Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat with inhibitions

Ting-Kung Luo*, Sze-Bi Hsu*
Institute of Applied Mathematics, National Tsing-Hua University, Hsinchu, Taiwan, 30043, R.O.C.

Received 26 April 1994; received in revised form 29 December 1994

Abstract

A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat was proposed in a paper of Stephanopoulis and Lapidus. The model was in the form of a system of nonlinear ordinary differential equations. Such models were relevant to commercial production by genetically altered organisms in continuous culture. The analysis there was local. The rigorous global analysis was done in a paper of Hsu, Waltman and Wolkowicz in the case of the uninhibited specific growth rates. This paper provides a mathematically rigorous analysis of the global asymptotic behavior of the governing equations in the cases of combinations of inhibited and uninhibited specific growth rates.

Key words: Chemostat - Competition - Plasmid-bearing - Qualitative analysis

1 Introduction

Genetically altered organisms are frequently used to produce foreign products. The alteration is accomplished by the introduction of a recombinant DNA into the cell in the form of a plasmid. The load imposed by production can result in the genetically altered (the plasmid-bearing) organism being a less able competitor than the plasmid-free (or "wild type") organism. Unfortunately, the plasmid can be lost in the reproductive process. Since commercial production can take place on a scale of many generations, it is possible for the plasmid-free organism to take over the culture. In pharmaceuticals, changes in the plasmid could cause changes in the amino acid sequence of a protein product or changes in the background from which it must be purified. It is vital to produce a uniform product if it is a drug intended

[^0]for human use. Since commercial production of products manufactured by genetically altered organisms is a reality, understanding the competition between the plasmid-bearing organisms and plasmid-free organsims in a mathematically rigorous fashion seems important.

The chemostat is a common model of waste-treatment and a model for commerical production of the fermentation process. It is important in ecology because the parameters are readily measurable, and thus, the mathematical results are readily testable. The following model of competition between plasmid-bearing and plasmid-free organisms in a chemostat based on the mass balance of the organisms was proposed by Ryder and Dibiasio [RD]

$$
\begin{align*}
\dot{S} & =\left(S^{(0)}-S\right) D-\sigma_{1}(S) x_{1}-\sigma_{2}(S) x_{2} \\
\dot{x}_{1} & =x_{1}\left(f_{1}(S)(1-q)-D\right) \tag{1.1}\\
\dot{x}_{2} & =x_{2}\left(f_{2}(S)-D\right)+q x_{1} f_{1}(S) \\
S(0) & =S_{0} \geqq 0, \quad x_{i}(0)>0, \quad i=1,2 .
\end{align*}
$$

$S(t)$ is the nutrient concentration at time $t, x_{1}(t)$ is the concentration of plasmid-bearing organisms at time $t, x_{2}(t)$ is the concentration of plasmid-free organisms at time t. The consumption rates and the specific growth rates of plasmid-bearing and plasmid-free organisms are $\sigma_{1}, \sigma_{2}, f_{1}$ and f_{2}, respectively. The probability that a plasmid is lost in reproduction is represented by q, and hence

$$
0<q<1
$$

The operation parameters are $S^{(0)}$, the input concentration of the nutrient and D, the washout rate of the chemostat.

Assuming that $\sigma_{1}(S)=\sigma_{2}(S)$, Ryder and Dibiasio [RD] presented a local stability analysis of the rest points for very general growth kinetics. Based on this analysis they suggest an operational strategy involving feedback control to enhance plasmid stability in the systems.

Instead assuming that $\sigma_{1}(S)=\sigma_{2}(S)$, Stephanopoulis and Lapidus [SL] studied the following case:

$$
\sigma_{i}(S)=\frac{f_{i}(S)}{\gamma} \quad \text { for } i=1,2
$$

where γ is the yield constant (assumed to be the same for both populations). They used very clever index theory arguments to determine the steady portraits based on the shape mutual disposition of the specific growth rate curves. They did an exhaustive analysis for the two most common growth models, the Monod model (also referred to as Michaelis-Menten kinetics or Holling type II) for uninhibited growth

$$
\frac{\mu_{\max } S}{K_{s}+S}
$$

and the Andrews model for inhibited growth

$$
\frac{\mu_{\max } S}{K_{s}+S+S^{2} / K_{1}}
$$

Their analysis was local. In the paper of Hsu, Waltman and Wolkowicz [HWW], the authors provide a rigorous global analysis for the case that the specific growth rates $f_{1}(S), f_{2}(S)$ are both monotone, i.e., uninhibited.

In this paper we deal with general response functions that are uninhibited and inhibited within the range of interest. The response function $f(S)$ is called uninhibited, if it satisfies the following conditions:
i) $f(S)$ is continuously differentiable;
ii) $f(0)=0$;
iii) $f(S)>0$ for all $0<S \leqq S^{(0)}$;
iv) $f^{\prime}(S)>0$ for all $0<S \leqq S^{(0)}$.

On the other hand, the response function $f(S)$ is called inhibited, if it satisfies the following conditions:
i) $f(S)$ is continuously differentiable;
ii) $f(0)=0$;
iii) $f(S)>0$ for all $0<S \leqq S^{(0)}$;
iv) there exists $\rho\left(0<\rho<\bar{S}^{(0)}\right)$ such that $f^{\prime}(S)>0$ for all $0<S<\rho$; $f^{\prime}(S)<0$ for all $\rho<S<S^{(0)}$.

By measuring concentrations of nutrient in units of $S^{(0)}$, time in units of $1 / D, x_{i}$ in units of $1 / \gamma S^{(0)}$ and each f_{i} in units of $1 / D$, the number of parameters can be reduced and the equations (1.1) becomes

$$
\begin{align*}
\dot{S} & =1-S-x_{1} f_{1}(S)-x_{2} f_{2}(S) \\
\dot{x}_{1} & =x_{1}\left(f_{1}(S)(1-q)-1\right) \tag{1.2}\\
\dot{x}_{2} & =x_{2}\left(f_{2}(S)-1\right)+q x_{1} f_{1}(S) \\
S(0) & =S_{0} \geqq 0, \quad x_{i}(0)>0, \quad i=1,2
\end{align*}
$$

The operating parameters have been scaled out, or, from another point of view, such parameters as $\mu_{\text {max }}, K_{s}$ and K_{I} are measured relative to the operating environments. (The parameters have changed their biological meaning.) This is mathematically convenient although to be useful, the results must be returned to biologically meaningful units.

Remark 1.1. It is easy to show $\limsup _{t \rightarrow \infty} S(t) \leqq 1$. So the response function $f_{i}(S), i=1,2$ in (1.2) is a uninhibited function or an inhibited function depending on $\rho>S^{(0)}$ or $\rho<S^{(0)}$ respectively where $S^{(0)}$ is equal to 1 .

2 Preliminaries

Let $\Sigma(t)=1-S(t)-x_{1}(t)-x_{2}(t)$. The system (1.2) may be written

$$
\begin{align*}
\dot{\Sigma} & =-\Sigma \\
\dot{S} & =1-S-x_{1} f_{1}(S)-\left(1-\Sigma-S-x_{1}\right) f_{1}(S) \tag{2.1}\\
\dot{x}_{1} & =x_{1}\left(f_{1}(S)(1-q)-1\right)
\end{align*}
$$

Clearly $\lim _{t \rightarrow \infty} \Sigma(t)=0$ and so the omega limit set of solution of (1.2) is contained in the set

$$
\Lambda=\left\{\left(S, x_{1}, x_{2}\right) \mid S \geqq 0, x_{1} \geqq 0, x_{2} \geqq 0, \Sigma=0\right\}
$$

The limiting system, obtained by restricting the initial conditions to the set Λ is

$$
\begin{align*}
\dot{S} & =(1-S)\left(1-f_{2}(S)\right)-x_{1}\left(f_{1}(S)-f_{2}(S)\right) \\
\dot{x}_{1} & =x_{1}\left(f_{1}(S)(1-q)-1\right) \tag{2.2}
\end{align*}
$$

These equations, of course, are restricted to the region

$$
\Omega=\left\{\left(S, x_{1}\right) \mid S \geqq 0, x_{1} \geqq 0, S+x_{1} \leqq 1\right\}
$$

The boundary of Ω satisfies the following properties:
i) $\left(S+x_{1}\right)\left(t_{0}\right)=1$, for some $t_{0} \geqq 0$, then $\dot{S}+\dot{x}_{1}=-q x_{1} f_{1}(S)<0$ ($S x_{1} \neq 0$);
ii) $S\left(t_{0}\right)=0$ for some $t_{0} \geqq 0$ then $\dot{S}>0$;
iii) $x_{1}\left(t_{0}\right)=0$ for some $t_{0} \geqq 0$ then $x_{1}(t)=0$ and $0 \leqq S(t) \leqq 1$ as $t \geqq t_{0}$.

Therefore, Ω is a positively invariant region.
We use the following notation for the relevant rest points of system (1.2). We say that a rest point of (1.2) does not exist if any one of its components is negative. Since $\lim _{t \rightarrow \infty} \Sigma(t)=0$, any rest point $E=\left(\bar{S}, \bar{x}_{1}, \bar{x}_{2}\right)$ of (1.2) must satisfy

$$
1-\bar{S}-\bar{x}_{1}-\bar{x}_{2}=0
$$

The washout rest point is denoted $E_{1}^{3}=(1,0,0)$. There are two possible plasmid-free rest points, denoted $E_{2}^{3}=\left(\lambda_{2}, 0,1-\lambda_{2}\right), E_{3}^{3}=\left(\mu_{2}, 0,1-\mu_{2}\right)$ where λ_{2} and μ_{2} solve the equation $f_{2}(S)=1$. (If both exist, let λ_{2} be the smaller one.) The mixed culture rest points are denoted $E_{c_{1}}^{3}=\left(\lambda_{1}, x_{11}, x_{12}\right)$, $E_{c_{2}}^{3}=\left(\mu_{1}, x_{21}, x_{22}\right)$, where λ_{1} and μ_{1} solve the equation $f_{1}(S)=1 /(1-q)$ (if both exist, let λ_{1} be the smaller one) and

$$
\begin{aligned}
& x_{11}=\frac{\left(1-\lambda_{1}\right)\left(1-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)} \\
& x_{12}=\left(1-\lambda_{1}-x_{11}\right)
\end{aligned}
$$

$$
\begin{align*}
& x_{21}=\frac{\left(1-\mu_{1}\right)\left(1-f_{2}\left(\mu_{1}\right)\right)}{f_{1}\left(\mu_{1}\right)-f_{2}\left(\mu_{1}\right)}, \\
& x_{22}=\left(1-\mu_{1}-x_{21}\right) . \tag{2.3}
\end{align*}
$$

It can easily be seen that no rest point can exist where there are plasmid-bearing but no plasmid-free organisms. The corresponding rest points of (2.2) are simply the projections on $\left(S-x_{1}\right)$ space and are denoted: $E_{1}=(1,0), E_{2}=\left(\lambda_{2}, 0\right)$, $E_{3}=\left(\mu_{2}, 0\right), E_{c_{1}}=\left(\lambda_{1}, x_{11}\right), E_{c_{2}}=\left(\mu_{1}, x_{21}\right)$.

We assume that these do not exist if either component is negative or if the sum of the compounds exceeds 1 , since then it would be outside Ω. (This would force the x_{2} component in the corresponding rest point in (1.2) to be negative.)

In this paper we analyze the following three types with different response functions:

Type A: f_{1} is inhibited, f_{2} is uninhibited; Type $\mathrm{B}: f_{1}$ is uninhibited, f_{2} is inhibited; Type C: f_{1}, f_{2} are both inhibited.
(Note: We will write x instead of x_{1} in (2.2) to avoid unnecessary subscripting.)

The case that f_{1} and f_{2} are both uninhibited was analyzed in the paper [HWW]. In the Sect. 3, we shall give the mathematical analysis and the biological interpretations of Type A species. The mathematical analysis and the biological interpretations of Type B species and Type C species are given in the Sect. 4 and Sect. 5 respectively. There will be a biological discussion for the model (1.2) in the Sect. 6. At the end of this paper, we have Appendices A, B, C, D, and E which contain the figures for references.

3 Analysis of Type A species

3.1. If we consider the analysis of Type A on Ω, there are nine subcases. The reader can refer to the Table 3.1.

From the list in the Table 3.1, we can easily solve the rest point in each case. The set of rest points are shown in the Table 3.2 for each case.

The variational matrix \mathbf{J} of (2.2) takes the form
$J=\left[\begin{array}{cc}-\left(1-f_{2}(S)\right)-(1-S) f_{2}^{\prime}(S)-x\left(f_{1}^{\prime}(S)-f_{2}^{\prime}(S)\right), & -\left(f_{1}(S)-f_{2}(S)\right) \\ x f_{1}^{\prime}(S)(1-q), f_{1}(S)(1-q)-1\end{array}\right]$.
It is easy to compute the eigenvalues of the variational matrix \mathbf{J} at the associated rest points. The Table 3.3 shows the local stability property for each case of Type A.

Table 3.1

A_{1}	$f_{1}\left(\rho_{1}\right)<\frac{1}{1-q}, f_{2}(1)<1$
A_{2}	$f_{1}\left(\rho_{1}\right)<\frac{1}{1-q}, f_{2}(1)>1$
A_{3}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}(1)<1$
A_{4}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}(1)>1,0<\lambda_{1}<\lambda_{2}<1$
A_{5}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}(1)>1,0<\lambda_{2}<\lambda_{1}<1$
A_{6}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}(1)<1$
A_{7}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}(1)>1,0<\lambda_{1}<\lambda_{2}<\mu_{1}<1$
A_{8}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}(1)>1,0<\lambda_{2}<\lambda_{1}<1$
A_{9}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}(1)>1,0<\mu_{1}<\lambda_{2}<1$

ρ_{1} is the maximum point of f_{1}, λ_{1} and μ_{1} solve $f_{1}(S)=1 /(1-q)$ and λ_{2} solves $f_{2}(S)=1$.

Remark 3.1. In Table 3.3, for the rest points E_{1} and E_{2}, stable and unstable means stable node and unstable node respectively. However for the interior rest point $E_{c_{1}}$, stable (unstable) means stable node (unstable node) or stable focus (unstable focus) depending on the parameter q or D. Similarly for the Table 4.3 and Table 5.3 in Sect. 4 and Sect. 5, "stable" and "unstable" have the same interpretations for boundary rest points E_{1}, E_{2}, E_{3} and interior rest point $E_{c_{1}}$.

Based on the local stability analysis in the Table 3.3, the main results are stated in the following theorems.
Theorem 3.1 i) For the case A_{1}, E_{1} is a global attractor of Ω. ii) For each of the cases $A_{2}, A_{5}, A_{8}, E_{2}$ is a global attractor of Ω. (See Figs. $A_{1}, A_{2}, A_{5}, A_{8}$ in Appendix A.)
Theorem 3.2 For each of the cases $A_{3}, A_{4}, A_{7}, E_{c_{1}}$ is a global attractor in the interior of Ω. (See Figs. A_{3}, A_{4}, A_{7} in Appendix A.)

Table 3.2

Case	The rest points set
A_{1}	E_{1}
A_{2}	E_{1}, E_{2}
A_{3}	$E_{1}, E_{c_{1}}$
A_{4}	$E_{1}, E_{2}, E_{c_{1}}$
A_{5}	E_{1}, E_{2}
A_{6}	$E_{1}, E_{c_{1}}, E_{c_{2}}$
A_{7}	$E_{1}, E_{2}, E_{c_{1}}$
A_{8}	E_{1}, E_{2}
A_{9}	$E_{1}, E_{2}, E_{c_{1}}, E_{c_{2}}$

Table 3.3

	E_{1}	E_{2}	$E_{c_{1}}$	$E_{c_{2}}$
A_{1}	s_{\star}	\star	\star	\star
A_{2}	$s a$	s_{\star}	\star	\star
A_{3}	$s a$	\star	$s_{\star \star}$	\star
A_{4}	u_{\star}	$s a$	$s_{\star \star}$	\star
A_{5}	u_{\star}	s_{\star}	\star	\star
A_{6}	s_{\star}	\star	$s_{\star \star}$	$s a$
A_{7}	$s a$	$s a$	$s_{\star \star}$	\star
A_{8}	$s a$	s_{\star}	\star	\star
A_{9}	$s a$	s_{\star}	$s_{\star \star}$	$s a$

s stable; u : unstable; sa: saddle; \star : the absence of the rest point; \star : node; $\star \star$: node or focus

Theorem 3.3 i) For the case A_{6}, the stable manifold Γ of $E_{c_{2}}$ separates the region Ω into two regions Ω_{1} and Ω_{2} where Ω_{1}, Ω_{2} are attracted by $E_{c_{1}}, E_{1}$ respectively. ii) For the case A_{9}, the stable manifold Γ of $E_{c_{2}}$ separates the region Ω into two regions Ω_{1}, Ω_{2} where Ω_{1}, Ω_{2} are attracted by $E_{c_{1}}, E_{2}$ respectively. (See Figs. A_{6}, A_{9} in Appendix A.)

Proof of Theorem 3.1. Since there is no interior rest point in Ω for each case of $A_{1}, A_{2}, A_{5}, A_{8}$, it follows that for each of these cases no limit cycle exists. Thus the global stability of E_{1} and E_{2} for the case A_{1} and the cases A_{2}, A_{5}, A_{8}, respectively follows directly from the Pioncarè-Bendixson Theorem and the local asymptotic stability of E_{1} and E_{2}.
Q.E.D.

Two lemmas will be given before we prove Theorem 3.2.
Lemma 3.4 For each of the cases A_{3}, A_{4}, A_{7}, there exist v_{1}, v_{2}, such that

$$
\Omega^{\prime} \equiv \Omega \cap\left\{(S, x) \mid 0<v_{1}<S<v_{2} \leqq 1\right\}
$$

is a positive invariant set. On the region Ω^{\prime}, we have that $f_{1}(S)>1>f_{2}(S)$. The trajectory will enter Ω^{\prime} eventually.

Proof. Let v_{1} satisfies $f_{1}\left(v_{1}\right)=1$. Since $f_{1}\left(\lambda_{1}\right)=1 /(1-q)>1$, it follows that $0<v_{1}<\lambda_{1}$. Let v_{2} be λ_{2} if $f_{2}(1)>1$ or $v_{2}=1$ if $f_{2}(S)<1$ for $0<S<1$. We note that in cases $A_{3}, A_{4}, A_{7}, \lambda_{1}<\lambda_{2}$ if λ_{2} exist. Hence $f_{2}\left(\lambda_{1}\right)<1$. Let

$$
\Omega^{\prime} \equiv \Omega \cap\left\{(S, x) \mid 0<v_{1}<S<v_{2} \leqq 1\right\}
$$

From (2.2) we have for $(S, x) \in \Omega^{\prime}$

$$
\begin{aligned}
\left.\frac{d S}{d t}\right|_{S=v_{1}} & =\left(1-v_{1}\right)\left(1-f_{2}\left(v_{1}\right)\right)-x\left(f_{1}\left(v_{1}\right)-f_{2}\left(v_{1}\right)\right) \\
& =\left(1-f_{2}\left(v_{1}\right)\right)\left(1-v_{1}-x\right) \\
& >0 \\
\left.\frac{d S}{d t}\right|_{S=v_{2}} & =\left(1-v_{2}\right)\left(1-f_{2}\left(v_{2}\right)\right)-x\left(f_{1}\left(v_{2}\right)-f_{2}\left(v_{2}\right)\right)
\end{aligned}
$$

If $v_{2}=\lambda_{2}$ then from $f_{1}\left(v_{2}\right)>1 / 1-q>1$, it follows that

$$
\left.\frac{d S}{d t}\right|_{S=v_{2}}=-x\left(f_{1}\left(v_{2}\right)-1\right)<0
$$

It is easy to verify that Ω^{\prime} is a positively invariant region and from Poincarè-Bendixson Theorem the trajectory will enter Ω^{\prime} in finite time (see Figs. A_{3}, A_{4}, A_{7} in Appendix A). Since $f_{1}\left(v_{1}\right)=1$ and $f_{2}\left(v_{2}\right) \leqslant 1$, it follows that

$$
\begin{equation*}
f_{1}(S)>1>f_{2}(S) \quad \text { in } \Omega^{\prime} \tag{3.1}
\end{equation*}
$$

Q.E.D.

Lemma 3.5 Let $a>b>1>c>d>0$. Then $(1-c) /(a-c)<(1-d) /(b-d)$.
Proof. Let $h(x), g(x)$ be strictly increasing differentiable functions defined on [0, 1] satisfying

$$
h(0)=d, \quad h(1)=c, \quad g(0)=b, \quad g(1)=a
$$

and

$$
f(x)=\frac{1-h(x)}{g(x)-h(x)}
$$

Then

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(g-h)\left(-h^{\prime}\right)-(1-h)\left(g^{\prime}-h^{\prime}\right)}{(g-h)^{2}} \\
& =\frac{h^{\prime}(1-g)+(h-1) g^{\prime}}{(g-h)^{2}} \\
& <0 .
\end{aligned}
$$

Hence

$$
f(1)<f(0)
$$

or

$$
\frac{1-c}{a-c}<\frac{1-d}{b-d}
$$

Q.E.D.

Proof of Theorem 3.2. We construct a Lyapunov function

$$
\begin{equation*}
V(S, x)=\int_{\lambda_{1}}^{S} \frac{f_{1}(\eta)(1-q)-1}{f_{1}(\eta)-f_{2}(\eta)} d \eta+\int_{x_{1}^{*}}^{x} \frac{\eta-x_{1}^{*}}{\eta} d \eta \quad \text { on } \Omega^{\prime} \tag{3.2}
\end{equation*}
$$

where $x_{1}^{*}=x_{11}$ in (2.3), then

$$
\begin{equation*}
\dot{V}=\left(f_{1}(S)(1-q)-1\right)\left(\frac{(1-S)\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}-x_{1}^{*}\right) \tag{3.3}
\end{equation*}
$$

There are two possible cases, namely,
i) $v_{1}<v_{2}<\rho_{1}$;
ii) $v_{1}<\rho_{1}<v_{2}$.

Let $\left(v_{1}, v_{2}\right)=\left(v_{1}, \lambda_{1}\right) \cup\left[\lambda_{1}, v_{2}\right)$. Let

$$
\begin{equation*}
\phi(S)=\frac{(1-S)\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}-x_{1}^{*} . \tag{3.4}
\end{equation*}
$$

Then $\phi\left(\lambda_{1}\right)=0$. From (3.3), if we are able to show that

$$
\begin{equation*}
\phi(S)>0 \quad \text { on }\left(v_{1}, \lambda_{1}\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(S)<0 \quad \text { on }\left(\lambda_{1}, v_{2}\right) \tag{3.6}
\end{equation*}
$$

then $\dot{V} \leqq 0$. By LaSalle's Invariance Principle [H], we complete the proof of Theorem 3.2. If $v_{1}<v_{2}<\rho_{1}$, then

$$
\begin{equation*}
f_{1}^{\prime}(S)>0, \quad \text { for } v_{1}<S<v_{2} . \tag{3.7}
\end{equation*}
$$

Since

$$
\begin{aligned}
\phi^{\prime}(S)= & \frac{\left(f_{1}(S)-f_{2}(S)\right)\left(f_{2}(S)-1\right)+\left(f_{1}(S)-f_{2}(S)\right)(1-S)\left(-f_{2}^{\prime}(S)\right)}{\left(f_{1}(S)-f_{2}(S)\right)^{2}} \\
& -\frac{(1-S)\left(1-f_{2}(S)\right)\left(f_{1}^{\prime}(S)-f_{2}^{\prime}(S)\right)}{\left(f_{1}(S)-f_{2}(S)\right)^{2}} \\
= & \frac{\left(f_{1}(S)-f_{2}(S)\right)\left(f_{2}(S)-1\right)+\left(1-f_{2}(S)\right)(1-S)\left(-f_{1}^{\prime}(S)\right)}{\left(f_{1}(S)-f_{2}(S)\right)^{2}} \\
& -\frac{(1-S)\left(f_{1}(S)-1\right)\left(f_{2}^{\prime}(S)\right)}{\left(f_{1}(S)-f_{2}(S)\right)^{2}}
\end{aligned}
$$

From (3.1), (3.7) $\phi^{\prime}(S)<0$, for all $v_{1}<S<v_{2}$. Hence (3.5) and (3.6) hold.
If $v_{1}<\rho_{1}<\nu_{2}$, then from the fact $\lambda_{1}<\rho_{1}$, we write

$$
\left(v_{1}, v_{2}\right)=\left(v_{1}, \lambda_{1}\right] \cup\left[\lambda_{1}, \rho_{1}\right) \cup\left[\rho_{1}, v_{2}\right) .
$$

Since $f_{1}^{\prime}(S)>0$ on $\left(v_{1}, \rho_{1}\right)$, we have $\phi^{\prime}(S)<0$ on (v_{1}, ρ_{1}). Obviously (3.5) hold. In order to establish (3.6), it suffices to show that $\phi(S)<0$ for $\rho_{1}<S<v_{2}$. From (3.3) it suffices to show

$$
\frac{(1-S)\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}<\frac{\left(1-\lambda_{1}\right)\left(1-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)} \text { for } \rho_{1}<S<v_{2}
$$

Since $1-\lambda_{1}>1-S$ for $\rho_{1}<S<\nu_{2}$, it suffices to show that

$$
\frac{\left(1-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}>\frac{\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}, \text { for } \rho_{1}<S<v_{2}
$$

Let $d=f_{2}\left(\lambda_{1}\right), c=f_{2}(S), b=f_{1}\left(\lambda_{1}\right)$, and $a=f_{1}(S)$, since $\lambda_{1}<\rho_{1}<S<\nu_{2}$, it follows that

$$
f_{2}\left(v_{2}\right)=1>c=f_{2}(S)>f_{2}\left(\lambda_{1}\right)=d
$$

and

$$
a=f_{1}(S)>\frac{1}{1-q}=f_{1}\left(\lambda_{1}\right)=b>1
$$

From Lemma 3.5, we have

$$
\frac{(1-S)\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}<\frac{\left(1-\lambda_{1}\right)\left(1-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}
$$

Thus we complete the proof of Theorem 3.2.
Q.E.D.

Proof of Theorem 3.3. It is easy to see that E_{1} and E_{2} attracts each point of Ω_{2} in the case A_{6} and the case A_{9} respectively (see the Figs. A_{6}, A_{9} in

Appendix A). From Poincarè-Bendixson Theorem, the trajectory with intial conditions in Ω_{1}, it will enter the region $S \leqq \mu_{1}$ in finite time. For the cases A_{6}, A_{9} we have $v_{2}=\lambda_{2}>\mu_{1}$ and $v_{2}=1>\mu_{1}$ respectively. Then the trajectory will stay in the region $\Omega^{\prime}=\left\{(S, x) \mid v_{1}<S<\mu_{1}<v_{2}\right\}$. As we did in Theorem 3.2, we construct the Liapunov function V in (3.2) with $\dot{V} \leqq 0$ in $\Omega^{\prime} \cap \Omega_{1}$. If there exists a periodic orbit in Ω_{1}, then the periodic orbit $\left\{\left(S^{*}(t), x^{*}(t)\right)\right\}_{0 \leqq t \leqq T}$ lies in the region $\Omega^{\prime} \cap \Omega_{1}$. Then

$$
0=\int_{0}^{T} \frac{d V}{d t}\left(S^{*}(t), x^{*}(t)\right) d t=\int_{0}^{T} \dot{V} d t<0
$$

This is a contradiction. Hence no periodic solution in Ω_{1}. Hence $E_{c_{1}}$ attracts each point in Ω_{1}.
Q.E.D.
3.2 In Theorem 1.5 of [T] states that for an asymptotically quasiautonomous system if there is no chain of equilibria in the limit equation, then the ω-limit set of a bounded trajectory of the asymptotically autonomous system will consists of an equilibrium or a periodic orbit. From this theorem and the above analysis, the global results for Type A species in the equations (1.2) follows. In order to give biological interpretations in this section and also in Sect. 4 and Sect. 5, for the uninhibited growth function $f_{i}(S)$, we restrict our attentions to the Monod model

$$
\begin{equation*}
f_{i}(S)=\frac{m_{i} S}{a_{i}+S} \tag{3.8}
\end{equation*}
$$

where m_{i} is the maximal specific growth rate and a_{i} is the Michaelis-Menten constant. For the inhibited growth function $f_{i}(S)$, we restrict our attentions to the Andrews model

$$
\begin{equation*}
f_{i}(S)=\frac{m_{i} S}{a_{i}+S+K_{i} S^{2}} \tag{3.9}
\end{equation*}
$$

where the parameter K_{i} measure the inhibition effect. It is easy to verify that the function $f_{i}(S)$ in (3.8) is strictly monotone and the function $f_{i}(S)$ in (3.9) attains the unique maximum $m_{i} /\left(1+2 \sqrt{a_{i} K_{i}}\right)$ at $S=\rho_{i}=\sqrt{a_{i} / K_{i}}$. Hence when the inhibition constant K_{i} is large, ρ_{i} and $f_{i}\left(\rho_{i}\right)$ become small. Under the scaling which reduce the equations (1.1) to the equation (1.2), the "new" parameters $m_{i}, a_{i}, K_{i}, S, x_{i}$ are the "old" $m_{i} / D, a_{i} / S^{(0)}, K_{i} S^{(0)}, S / S^{(0)}, x_{i} / \gamma S^{(0)}$ respectively, where $S^{(0)}, \mathrm{D}$ are input concentration of the substrate and the dilution rate respectively. For the biological interpretation of the results of Type A species, we state in terms of the original parameters and $f_{1}(S)=m_{1} S /\left(a_{1}+S+K_{1} S^{2}\right)$ and $f_{2}(S)=m_{2} S /\left(a_{2}+S\right)$.

The rest points in terms of the original parameters are:

$$
\begin{aligned}
& \mathscr{E}_{1}=\left(S^{(0)}, 0,0\right) \\
& \mathscr{E}_{2}=\left(\lambda_{2}, 0, \gamma\left(S^{(0)}-\lambda_{2}\right)\right) \quad \text { where } f_{2}\left(\lambda_{2}\right)=D,
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{E}_{c_{1}}=\left(\lambda_{1}, \frac{\gamma\left(S^{(0)}-\lambda_{1}\right)\left(D-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}, \frac{\gamma\left(S^{(0)}-\lambda_{1}\right)\left(f_{1}\left(\lambda_{1}\right)-D\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}\right) \\
& \mathscr{E}_{c_{2}}=\left(\mu_{1}, \frac{\gamma\left(S^{(0)}-\mu_{1}\right)\left(D-f_{2}\left(\mu_{1}\right)\right)}{f_{1}\left(\mu_{1}\right)-f_{2}\left(\mu_{1}\right)}, \frac{\gamma\left(S^{(0)}-\mu_{1}\right)\left(f_{1}\left(\mu_{1}\right)-D\right)}{f_{1}\left(\mu_{1}\right)-f_{2}\left(\mu_{1}\right)}\right)
\end{aligned}
$$

where λ_{1}, μ_{1} solve $f_{1}(S)(1-q)=D$ and $\lambda_{1}<\mu_{1}$. The rescaling of Table 3.1 is shown in Table 3.4.

Remark 3.2. In the followings, we recall some results from [HHW] and [BW]. Consider the one species chemostat equation

$$
\begin{align*}
& \dot{S}=\left(S^{(0)}-S\right) D-f(S) x \\
& \dot{x}=(f(S)-D) x \tag{3.10}\\
& S(0) \geqq 0, \quad x(0)>0, \quad i=1,2 .
\end{align*}
$$

If the functional response $f(S)$ is of Michaelis-Menten type, i.e., $f(S)=m S /(a+S)$, then the authors of [HHW] proved the followings:
(i) If $f\left(S^{(0)}\right) \leqq D$, then $\lim _{t \rightarrow \infty} x(t)=0$ and $\lim _{t \rightarrow \infty} S(t)=S^{(0)}$. In this case, the input concentration $S^{(0)}$ is too small or the dilution rate D is too large for the species to survive.

Table 3.4

Case	Criteria for existence of rest points	Rest points
A_{1}	$f_{1}\left(\rho_{1}\right)(1-q)<D, f_{2}\left(S^{(0)}\right)<D$	\mathscr{E}_{1}
A_{2}	$f_{1}\left(\rho_{1}\right)(1-q)<D, f_{2}\left(S^{(0)}\right)>D$	$\mathscr{E}_{1}, \mathscr{E}_{2}$
A_{3}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(S^{(0)}\right)<D$	$\mathscr{E}_{1}, \mathscr{C}_{c_{1}}$
A_{4}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(S^{(0)}\right)>D$,	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{c_{1}}$
	$0<\lambda_{1}<\lambda_{2}<S^{(0)}$	
A_{5}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(S^{(0)}\right)>D$,	$\mathscr{E}_{1}, \mathscr{E}_{2}$
	$0<\lambda_{2}<\lambda_{1}<S^{(0)}$	
A_{6}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(S^{(0)}\right)<D$	$\mathscr{E}_{1}, \mathscr{E}_{c_{1}}, \mathscr{E}_{c_{2}}$
A_{7}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(S^{(0)}\right)>D$,	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{c_{1}}$
	$0<\lambda_{1}<\lambda_{2}<\mu_{1}<S^{(0)}$	
A_{8}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(S^{(0)}\right)>D$,	$\mathscr{E}_{1}, \mathscr{E}_{2}$
	$0<\lambda_{2}<\lambda_{1}<S^{(0)}$	
A_{9}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(S^{(0)}\right)>D$,	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{c_{1}, \mathscr{E}_{c_{2}}}$
	$0<\mu_{1}<\lambda_{2}<S^{(0)}$	

(ii) If $f\left(S^{(0)}\right)>D$, i.e., the break-even concentration $\lambda=a /(m / D-1)<S^{(0)}$, then $\lim _{t \rightarrow \infty} x(t)=x^{*}=S^{(0)}-\lambda$ and $\lim _{t \rightarrow \infty} x(t)=\lambda$. In this case the species survives due to the larger $S^{(0)}$ and smaller D.

If the functional response $f(S)$ is inhibited and is of Andrews type, i.e., $f(S)=m S /\left(a+S+K S^{2}\right)$, then the authors of [BW] proved the followings:
(i) If $D \geqq \max _{0 \leqq s \leq s^{(0)}} f(S)=f(\rho)=m /(1+2 \sqrt{a K})$ then $\lim _{t \rightarrow \infty} x(t)=0$ and $\lim _{t \rightarrow \infty} S(t)=S^{(0)}$. In this case, the highly inhibited growth of the species or the large dilution rate causes the extinction of the species.
(ii) If $f\left(S^{(0)}\right) \leqq D<f(\rho)$ then we have three rest points $E_{0}=\left(S^{(0)}, 0\right)$, $E_{1}=\left(\lambda, x_{1}^{*}\right), E_{2}=\left(\mu, x_{2}^{*}\right)$ where $0<\lambda<\mu<S^{(0)}$ satisfy $f(\lambda)=f(\mu)=D$, $\lambda+x_{1}^{*}=\mu+x_{2}^{*}=S^{(0)}$. Furthermore (μ, x_{2}^{*}) is a saddle point with onedimensional manifold Γ separating the first quadrant of the $S-x$ plane into two regions Ω_{1} and Ω_{2}. The asymptotically stable rest points (λ, x_{1}^{*}), $\left(S^{(0)}, 0\right)$ attracts each points of Ω_{1}, Ω_{2} respectively. In this case, the species either goes to extinction or survives depending on the initial populations.
(iii) If $f\left(S^{(0)}\right)>D$, then $\lim _{t \rightarrow \infty} x(t)=x^{*}$ and $\lim _{t \rightarrow \infty} S(t)=\lambda$ where $f(\lambda)=D$ and $\lambda+x^{*}=S^{(0)}$. In this case the species survives and goes to a steady state.

Next we consider the chemostat equation with two species:

$$
\begin{align*}
\dot{S} & =\left(S^{(0)}-S\right) D-f_{1}(S) x_{1}-f_{2}(S) x_{2} \\
\dot{x}_{1} & =\left(f_{1}(S)-D\right) x_{1}, \tag{3.11}\\
\dot{x}_{2} & =\left(f_{2}(S)-D\right) x_{2}, \\
S(0) & \geqq 0, \quad x_{1}(0)>0, \quad x_{2}(0)>0, \quad i=1,2 .
\end{align*}
$$

where the functional response $f_{i}(S), i=1,2$ is either uninhibited or inhibited. For each $i=1,2$ let λ_{i}, μ_{i} be the break-even concentrations of i-th species, i.e., λ_{i}, μ_{i} satisfy $f_{i}\left(\lambda_{i}\right)=f_{i}\left(\mu_{i}\right)=D, \lambda_{i}<\mu_{i}$ in the case of inhibited functional response and setting $\mu_{i}=+\infty$ when $f_{i}(S)$ is uninhibited.

In the following we state the results in [BW] which will be used in the biological interpretations for the Type A, B, C species.

Theorem 3.6[BW]. Let $Q=\left(\lambda_{1}, \mu_{1}\right) \cup\left(\lambda_{2}, \mu_{2}\right)$ and $\lambda_{1}<\lambda_{2}<S^{(0)}$ and Λ denote the set of left endpoints of components of Q together with $S^{(0)}$, if $S^{(0)}$ is not in the set Q. With the exception of a set of initial conditions of Lebesque measure zero, all solutions of (3.11) satisfy

$$
\lim _{t \rightarrow \infty} S(t)=\gamma, \quad \gamma \in A
$$

with the corresponding asymptotic behavior

$$
\lim _{t \rightarrow \infty} x_{i}(t)=S^{(0)}-\lambda_{i}, \quad \lim _{t \rightarrow \infty} x_{j}(t)=0
$$

where $j \neq i$ if $\gamma=\lambda_{i}$ and $\lim _{t \rightarrow \infty} x_{j}(t)=0, j=1,2$ if $\gamma=S^{(0)}$. Furthermore if Q is connected, then $\lim _{t \rightarrow \infty} x_{2}(t)=0$. If, in addition, $S^{(0)} \in Q$ then $\left(\lambda_{1}, S^{(0)}-\lambda_{1}, 0\right)$ is globally asymptotically stable for (3.11).

Now we are in a position to give the biological interpretations for each case $A_{i}: A_{1} \sim A_{2}$: Species 1 (plasmid-bearing species) cannot survive alone due to the large dilution rate D or highly inhibited growth. In the case A_{1}, the input concentration $S^{(0)}$ is too small or D is too large to support the survival of the species 2 (plasmid-free species) alone. Hence both species go to extinction. In the case A_{2}, species 2 is able to survive alone under $S^{(0)}$ and D. Hence species 1 goes to extinction and species 2 eventually takes over the culture.
$A_{3} \sim A_{5}$: In these cases, species 1 is able to survive alone. In the case A_{3}, species 2 cannot survive alone. However a fraction of species 1 is converted into species 2 , the coexistence of both species follows. In the case A_{4}, species 2 is also able to survive alone. The break-even concentration λ_{1} of species 1 is smaller than λ_{2}, the break-even concentration of species 2 . Then species 2 is an inferior competitor. Hence both species coexist due to the conversion of a fraction of species 1 into species 2 . In the case A_{5}, species 1 has larger break-even concentration. Then species 1 is an inferior competitor. This causes the extinction of species 1 .
$A_{6} \sim A_{9}$: In these cases, species 1 either goes to extinction or survives in the absence of species 2 . In the case A_{6}, species 2 cannot survive alone. Hence either both species are washed out or both coexists. The outcomes depend on the initial populations. In the cases A_{7}, A_{8}, A_{9}, species 2 is able to survive alone. In the case A_{7}, the break-even concentration λ_{2} of species 2 lies between those λ_{1}, μ_{1} of species 1 . From Theorem 3.6, species 1 is a better competitor. Hence both species coexists. In the case A_{8}, species 2 has smaller break-even concentration. From Theorem 3.6, species 2 is a better competitor and hence species 1 goes to extinction. In the case A_{9}, in the absence of conversion of species 1 into species 2 , either species 1 or species 2 survive (see Theorem 3.6). Hence either species 1 goes to extinction or they coexist depending on the initial populations.

In order to see how the species 1 (the plasmid-bearing species) survives as the dilution rate D is gradually decreased, we consider the following case, namely, $f_{2}(S)>f_{1}(S)(1-q)$ for all $0<S<\tilde{S}, f_{2}(S)<$ $f_{1}(S)(1-q)$ for all $\widetilde{S}<S<S^{(0)}$ where $0<\tilde{S}<\rho_{1}$ for demonstration. Fig. E ${ }_{1}$ in Appendix E is the bifurcation diagram of the dilution rate D with respect to the plasmid-bearing population in the steady state for this case. In a similar manner it is easy to see that effect of varying the input concentration $S^{(0)}$.

4 Analysis of Type B species

4.1 For the analysis of Type B on Ω, there are ten subcases. The reader can refer to the Table 4.1.

The set of rest points are shown in Table 4.2 for each case of Type B.

Table 4.1

B_{1}	$f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1$
B_{2}	$f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1$
B_{3}	$f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1$
B_{4}	$f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1,0<\lambda_{1}<\rho_{2}<1$
B_{5}	$f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1,0<\rho_{2}<\lambda_{1}<1$
$B_{6}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1,0<\lambda_{1}<\lambda_{2}<1$	
B_{7}	$f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1,0<\lambda_{2}<\lambda_{1}<1$
B_{8}	$f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1,0<\lambda_{1}<\lambda_{2}<1$
B_{9}	$f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1,0<\lambda_{2}<\lambda_{1}<\mu_{2}<1$
B_{10}	$f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1,0<\mu_{2}<\lambda_{1}<1$

ρ_{2} denotes the maximal point of f_{2}, λ_{1} solves $f_{1}(S)=1 /(1-q)$, and λ_{2}, μ_{2} solves $f_{2}(S)=1$.

It is a routine computation to evaluate the eigenvalues of the variational matrix J at the associated rest points. The following Table 4.3 gives the local stability properties for each case of Type B.

Since the analysis for the cases of Type B on Ω is similar to that of Type A on Ω, we only state the results in the following. In the meantime, the reader can refer to the phase portrait of each case in Appendix B.
B_{1} : Obviously E_{1} is globally asymptotically stable.
B_{2} : Obviously E_{2} is globally asymptotically stable.
B_{3} : The stable manifold Γ of E_{3} separates the region Ω into two regions Ω_{1}, Ω_{2}. Obviously E_{2}, E_{1} have the domain of attraction Ω_{1}, Ω_{2} respectively.
B_{4} : This case and B_{5}, B_{10} are the most interesting cases of Type B in mathematical sense. Here we only state the results. The further details will be described later.

Table 4.2

Case	The rest points set
B_{1}	E_{1}
B_{2}	E_{1}, E_{2}
B_{3}	E_{1}, E_{2}, E_{3}
B_{4}	$E_{1}, E_{c_{1}}$
B_{5}	$E_{1}, E_{c_{1}}$
B_{6}	$E_{1}, E_{2}, E_{c_{1}}$
B_{7}	E_{1}, E_{2}
B_{8}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}$
B_{9}	E_{1}, E_{2}, E_{3}
B_{10}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}$

Table 4.3

	E_{1}	E_{2}	E_{3}	$E_{c_{1}}$
B_{1}	s_{\star}	\star	\star	\star
B_{2}	$s a$	s_{\star}	\star	\star
B_{3}	$s a$	s_{\star}	$s a$	\star
B_{4}	s_{\star}	\star	\star	$s_{\star \star}$
B_{5}	$s a$	\star	\star	$s_{\star \star}$ or $u_{\star \star}$
B_{6}	u_{\star}	$s a$	\star	$s_{\star \star}$
B_{7}	u_{\star}	s_{\star}	\star	\star
B_{8}	$s a$	$s a$	u_{\star}	$s_{\star \star}$
B_{9}	$s a$	s_{\star}	u_{\star}	\star
B_{10}	$s a$	s_{\star}	$s a$	$s_{\star \star}$ or $u_{\star \star}$

s : stable; u : unstable; sa: saddle; \star : the absence of the rest point; \star : node; $\star \star$: node or focus
i) If $f_{2}\left(\lambda_{1}\right)<f_{2}(1), E_{c_{1}}$ is globally asymptotically stable.
ii) If $f_{2}\left(\lambda_{1}\right)>f_{2}(1)$, we are not able to prove the global stability of $E_{c_{1}}$. $B_{5}: E_{c_{1}}$ may be stable or unstable. As some parameters vary, there is a Hopf bifurcation for $E_{c_{1}}$.
B_{6} : As we did in Theorem 3.2, the trajectory will enter the region Ω^{\prime}. We construct a Lyapunov function V on Ω^{\prime} and show that $E_{c_{1}}$ is globally asymptotically stable in the interior of Ω.
B_{7} : Since $E_{c_{1}}$ does not exist, obviously E_{2} is globally asymptotically stable.
B_{8} : Similar to the proof of Theorem 3.2, we can construct a Lyapunov fuction V on the invariant region Ω^{\prime} and show that $E_{c_{1}}$ is globally asymptotically stable in the interior of Ω.
B_{9} : Since no interior rest point exists, it is obvious that E_{2} is globally asymptotically stable in the interior of Ω.
B_{10} : The stable manifold Γ of E_{3} separates the region Ω into two regions Ω_{1} and Ω_{2}. In Ω_{1}, each point is attracted by E_{2}. In Ω_{2}, as parameters vary, there is a Hopf bifurcation for $E_{c_{1}}$ as in the case B_{5}.

Now we state some results for the cases B_{4} and B_{5}. Let $a(S)=(1-S)\left(1-f_{2}(S)\right)$ and $b(S)=f_{1}(S)-f_{2}(S)$, then the equations (2.2) becomes

$$
\left\{\begin{array}{l}
\frac{d S}{d t}=a(S)-x b(S) \tag{4.1}\\
\frac{d x}{d t}=x\left(f_{1}(S)(1-q)-1\right)
\end{array}\right.
$$

The interior rest point of (4.1) is (λ_{1}, x_{1}^{*}), where

$$
\begin{align*}
f_{1}\left(\lambda_{1}\right) & =\frac{1}{1-q} \\
x_{1}^{*} & =\frac{\left(1-\lambda_{1}\right)\left(1-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)} . \tag{4.2}
\end{align*}
$$

For the cases B_{4} and $B_{5}, E_{c_{1}}=\left(\lambda_{1}, x_{1}^{*}\right)$ exists because

$$
x_{1}^{*}=\left(1-\lambda_{1}\right) \frac{1-f_{2}\left(\lambda_{1}\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}<1-\lambda_{1}
$$

The variational matrix at $E_{c_{1}}$ is

$$
\left[\begin{array}{cc}
a^{\prime}\left(\lambda_{1}\right)-x_{1}^{*} b^{\prime}\left(\lambda_{1}\right), & -b\left(\lambda_{1}\right) \\
x_{1}^{*}(1-q) f_{1}^{\prime}\left(\lambda_{1}\right), & 0
\end{array}\right] .
$$

Since $-b\left(\lambda_{1}\right) x_{1}^{*}(1-q) f_{1}^{\prime}\left(\lambda_{1}\right)<0$, so the eigenvalues of the variational matrix have negative real parts if and only if

$$
a^{\prime}\left(\lambda_{1}\right)-x_{1}^{*} b^{\prime}\left(\lambda_{1}\right)<0
$$

or

$$
a^{\prime}\left(\lambda_{1}\right)-\frac{a\left(\lambda_{1}\right)}{b\left(\lambda_{1}\right)} b^{\prime}\left(\lambda_{1}\right)<0
$$

or

$$
\left.b\left(\lambda_{1}\right)\left(\frac{a(S)}{b(S)}\right)^{\prime}\right|_{S=\lambda_{1}}<0
$$

Hence $E_{c_{1}}=\left(\lambda_{1}, x_{1}^{*}\right)$ is locally asymptotically stable if and only if the isocline $x=h(S)=a(S) / b(S)$ has negative slope at $S=\lambda_{1}$ and $E_{c_{1}}$ is unstable if and only if

$$
h^{\prime}\left(\lambda_{1}\right)>0 .
$$

Hence in order to understand the stability property of $E_{c_{1}}$, it suffices to know the shape of the isocline $x=h(S)$. Since

$$
h(S)=\frac{(1-S)\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}
$$

it follows that

$$
\begin{align*}
h^{\prime}(S)= & \frac{f_{2}(S)-1}{f_{1}(S)-f_{2}(S)}+\frac{1-S}{\left(f_{1}(S)-f_{2}(S)\right)^{2}} \\
& \cdot\left[f_{1}^{\prime}(S)\left(f_{2}(S)-1\right)+f_{2}^{\prime}(S)\left(1-f_{1}(S)\right)\right] \tag{4.3}
\end{align*}
$$

i) For the case B_{4}, the assumption $\lambda_{1}<\rho_{2}$ implies $h^{\prime}\left(\lambda_{1}\right)<0$, i.e, $E_{c_{1}}$ is locally asymptotically stable.
ii) For the case B_{5}, the assumption is $\lambda_{1}>\rho_{2}$. If we fix $f_{1}(S)$ for $S \geqslant 0$ and $f_{2}(S)$ for $S \leqq \rho_{2}$. Let the function $f_{2}(S)$ change rapidly for some interval $\left(\tilde{\rho}_{2}, \tilde{\rho}_{2}+c\right.$), then from (4.3), $h^{\prime}(S)>0$ for $\tilde{\rho}_{2}<S<\tilde{\rho}_{2}+c\left(\tilde{\rho}_{2} \geqq \rho_{2}\right)$. Then from (4.2) there is an interval $\left(q_{\min }, q_{\max }\right)$ such that if $q \in\left(q_{\min }, q_{\text {max }}\right)$ then $h^{\prime}\left(\lambda_{1}\right)>0$. Hence it is possible to find parameters such that $E_{c_{1}}$ is unstable and hence there exists a periodic solution for (2.2). Another way to explain the existence of periodic solutions, we may consider the important special case

$$
f_{2}(S)=\frac{m_{2} S}{a_{2}+S+K S^{2}}
$$

Since

$$
f_{2}^{\prime}(S)=\frac{m_{2}\left(a_{2}-K S^{2}\right)}{\left(a_{2}+S+K S^{2}\right)^{2}}
$$

$f_{2}(S)$ attains its maximum at $\rho_{2}=\left(a_{2} / K\right)^{1 / 2}$. Assume $f_{2}\left(\rho_{2}\right)=1$ then

$$
\left(m_{2}-1\right)\left(\frac{a_{2}}{K}\right)^{1 / 2}=2 a_{2}
$$

or

$$
K=K^{*}=\frac{\left(m_{2}-1\right)^{2}}{4 a_{2}}
$$

Assume $0<\rho_{2}<1$ or $m_{2}-1>2 a_{2}$. When $K=K^{*}$, from (4.3) the shape of the isocline $x=h\left(S, K^{*}\right)$ is like the Fig. D_{1} in Appendix D.

Obviously for K near K^{*}, there exist an interval on which $h^{\prime}(S, K)>0$. Thus we may vary the parameter q such that λ_{1} as a function of q satisfies that $h^{\prime}\left(\lambda_{1}, K\right)$ is greater than zero. Hence the instability of $E_{c_{1}}$ is possible. The Figs. D_{2} and D_{3} in Appendix D illustrate the existence of a stable limit cycle. Fig. D_{2} gives the time course, while Fig. D_{3} shows the limit cycle in the three-dimensional phase space. The result suggests that the plasmid-bearing organisms and the plasmid-free organisms may coexist in the form of oscillations.

For the case B_{4}, we have partial result for the global asymptotic stability of $E_{\mathfrak{c}_{1}}$. Let

$$
\begin{equation*}
f_{2}\left(\lambda_{1}\right)<f_{2}(1) \tag{4.4}
\end{equation*}
$$

First we shall show that under the assumption (4.4) the isocline $x=h(S)$ satisfies

$$
\begin{equation*}
\left(S-\lambda_{1}\right)\left(h(S)-x_{1}^{*}\right)<0 \quad \text { for } 0<S<1\left(S \neq \lambda_{1}\right) . \tag{4.5}
\end{equation*}
$$

From the assumption $\lambda_{1}<\rho_{2}$ and (4.3), it follows that $h^{\prime}(S)<0$ for $0<S<\lambda_{1}$. To show (4.5), it suffices to show that $h(S)<h\left(\lambda_{1}\right)$ for $\lambda_{1}<S<1$ or equivalently

$$
\frac{(1-S)\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}<\frac{\left(1-\lambda_{1}\right)\left(1-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)} \quad \text { for all } \lambda_{1}<S<1
$$

Since $1-S<1-\lambda_{1}$ for $\lambda_{1}<S<1$, it suffices to show that

$$
\begin{equation*}
\frac{\left(1-f_{2}(S)\right)}{f_{1}(S)-f_{2}(S)}<\frac{\left(1-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)} \tag{4.6}
\end{equation*}
$$

for all $\lambda_{1}<S<1$. Let $a=f_{1}(S), b=f_{1}\left(\lambda_{1}\right)=1 /(1-q), c=f_{2}(S)$ and $d=f_{2}\left(\lambda_{1}\right)$ where $\lambda_{1}<S<1\left(f_{2}(1)>f_{2}\left(\lambda_{1}\right)\right)$, then $a>b>1,1>c>d$ and (4.6) follows directly from Lemma 3.5. Hence under the assumption (4.4), we obtain the global stability of $E_{c_{1}}$.
4.2 As we did in Sect. 3, we can apply Theorem 1.5 of [T] to obtain the global results of Type B for the equation (1.2). In the following, we give the biological interpretations for Type B species. Here $f_{1}(S)=m_{1} S /\left(a_{1}+S\right)$ and $f_{2}(S)=m_{2} S /\left(a_{2}+S+K_{2} S^{2}\right)$. The rest points in terms of the original parameters are:

$$
\begin{aligned}
& \mathscr{E}_{1}=\left(S^{(0)}, 0,0\right), \\
& \mathscr{E}_{2}=\left(\lambda_{2}, 0, \gamma\left(S^{(0)}-\lambda_{2}\right)\right), \\
& \mathscr{E}_{3}=\left(\mu_{2}, 0, \gamma\left(S^{(0)}-\mu_{2}\right)\right), \\
& \mathscr{E}_{c_{1}}=\left(\lambda_{1}, \frac{\gamma\left(S^{(0)}-\lambda_{1}\right)\left(D-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}, \frac{\gamma\left(S^{(0)}-\lambda_{1}\right)\left(f_{1}\left(\lambda_{1}\right)-D\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}\right)
\end{aligned}
$$

where $f_{1}\left(\lambda_{1}\right)(1-q)=D$ and $f_{2}\left(\lambda_{2}\right)=f_{2}\left(\mu_{2}\right)=D, \lambda_{2}<\mu_{2}<S^{(0)}$. The rescaling of Table 4.1 is as follows.

In the following, we give the biological interpretations for each case B_{i}.
$B_{1} \sim B_{3}$: In these cases, species 1 (plasmid-bearing species) cannot survive alone due to the large dilution rate D or small input concentration $S^{(0)}$. In the case B_{1}, species 2 (plasmid-free species) also cannot survive alone. Hence both species go to extinction. In the case B_{2}, species 2 is able to survive alone. Hence species 1 goes to extinction and species 2 takes over the culture. In the case B_{3}, in the absence of species 1 , species 2 either survive or goes to extinction depending on the initial population. Hence either both species will be washed out or only species 2 survives depending on initial populaions.
$B_{4} \sim B_{5}$: In these cases, species 1 is able to survive alone and species 2 cannot survive alone. Then both species coexist in the steady state for the case B_{4} and may coexist in the form of oscillations for the case B_{5}.
$B_{6} \sim B_{7}$: In these cases, both species are able to survive alone. In the case B_{6}, species 1 has smaller break-even concentration λ_{1}, hence both species coexist. In the case B_{7}, species 1 has larger break-even concentration and it is an inferior competitor. Due to the conversion of species 1 into species 2 , species 1 goes to extinction and species 2 survives.

Table 4.4

Case	Criteria for existence of rest points	Rest points
B_{1}	$f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)<D$	\mathscr{E}_{1}
B_{2}	$f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D$	$\mathscr{E}_{1}, \mathscr{E}_{2}$
B_{3}	$f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}$
B_{4}	$f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)<D, 0<\lambda_{1}<\rho_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{c_{1}}$
B_{5}	$f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)<D, 0<\rho_{2}<\lambda_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{C_{1}}$
B_{6}	$\begin{aligned} & f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D, \\ & 0<\lambda_{1}<\lambda_{2}<S^{(0)} \end{aligned}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{c_{1}}$
B_{7}	$\begin{aligned} & f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D, \\ & 0<\lambda_{2}<\lambda_{1}<S^{(0)} \end{aligned}$	$\mathscr{E}_{1}, \mathscr{E}_{2}$
B_{8}	$\begin{aligned} & f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, \\ & 0<\lambda_{1}<\lambda_{2}<S^{(0)} \end{aligned}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{\mathrm{C}_{1}}$
B_{9}	$\begin{aligned} & f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, \\ & 0<\lambda_{2}<\lambda_{1}<\mu_{2}<S^{(0)} \end{aligned}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}$
B_{10}	$\begin{aligned} & f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, \\ & 0<\mu_{2}<\lambda_{1}<S^{(0)} \end{aligned}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{1}}$

$B_{8} \sim B_{10}$: In these cases, species 1 is able to survive alone and species 2 , in the absence of species 1, either goes to extinction or survives depending on the initial population. In the case B_{8}, species 1 has smallest break-even concentration λ_{1} and it should be a better competitor. Hence both species coexist. In the case B_{9}, λ_{1} lies between two break-even concentration λ_{2}, μ_{2} of species 2 . From Theorem 3.6, species 2 is a better competitor. Hence species 2 survives and species 1 goes to extinct. It is interesting that our analysis shows species 2 survives in the steady state. In the case B_{10}, from Theorem 3.6, it follows that either species 1 or species 2 survives in the absence of conversion of species 1 into species 2 . Hence either both species coexist or species 1 goes to extinction and species 2 survives depending on initial populations.

In order to see how the species 1 (the plasmid-bearing species) survives as the dilution rate D is gradually decreased, we consider the following case, namely, $f_{1}(S)(1-q)<f_{2}(S)$ for all $0<S<\tilde{S}$ and $f_{1}(S)(1-q)>f_{2}(S)$ for all $\tilde{S}<S<S^{(0)}$ where $\rho_{2}<\tilde{S}<S^{(0)}$ and $f_{1}\left(S^{(0)}\right)(1-q)<f_{2}\left(\rho_{2}\right)$ for demonstration. Figure E_{2} in Appendix E is the bifurcation diagram of the dilution rate D with respect to the plasmid-bearing population in the steady state for this case. In a similar manner it is easy to see that effect of varying the input concentration $S^{(0)}$.

5 Analysis of Type C species

5.1 In Type C , if we consider the analysis on Ω then there are twenty one subcases which are shown in the following.

Table 5.1

C_{1}	$f_{1}\left(\rho_{1}\right)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1$
C_{2}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1,0<\lambda_{1}<\rho_{2}<1$
C_{3}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1,0<\rho_{2}<\lambda_{1}<1$
C_{4}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1,0<\lambda_{1}<\rho_{2}<1$
C_{5}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)<1,0<\rho_{2}<\lambda_{1}<1$
C_{6}	$f_{1}\left(\rho_{1}\right)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1$
C_{7}	$f_{1}\left(\rho_{1}\right)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1$
C_{8}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1,0<\lambda_{1}<\lambda_{2}<1$
C_{9}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1,0<\lambda_{1}<\lambda_{2}<1$
C_{10}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1,0<\lambda_{2}<\lambda_{1}<1$
C_{11}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1,0<\lambda_{1}<\lambda_{2}<\mu_{1}<1$
C_{12}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)>1,0<\lambda_{1}<\mu_{1}<\lambda_{2}<1$
C_{13}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1,0<\lambda_{1}<\lambda_{2}<1$
C_{14}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1,0<\lambda_{2}<\lambda_{1}<\mu_{2}<1$

Table 5.1 (continued)

C_{15}	$f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)>\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1,0<\mu_{2}<\lambda_{1}<1$
C_{16}	$\begin{aligned} & f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1 \\ & 0<\lambda_{1}<\mu_{1}<\lambda_{2}<\mu_{2}<1 \end{aligned}$
C_{17}	$\begin{aligned} & f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1 \\ & 0<\lambda_{1}<\lambda_{2}<\mu_{1}<\mu_{2}<1 \end{aligned}$
C_{18}	$\begin{aligned} & f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1, \\ & 0<\lambda_{2}<\lambda_{1}<\mu_{1}<\mu_{2}<1 \end{aligned}$
C_{19}	$\begin{aligned} & f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1 \\ & 0<\lambda_{1}<\lambda_{2}<\mu_{2}<\mu_{1}<1 \end{aligned}$
C_{20}	$\begin{aligned} & f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1, \\ & 0<\lambda_{2}<\lambda_{1}<\mu_{2}<\mu_{1}<1 \end{aligned}$
C_{21}	$\begin{aligned} & f_{1}\left(\rho_{1}\right)>\frac{1}{1-q}, f_{1}(1)<\frac{1}{1-q}, f_{2}\left(\rho_{2}\right)>1, f_{2}(1)<1, \\ & 0<\lambda_{2}<\mu_{2}<\lambda_{1}<\mu_{1}<1 \end{aligned}$

ρ_{1}, ρ_{2} denote the maximal point of f_{1}, f_{2} respectively, λ_{1}, μ_{1} solve $f_{1}(S)=1 /(1-q)$, and λ_{2}, μ_{2} solve $f_{2}(S)=1$.

The rest points set and the local analysis correspondence to each case are shown in the Tables 5.2 and 5.3.

Since the analysis for Type C on Ω is similar to that for Type A and Type B on Ω, we only state the results in the following. (See the figures in Appendix C.)
C_{1} : Obviously E_{1} is globally asymptotically stable.
$C_{2}: E_{c_{1}}$ is locally asymptotically stable. As in the case B_{4}, we have
i) If $f_{2}(1)>f_{2}\left(\lambda_{1}\right)$, then $E_{c_{1}}$ is globally asymptotically stable;
ii) $f_{2}(1) \leqq f_{2}\left(\lambda_{1}\right)$, the global result is unknown.
C_{3} : Similar to the case $B_{5}, E_{c_{1}}$ may be stable or unstable.
$C_{4}: E_{c_{2}}$ is a saddle point with one dimensional stable manifold Γ separating the region Ω into two regions Ω_{1} and $\Omega_{2} . E_{1}$ is locally asymptotically stable and attracts each point in Ω_{2}. As in the case A_{3}, it can be shown that if $\mu_{1}<\rho_{2}$, then $E_{c_{1}}$ attracts each point in the interior of Ω_{1}. When $f_{2}\left(\lambda_{1}\right)>f_{2}\left(\mu_{1}\right)$, we conjecture that $E_{c_{1}}$ attracts each point in Ω_{1}.
$C_{5}: E_{c_{1}}$ may be stable or unstable. Hence Hopf bifurcation may occur as the parameters vary.
C_{6} : Obviously E_{2} is globally asymptotically stable.
$C_{7}: E_{3}$ is a saddle point. As in the case B_{3}, E_{2} attracts each point in Ω_{1}, and E_{1} attracts each point in Ω_{2}.
C_{8} : Obviously E_{2} is globally asymptotically stable.
C_{9} : As we did in Theorem 3.2, the trajectory will enter the region Ω^{\prime}. We construct a Lyapunov function V on Ω^{\prime} and show that $E_{c_{1}}$ is globally asymptotically stable in the interior of Ω.
C_{10} : Obviously E_{2} is globally asymptotically stable.
C_{11} : Similar to the proof of Theorem 3.2, we can construct a Lyapunov function V on the invariant region Ω^{\prime} to show that $E_{c_{1}}$ is globally asymptotically stable in the interior of Ω.
$C_{12}: E_{c_{2}}$ is a saddle point with one dimensional stable manifold Γ. As in the case $A_{9}, E_{c_{1}}$ attracts each points in the interior of Ω_{1}, E_{2} attracts each point in Ω_{2}.
C_{13} : As in the case $B_{8}, E_{c_{1}}$ is globally asymptotically stable.
C_{14} : Since the interior rest point does not exist, as in the case B_{9}, E_{2} is globally asymptotically stable.
$C_{15}: E_{c_{1}}$ exists. As in the case B_{10}, E_{2} is locally asymptotically stable and E_{3} is a saddle point with one dimensional stable manifold Γ which separates the region Ω into two regions Ω_{1}, Ω_{2}. E_{2} attracts each point in Ω_{1} while $E_{c_{1}}$ may be stable or unstable as the parameters vary.
C_{16} : The interior rest points $E_{c_{1}}, E_{c_{2}}$ exist. $E_{c_{2}}$ and E_{3} are saddle points, E_{1}, $E_{2}, E_{c_{1}}$ are locally asymptotically stable. The stable manifolds of E_{3}, $E_{c_{2}}$ separate the region Ω into three regions Ω_{1}, Ω_{2} and Ω_{3}. E_{1} attracts each point in Ω_{3}, E_{2} attracts each point in Ω_{2} and $E_{c_{1}}$ attracts each point in the interior of Ω_{1}.
$C_{17}: E_{c_{1}}$ exists, but $E_{c_{2}}$ does not exist. The stable manifold Γ of E_{3} separates the region Ω into two regions Ω_{1}, Ω_{2}. $E_{c_{1}}$ attracts each point in the interior of Ω_{1} and E_{1} attracts each point in Ω_{2}.
$C_{18}: E_{3}$ is a saddle point with one dimensional stable manifold Γ which separates the region Ω into two regions Ω_{1}, Ω_{2}. E_{1} attracts each point in Ω_{2} and E_{2} attracts each point in Ω_{1}.
$C_{19}: E_{c_{1}}$ and $E_{c_{2}}$ exist. $E_{c_{2}}$ is connected to $E_{3} . E_{c_{1}}$ attracts each point in the interior of Ω_{1}. E_{1} is an attractor for Ω_{2}.
$C_{20}: E_{c_{1}}$ does not exist. $E_{c_{2}}$ is chained to $E_{3} . E_{1}$ attracts each point in Ω_{2} and E_{2} attracts each point in Ω_{1}.
$C_{21}: E_{3}, E_{c_{2}}$ are saddle points with one dimensional stable manifold Γ_{1}, Γ_{2} respectively. Γ_{1}, Γ_{2} separate Ω into three regions Ω_{1}, Ω_{2}, and Ω_{3}. E_{2} attracts the points in Ω_{1}. E_{1} is the global attractor of Ω_{2}. The rest point $E_{c_{1}}$ is stable or unstable as parameters vary.
5.2 Use Theorem 5 of [T] again to get the similar global results of Type C on the equation (1.2) as above. The reader can try to modify the description of the results of Type C on Ω for oneself. For the biological interpretation of the results of Type C species, we state in terms of the original parameters and $f_{1}(S)=m_{1} S /\left(a_{1}+S+K_{1} S^{2}\right)$ and $f_{2}(S)=m_{2} S /\left(a_{2}+S+K_{2} S^{2}\right)$. The rest

Table 5.2

Case	The rest points set	Case	The rest points set
C_{1}	E_{1}	C_{12}	$E_{1}, E_{2}, E_{c_{1}}, E_{c_{2}}$
C_{2}	$E_{1}, E_{c_{1}}$	C_{13}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}$
C_{3}	$E_{1}, E_{c_{1}}$	C_{14}	E_{1}, E_{2}, E_{3}
C_{4}	$E_{1}, E_{c_{1}}, E_{c_{2}}$	C_{15}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}$
C_{5}	$E_{1}, E_{c_{1}}, E_{c_{2}}$	C_{16}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}, E_{c_{2}}$
C_{6}	E_{1}, E_{2}	C_{17}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}$
C_{7}	E_{1}, E_{2}, E_{3}	C_{18}	E_{1}, E_{2}, E_{3}
C_{8}	E_{1}, E_{2}	C_{19}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}, E_{c_{2}}$
C_{9}	$E_{1}, E_{2}, E_{c_{1}}$	C_{20}	$E_{1}, E_{2}, E_{3}, E_{c_{2}}$
C_{10}	E_{1}, E_{2}	C_{21}	$E_{1}, E_{2}, E_{3}, E_{c_{1}}, E_{c_{2}}$
C_{11}	$E_{1}, E_{2}, E_{c_{1}}$		

points in terms of the original parameters are:

$$
\begin{aligned}
& \mathscr{E}_{1}=\left(S^{(0)}, 0,0\right) \\
& \mathscr{E}_{2}=\left(\lambda_{2}, 0, \gamma\left(S^{(0)}-\lambda_{2}\right)\right), \\
& \mathscr{E}_{3}=\left(\mu_{2}, 0, \gamma\left(S^{(0)}-\mu_{2}\right)\right), \\
& \mathscr{E}_{c_{1}}=\left(\lambda_{1}, \frac{\gamma\left(S^{(0)}-\lambda_{1}\right)\left(D-f_{2}\left(\lambda_{1}\right)\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}, \frac{\gamma\left(S^{(0)}-\lambda_{1}\right)\left(f_{1}\left(\lambda_{1}\right)-D\right)}{f_{1}\left(\lambda_{1}\right)-f_{2}\left(\lambda_{1}\right)}\right), \\
& \mathscr{E}_{c_{2}}=\left(\mu_{1}, \frac{\gamma\left(S^{(0)}-\mu_{1}\right)\left(D-f_{2}\left(\mu_{1}\right)\right)}{f_{1}\left(\mu_{1}\right)-f_{2}\left(\mu_{1}\right)}, \frac{\gamma\left(S^{(0)}-\mu_{1}\right)\left(f_{1}\left(\mu_{1}\right)-D\right)}{f_{1}\left(\mu_{1}\right)-f_{2}\left(\mu_{1}\right)}\right)
\end{aligned}
$$

where $\quad f_{1}\left(\lambda_{1}\right)(1-q)=f_{1}\left(\mu_{1}\right)(1-q)=D, \quad \lambda_{1}<\mu_{1}<S^{(0)} \quad$ and $\quad f_{2}\left(\lambda_{2}\right)=$ $f_{2}\left(\mu_{2}\right)=D, \lambda_{2}<\mu_{2}<S^{(0)}$. The rescaling of Table 5.1 is as follows.

In the following, we give the biological interpretations for each case C_{i}.
C_{1}, C_{6}, C_{7} : In these cases, species 1 (plasmid-bearing species) cannot survive alone. In the case C_{1}, species 2 (plasmid-free species) also cannot survive alone. Hence both species go to extinction. In the case C_{6}, species 2 is able to

Table 5.3

	E_{1}	E_{2}	E_{3}	$E_{c_{1}}$	$E_{c_{2}}$
C_{1}	s_{\star}	\star	\star	\star	\star
C_{2}	sa	*	*	$s_{\star \star}$	*
C_{3}	sa	\star	*	$s_{\star \star}$ or $u_{\star \star}$	\star
C_{4}	s_{\star}	\star	*	$s_{\star \star}$	sa
C_{5}	s_{\star}	\star	*	$s_{\star \star}$ or $u_{\star \star}$	sa
C_{6}	sa	s_{\star}	\star	*	*
C_{7}	s_{\star}	s_{\star}	sa	*	*
C_{8}	u_{\star}	S_{\star}	\star	\star	\star
C_{9}	u_{\star}	sa	\star	$s_{\text {đ }}$	*
C_{10}	sa	S_{\star}	\star	\star	*
C_{11}	sa	sa	*	s_{\star} *	*
C_{12}	$s a$	S_{\star}	\star	$S_{\text {才 }}$ *	sa
C_{13}	sa	sa	u_{\star}	$s_{\star \star}$	*
C_{14}	sa	S_{\star}	u_{\star}	\star	*
C_{15}	sa	S_{\star}	Sa	$s_{\star \star}$ or $u_{\star \star}$	*
C_{16}	S_{\star}	$S \star$	sa	$s_{\text {* }}$ *	sa
C_{17}	S_{\star}	sa	sa		*
C_{18}	S_{\star}	S_{\star}	sa	\star	\star
C_{19}	s_{\star}	sa	u_{\star}	$s_{\star \star}$	$s a$
C_{20}	S_{\star}	S_{\star}	u_{\star}	\star	sa
C_{21}	s_{\star}	S_{\star}	sa	$s_{\star \star}$ or $u_{\star \star}$	sa

s : stable; u : unstable; sa: saddle; \star : the absence of the rest point;
\star : node; $\star \star$: node or focus
survive alone. Hence species 1 goes to extinction and species 2 survives. In the case C_{7}, species 2 either goes to extinction or survives in the absence of species 1 depending on the initial population. Hence as expected either both species go to extinction or species 2 takes over the culture depending on the initial populations.
Table 5.4
Criteria for existence of rest points

Case	Criteria for existence of rest points	Rest points
C_{1}	$f_{1}\left(\rho_{1}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)<D$	\mathscr{E}_{1}
C_{2}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)<D, 0<\lambda_{1}<\rho_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{c_{1}}$
C_{3}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)<D, 0<\rho_{2}<\lambda_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{c_{1}}$
C_{4}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)<D, 0<\lambda_{1}<\rho_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{c_{1}}, \mathscr{E}_{c_{2}}$
C_{5}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)<D, 0<\rho_{2}<\lambda_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{c_{1}}, \mathscr{E}_{c_{2}}$
C_{6}	$f_{1}\left(\rho_{1}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D$	$\mathscr{E}_{1}, \mathscr{E}_{2}$
C_{7}	$f_{1}\left(\rho_{1}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D$,	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}$
C_{8}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D, 0<\lambda_{2}<\lambda_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}$
C_{9}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D, 0<\lambda_{1}<\lambda_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{c_{1}}$
C_{10}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D, 0<\lambda_{2}<\lambda_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}$
C_{11}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D, 0<\lambda_{1}<\lambda_{2}<\mu_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{c_{1}}$
C_{12}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)>D, 0<\lambda_{1}<\mu_{1}<\lambda_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{c_{1}}, \mathscr{E}_{c_{2}}$
C_{13}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{1}<\lambda_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{1}}$
C_{14}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{2}<\lambda_{1}<\mu_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}$
C_{15}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)>D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\mu_{2}<\lambda_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{1}}$
C_{16}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{1}<\mu_{1}<\lambda_{2}<\mu_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{1},}, \mathscr{E}_{c_{2}}$
C_{17}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{1}<\lambda_{2}<\mu_{1}<\mu_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{1}}$
C_{18}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{2}<\lambda_{1}<\mu_{1}<\mu_{2}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}$
C_{19}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{1}<\lambda_{2}<\mu_{2}<\mu_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{1},} \mathscr{E}_{c_{2}}$
C_{20}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{2}<\lambda_{1}<\mu_{2}<\mu_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{2}}$
C_{21}	$f_{1}\left(\rho_{1}\right)(1-q)>D, f_{1}\left(S^{(0)}\right)(1-q)<D, f_{2}\left(\rho_{2}\right)>D, f_{2}\left(S^{(0)}\right)<D, 0<\lambda_{2}<\mu_{2}<\lambda_{1}<\mu_{1}<S^{(0)}$	$\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}, \mathscr{E}_{c_{1}}, \mathscr{E}_{c_{2}}$

$C_{2} \sim C_{5}$: In these cases species 2 cannot survive alone. In the cases C_{2} and C_{3}, the species 1 is able to survive alone. Hence both species coexist. In the case C_{4} and C_{5}, species 1 either goes to extinction or survives depending on the initial population. Hence either both species are washed out or both coexist depending on the initial populations.
$C_{8} \sim C_{12}$: In these cases, species 2 is able to survive alone. In the cases C_{8} and C_{9}, species 1 is also able to survive alone. However in the case C_{8}, species 1 has larger break-even concentration λ_{1}. It follows that species 1 is an inferior competitor and species 2 takes over the culture eventually. In the case C_{9}, species 1 has smaller break-even concentration and hence both species coexist. In the cases C_{10}, C_{11}, C_{12}, species 1 either goes to extinction or survives in the absence of species 2 . In the case C_{10}, species 1 has larger break-even concentration. It follows that species 2 survives and species 1 goes to extinction. In the case C_{11}, since $\lambda_{1}<\lambda_{2}<\mu_{1}$, from Theorem 3.6 , species 1 is a better competitor. Hence both species coexist. In the case C_{12}, since $\lambda_{1}<\mu_{1}<\lambda_{2}$, from Theorem 3.6, in the absence of conversion of species 1 into species 2, either species 1 or species 2 survives. Hence either both species coexist or species 2 takes over the culture eventually depending on the initial populations.
$C_{13} \sim C_{15}$: In these cases, species 1 is able to survive alone, and species 2 either survives or goes to extinction in the absence of species 1 . In the case C_{13}, since $\lambda_{1}<\lambda_{2}<\mu_{2}<\mu_{1}=\infty$, from Theorem 3.6, species is a better competitor. Hence both species coexist. In the case C_{14}, since $\lambda_{2}<\lambda_{1}<\mu_{2}$, from Theorem 3.6, species 2 is a better competitor. As we did in case B_{9}, the species 2 survives and the species 1 goes to extinction. In the case C_{15}, as we did in case B_{10}, either both species coexist or only species 2 survives.
$C_{16} \sim C_{21}$: In these cases, both species either survives or goes to extinction in the absence of the other species. In the cases C_{17}, C_{19}, from Theorem 3.6, species 1 is a better competitor. Hence either both species go to extinction or both coexist. In the case C_{18}, C_{20}, from Theorem 3.6, species 2 is a better competitor. Hence either species 2 go to extinction or only species 2 survives. In the case C_{16}, C_{21}, as we did in the case C_{12}, either both species coexist or both species go to extinction or only species 2 survives.

In order to see how the species 1 (the plasmid-bearing species) survives as the dilution rate D is gradually decreased, we consider the following cases:

1. $f_{1}(S)(1-q)<f_{2}(S)$ for $S<\tilde{S}$ and $f_{1}(S)(1-q)>f_{2}(S)$ for $S^{(0)}>S>\tilde{S}$, where $\rho_{2}>\tilde{S}>\rho_{1}$ and $f_{1}\left(S^{(0)}\right)(1-q)<f_{2}(\widetilde{S})<f_{2}\left(\rho_{2}\right)<$ $f_{1}\left(\rho_{1}\right)(1-q)$.
2. $f_{1}(S)(1-q)>f_{2}(S)$ for $S<\tilde{S}_{1}, f_{1}(S)(1-q)<f_{2}(S)$ for $\widetilde{S}_{1}<S<\tilde{S}_{2}$ and $f_{1}(S)(1-q)>f_{2}(S)$ for $S^{(0)}>S>\widetilde{S}_{2}$ where $\rho_{1}<\tilde{S}_{1}<\rho_{2}<\tilde{S}_{2}$ and $f_{1}\left(\rho_{1}\right)(1-q)<f_{2}\left(\rho_{2}\right)$ for demonstration.

Figs. E_{3}, E_{4} in Appendix E are the bifurcation diagrams of the dilution rate D with respect to the plasmid-bearing population in the steady state for these cases. In a similar manner it is easy to see that effect of varying the input concentration $S^{(0)}$.

6 Discussion

In this paper we give a global analysis of the asymptotic behavior of the model studied by Stephanopoulis and Lapius [SL], assuming uninhibited or inhibited growth for both plasmid-bearing and plasmid-free populations. In [HWW] the authors gave a complete analysis for the case of uninhibited growth rates. The foregoing sections gave a global analysis for the Type A species (plasmid-bearing species is inhibited and plasmid-free species is uninhibited), Type B species (plasmid-bearing species is uninhibited and plasmid-free species is inhibited) and Type C species (both of plasmid-bearing and plasmid-free species are inhibited). Although it is not very realistic to have the Type A and the Type B species in practice, we follow the same line as the authors of [SL] and [RD] did, to do the analysis for the sake of completeness. In reality, both of the plasmid-bearing and plasmid-free species have the same type of growth response functions for the substrate. Hence the results of Type C species in this paper and those in [HWW] are important in application.

Our results demostrate the existence of multiple states as Macken, Levin and Waldstätter did for the bacteria-plasmid systems [MLW]. Our analysis also shows that the possibility of coexistence in the form of oscillations in the cases of $B_{5}, B_{10}, C_{15}, C_{21}$. There are a number of models for plasmid loss referenced in [SL]. There is also a nice paper of Simonsen [S], surveying a number of experiments and giving an estimate q as $10^{-3}-10^{-5} \mathrm{HR}^{-1}$. The interested reader may consult it for further biological considerations.

Appendices \mathbf{A} to \mathbf{E}

Fig. C_{1} (continued)

Fig. C_{2}

$$
\mathrm{D}_{1}
$$

Appendix \boldsymbol{D}_{1}

Appendix \boldsymbol{D}_{2}. Plot of 200 timesteps in the case of oscillatory coexistence. The reponse functions $f_{1}(S)$ is $1.22 S / 0.02+S$ and $f_{2}(S)$ is $4.8 \mathrm{~S} / 0.4+S+10.0 S^{2}, q=0.13$

Appendix \boldsymbol{D}_{3}. Plot in R^{3} of the limit cycle given in D_{2}
x_{1}

E_{1}
X_{1}

E_{2}

$$
\begin{array}{lllllll}
C_{9} & C_{13} & C_{19} & C_{17} & C_{16} & C_{7} & C_{1}
\end{array}
$$

$$
\longleftarrow \quad \mathrm{D}
$$

E_{4}
Appendix E: The bifurcation curve of x_{1} of $E_{\mathcal{C}_{1}}$
\ldots The bifurcation curve of x_{1} of $E_{c_{2}}$
(T) The possible area of oscillation

References

[BW] G. J. Butler and G. K. Wolkowicz, A Mathematical Model of the Chemostat with a general class of functions describing nutrient uptake, SIAM J. Appl. Math. 45(1) (1985) 138-151
[H] Jack K. Hale, Ordinary differertial equations, Wiley (interscience), New York, 1969
[HW] Sze-Bi Hsu, P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Appl. Math. 52 (1992) 528-540
[HHW] S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro organisms, SIAM J. Appl. Math. 32 (1977) 366-383
[HWW] Sze-Bi Hsu, Paul Waltman and G. S. K. Wolkowicz, Global Analysis of a Model of Plasmid-Bearing, Plasmid-Free Competition in a Chemostat, J. Math. Biol. 32 (1994) 731-742
[MLW] C. A. Macken, S. Levin and R. Waldstätter, The dynamics of bacteria-plasmid systems, J. Math. Biology 32 (1994) 123-145
[RD] D. F. Ryder and DiBiasio D., An operational strategy for unstable recombinant DNA cultures, Biotechnology and Bioengineering 26 (1984) 942-947
[S] L. Simonsen, The existence conditions for bacterial plasmids theory and reality, Microbial Ecology 22 (1991) 187-206
[SL] G. Stephanopoulis and G. Lapidus, Chemostat dynamics of plasmid-bearing and plasmid-free mixed recombinant cultures, Chemical Engineering Science 43 (1988) 49-57
[T] H. R. Thieme, Asymptotically autonomous differential equations in the plane II. Stricyer Poincaré/Bendixson Type Results, Diff. Int. Eq. 7 (1994) 1625-1640.

[^0]: * Research Supported by the National Council of Science, Republic of China

