 21 - -  22) > 0 
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since 2* < 2*. Therefore, the trajectory crosses f2 f rom O + to O -  at every 
point  of  f2. Hence, it remains in f2- for t _-> to. This completes the proof. 

T h e o r e m  4.2 A s s u m e  (3.5) holds and that  f2(1) < e u. T h e n  (3.2) has a unique 
posi t ive  equilibrium. 

P r o o f  The p roof  is a computa t ion  to show that  the right hand  side of  (3.2) set 
equal to zero has a positive solution; that  is, we find a roo t  of  

(1 - q ) f l ( 1  - x 1  - -  X 2 )  - -  1 = 0 

xz[e-UPf2(1  --  x 1 - -  X2)  - -  1] "~ q f l ( 1  --  Xl -- X2)Xl = 0 (4.1) 

6p 
1 - - p - - - - X 1  = 0  

k + p  

The first equat ion says that  a solution must  satisfy 

1 - x l  - x2 = 2* (4.2) 

where 2* was defined in (4.1). Moreover ,  one can solve the third equat ion for 
p in terms of xl  as 

p = g ( x l )  (4.3) 

with g(0) -- 1 and g'(xa) < 0 for xa > 0. (g is given by the quadrat ic  formula.) 
One  needs then to find a positive solution x = x* of  F ( x )  = 0 where 

F ( x )  = [e-ug~X)f2(2*) --  1] [1 -- x -- 2*] + q f l ( 2 * ) x  
Since 

F(0) = [e-Uf2(2*) -- 1] [1 -- 2 , ] ,  

then F(0) < 0 because f2(1) < e". Moreover ,  

F(1 - 2~') = qf~(2*)(1 - 2*) > 0 .  

Hence, there is a roo t  x* between zero and 1 - 2* by continuity.  We seek to 
show that  it is unique. 

Such a root  defines p by p = g(x*)  and x* = 1 -  x * -  2* > 0. One  
computes  

r ' ( x )  = - [e-~O(x)fz(2*) - 1] + [1 - x - 2 , ] -  

• [ --  e-Ug(:°f2(2*)#g'(x)]  + q f~(2*).  

Using the equation,  at a rest point,  yields 

x~ [ 1 - e -  us (xT)f2 (2,)]  = q f l  (2*)x*. 
Hence 

q f l ( 2 * )  (1 -- 2*) -- (1 -- 2* -- x*) f2(2*)e-U°~x?)pg ' (x*)  > 0 
F ' ( x * )  - 1 - 2 *  - x* 

and both  terms are positive (g ' (x)  < 0). 
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f2(1) < e ~ f2(1) > e" 

fl(1) < ~ E o is a global attractor E, is a global attractor 

fl(1) > ~ E c exists 1 > 2* > 2* > 0 -- E c exists 

1 > 2* > 2* > 0 --  E 1 is a global attractor. 

Essent ia l ly ,  the same  p ro o f  es tabl ishes  the  fo l lowing  result .  

T h e o r e m  4.3 A s s u m e  (3.5) h o l d s  a n d  t h a t  1 > 2 ,  > 2* .  T h e n  (3.2) h a s  a u n i q u e  

p o s i t i v e  e q u i l i b r i u m .  

P r o o f .  W e  proceed  as a b o v e  except  n o w  one  a rgues  tha t  

F(0)  = [e-Uf2(2  *) - 1] [1 - 2*]  < e - U f 2 ( ) c * )  - 1 = 0 

since f2 is m o n o t o n e  a n d  2* < 2*. T a b l e  4.1 s u m m a r i z e s  the  resul ts  so far. 

Let  Ec  = ( X l o  X2c, Pc) = ( X l c ( q ) ,  Xzc (q ) ,  Pc(q))  be the  i n t e r i o r  rest  po in t .  The  
J a c o b i a n  a t  Ec takes  the  form 

m l l  m12 0 1 
J ~ m 2 1  m 2 2  m 2 3  ) m31 0 m33 

where  

m l l  = -- x lcf l ' (1  -- X l c  - -  x2c)(1 --  q) 

m 1 2  = r o l l  

m e 1  = - e - ~ ' P ° x z c f ~ ( 1  - -  x t c  - xec )  + q f l ( 1  - X l c  - -  x 2 c )  

- q f ~ ( 1  - -  X l c  - X 2 c ) X l c  

m 2 2  = - q f ~ ( 1  - -  X t c  - X z c ) X l ~  - -  e - l ' P c x z c f ~ ( 1  - x l c  - x2c) 

- q x l c f ~ ( 1  - -  x l c  - -  x 2 c )  

m e 3  = - I ~ e - " P c f 2 ( 1  - -  Xxc  - -  x 2 c ) X z c  

6pc  
m 3 1  - -  

K + P c  

6 K  
m 3 3  ~ - -  1 - -  - -  (K + pc) i xlc  

m l l  < 0, m22 < 0, m23 < 0, m31 < 0 a n d  m33 < 0.  
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The characteristic polynomial takes the form (after a long and tedious 
computation) 

23 -1- B 1 22 --t- B22 + B3 = 0 
where 

We note that 

B 1 = - m l l  - m 2 2  - m 3 3  > 0 

B 2 = m l l m 2 2  - -  m 1 2 m 2 1  -t- m l l m 3 3  -}- m 2 2 m 3 3  

Ba = --  m 3 3 ( m l ~ m 2 2  --  m~2m2~) - -  m12m23m31 

m 1 2 m 2 2 - - m 1 2 m 2 1  = - - m l l ( - -  m 2 2 - k -  m 2 1  ) > 0 .  

To see this, we rewrite the bracket in terms of the original Jacobian entries to 
find that 

m21 - m22 = e -UP° f~(1  - xac - Xzc)X2c + q f1(1 - x~c - x2~) 

- q f ~ ( 1  - x l c  - -  X z 3 X l ~  + qfl(1 -- xl~ - x2~)Xlc  

+ e-UPcfj(1 -- Xlc  - -  x2c) x2~ + q x l c f ~ ( 1  - -  Xlc  - -  x2~). 

Since the third and the last terms cancel, m21 - -  m22 > 0. This has the 
consequence that B 2 > 0 and B3 > 0. Hence, one may apply the Routh 
Hurwitz criterion [C, p. 158] to conclude that all of the roots have negative 
real part if and only if B 1 B 2  > B3 .  

Theorem 4.4 S u p p o s e  t h a t  E~ ex i s t s .  I f  B 1 B  2 > B3,  E~ is a local  a t t r a c t o r .  I f  

B 1 B 2  < B3,  E~ is u n s t a b l e  w i t h  a one  d i m e n s i o n a l  s tab le  man i fo ld .  

P r o o f  Everything has been shown except the dimension of the stable mani- 
fold. Since the determinant of J (evaluated at E¢) is negative (expand along the 
last row to see this) there is always a negative eigenvalue. 

The B's can be expressed in terms of the original parameters of the system 
and the location of the rest point. Pc and x2¢ can be expressed in terms of 
x~c quite simply, but finding xl~ presents a challenge. It would most likely 
have to be done numerically. 

5 The case of small q 

If q is small, one anticipates that the behavior of the system (2.5) should be 
close to that of the chemostat with an inhibitor, but without the plasmid loss 
term. If (2.2) is reduced and scaled in a similar way to the reduction and scaling 
of (2.5) which produced (3.2), one obtains 

X i  = X l  [ f 1 ( 1  - -  X l  - -  X2)  - -  1] 

x2  = x 2 [ e - U P  f 2 ( 1  - x l  - x2) - 1] (5.1) 

6p 
p ' =  1 - p  - - x a .  

K + p  

(5.1) was investigated in [HW].  
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The most interesting behavior for (5.1) was the existence of a stable limit 
cycle. Can that happen with (3.2)? That it can for small q is a standard result in 
perturbation theory ([CL], p. 352) provided one assumes the limit cycle for 
(5.1) is hyperbolic (has all but one multiplier inside the unit circle.) More 
information is contained in a theorem of Smith [$2], a special case of which is 
restated here for system (3.2) and (5.1). 

Theorem 5.1 Suppose y(t) = ()~l(t),)¢2(t), fi(t)) is a periodic solution of(5.1) of 
period w which has two characteristic multipliers inside the unit circle. Then 
there is an qo > 0 and a neighborhood W of the orbit of y, F, such that (3.2) has 
a periodic solution x(t, q) = (xa (t), x2 (t), p(t)) in W of period co*(q), [q] =< qo, 
x(t,O) = y(t), co*(0) = co, x and w continuous in q and in t, teR, Iq] <- qo. More- 
over x(t, q) is the unique periodic solution of(3.2) in W and it is asymptotically 
orbitally stable with asymptotic phase. I f  M is any compact set in the basin of 
attraction ofF, B(F), then there exists a positive number ql = ql(M) < eo such 
that if S(t) is a solution of (3.2) with 8o = 8(0) e M, 0 < q < ql, then 

limt~®lS(t) - x(t + Y,q)l = 0 
for some y = 7(Zo). 

The condition for the existence of an asymptotically stable periodic solu- 
tion of (5.1) were given in [HW]. That the orbit is hyperbolic is a generic 
assumption. This theorem sets the tone for this section; one assumes the 
behavior of (5.1) and deduces a result for (3.2) for q small. 

The possibility of limit cycles for (3.2) raises an interesting question for the 
effectiveness of production by genetically altered organisms. Is production 
higher with a limit cycle or with a stable equilibrium state? (We assume 
"production" is equivalent to average amount of plasmid bearing organisms.) 

There is a corresponding theorem for rest points not formally stated but 
following from [$2] which we will denote as Theorem (5.1)'. The assumption is 
that the roots of the variational matrix at the rest point have negative real 
parts. We will be able to state slightly more than Theorem (5.1)' when we 
know in addition that the rest point is the global attractor (of the interior in 
our case). 

If Ec is hyperbolic and globally asymptotically stable for solutions of (5.1) 
in the interior of F (defined in Sect. 3), then it follows that the system (3.2) has 
a rest point, which we denote Ec(q), that is (locally) asymptotically stable. 
Using Theorem (5.1)' above and properties of global attractors, one can say 
more. 

Theorem 5.2 Suppose that all rest points of (5.1) are hyperbolic and Ec is 
a 91obal attractor of all solutions of (5.1) in the interior of F. Then, for 
q sufficiently small, Ec(q) is a 91obal attractor of all solutions of (3.2) in the 
interior of F. 

Proof Consider the region G in the open positive octant on the origin side of 
the plane xl + x2 = 1. Suppose that (3.2) is uniformly persistent for q > 0. 
Since all solutions of (3.2) eventually lie in the bounded set F, (3.2) has a global 
attractor Aq for every q. By Theorem 3.2 of [HW], the flow restricted to the 
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open region G has a global attractor in that region, which to conserve 
notation we continue to call Aq. (The system is dissipative, the rest points are 
hyperbolic, and there are no cycles on the boundary. The above cited theorem 
also had a hypothesis that the boundary was invariant but this is not used in 
the proof.) Let B(Ec) be a ball about Ec which lies in the positive cone. Let M of 
the hypothesis of Theorem (5.1)' be the closure of B(E~) and qo the correspond- 
ing value given in the conclusion. Then, for 0 < q < qo, every trajectory with 
initial conditions in M, tends to E~(q). Let U be an open subset of M contain- 
ing Ec. Since the global attractor is upper semi-continuous, there is a qx, 
0 < ql < qo, such that Aq c U, 0 < q < ql- For  0 < q < ql, every trajectory in 
the region is asymptotic to Aq c U c M intersects M, and hence, by (5.1)' 
converges to Ec(q). (This of course includes points of Aq which makes E~(q) 
a global attractor of the interior of G). 

To complete the proof one must show that the system is uniformly 
persistent. 

Lemma 5.3 I f  all rest points for (3.2) are hyperbolic, (3.2) is uniformly persistent 
for sufficiently small q >= O. 

Proof. The statement of the lemma holds for q = 0 hypothesis. If E1 
• exists ( f2(1)> e"), for E~ to exist for q = 0, it must be the case (assuming 

hyperbolicity) that f2(1) > e" and 0 < 2" < 2* < 1, [HW].  (The reader is 
cautioned that there is a difference of notation between this paper and 
[HW].) As a consequence, when q = 0, the rest point E1 is an attractor in 
the xl = 0 plane and repels the interior of the cone. The same remains true 
for q sufficiently small. E0 is a repeller for all q. 

Let X1 = {(Xl, x2, p) I0 < p < 1, xi > O, i = 1, 2, xl  + x2 < 1} and let 
X2 be the boundary in R 3. X 1 is forward invariant, X2 is compact, and only 
the plane xl  = 0 is invariant in X2. Two rest points, Eo and El, are in X2 and 
each is a weak uniform repeller for X1 under the current conditions (with 
q sufficiently small). The two rest points can be taken as the acyclic cover and 
now Theorem 4.5 of [Th2] completes the proof of the lemma. 

If E1 does not exist ( f2(1)< e"), then the rest point Eo has a two- 
dimensional stable manifold (the xl = 0 plane) and a one-dimensional un- 
stable manifold which points into the cone. Thus, using the same X1 and 
X2 as above, Eo is a uniform weak repeller of X~. The lemma follows as above. 

6 Discussion 

This paper considers a chemostat model which incorporates features of a basic 
plasmid model of Stephanopoulis and Lapidus [SLa] and a model of the 
chemostat with an inhibitor proposed by Lenski and Hattingh [LH].  The key 
parameters differentiating the two are the proportion of plasmids lost in 
reproduction q, not present in the model in [LH]  and the input inhibitor 
concentration p~O) not present in [SLa]. (When p~O) = 0 we also set the initial 
concentration of the inhibitor to zero to avoid any consideration whatever.) 
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A mathematical analysis of the model in [LH]  can be found in [HW] while 
the global analysis of the model of [SLa] in the case of Monod dynamics can 
be found in [HWW] and in the case of Andrews dynamics in [LuoH].  

Plasmid models are important since products are manufactured by geneti- 
cally altered organism but there is a tendency of the host cells to loose the 
plasmid and revert to their unaltered phenotype [RD] (the plasmid-free cells 
in the title of this paper.) One anticipates that the altered organism is a poorer 
competitor since growth and primary metabolism may be suppressed due to 
the artificially forced production [KR].  Simply, one anticipates that the 
plasmid-free organism is a better competitor, and, without the inhibitor, it 
might dominate the chemostat. This paper has focused on determining the 
asymptotic behavior as a function of the parameters of the organisms and the 
alteration of the parameters by the inhibitor. The analysis indicates where it is 
reasonable to operate the chemostat. 

The mathematics is interesting because the planar techniques used in 
[-HWW] are no longer available since the new system is inherently three 
dimensional. The properties of competitive three dimensional systems used in 
[HW] are no longer available because a positive value of q destroys the 
competitive nature of the problem. Although the global analysis is not 
complete, we have been able to give a global analysis for a significant portion 
of the parameter space. Moreover, when q is small, we have used perturbation 
techniques to show that the global results in [HW] carry over. 

The nutrient itself can act as an inhibitor at high concentrations. This has 
been studied in the context of a plasmid model in [LuoH]  and represents an 
entirely different phenomenon than that discussed here. In mathematical 
terms accounting for inhibition by the nutrient means changing the functional 
response rather than adding an additional substance to the model. Of course, 
one could do both and provide a model with double inhibition. 

As noted above, when q is small, the results of [HW] apply. The most 
interesting of these was the presence of limit cycles for an open region of the 
parameter space. In this case it would be interesting to determine whether the 
mean concentration of plasmid-carrying cells in higher or lower than the case 
with a stable interior rest point. Might higher production be achieved in an 
oscillating rather than a steady state fermenter? 

Finally we note that the perturbation results indicate that systems of 
differential equations sufficiently close to competitive ones have similar prop- 
erties. Is there a general theorem in this direction? 
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