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Abstract. An analysis is given of a mathematical model of  two predators feeding 
on a single prey growing in the chemostat. In the case that one of the predators 
goes extinct, a global stability result is obtained. Under appropriate circum- 
stances, a bifurcation theorem can be used to show that coexistence of the 
predators occurs in the form of a limit cycle. 

Key words: Chemostat  - Competition - Coexistence 

1. Introduction 

The question as to whether one prey can support two predators is an intriguing one 
in ecology. Although there is considerable mathematical [1], [2], [17], [19], [23] 
and computational [12], [17] evidence to support this possibility, the systems 
analyzed seem not to be directly or conveniently testable in a laboratory 
environment. This paper presents a mathematical  analysis of  the system where two 
predators are supported by a single prey and where the mathematical result can be 
tested in a common laboratory apparatus,  the chemostat. 

The chemostat, as used to produce a continuous supply of microorganisms, 
consists of  a nutrient, imput at a constant rate and at a fixed concentration, flowing 
into a culture vessel of  fixed volume; the overflow, necessary to maintain a fixed 
volume contains both nutrient and microorganisms. The basic equations, which go 
back as far as [20], are 

m x S  
S'  = (S  I~ - S )D  

7(a + S ) '  

(aT; 1 x ' : x  D , ' : - -  
/ dr' 

S(O) > O, x(O) > O. (1.1) 
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S I~ is the imput nutrient concentration rate, D the dilution (or washout) rate, m the 
maximal growth rate, a the Michaelis-Menten or "half  saturation" constant, and 
a yield constant; all of these are positive quantities. S(t) represents the con- 
centration of the nutrient (or substrate), and x(t), the concentration of the 
microorganism being cultured. A fuller discussion of the chemostat parameters and 
its comparison with batch culture can be found in [27]. 

If the culture vessel is charged with two or more types of microorganisms it is 
known mathematically [10], [11], [13], [24] and experimentally [9] that only one 
survives- the competitive exclusion principle holds. 

Consider now a chemostat, as described above, and two higher level predators, 
y and z, which feed exclusively on the microorganism x, and which compete through 
their consumption of this common resource. The equations take the form 

mlSx 
S' = (S ~~ - S)D 

yl(al + S) ' 

{ mlS m2y m3z "~ 
x ' =  Xlka~TS D 72(a2 + x) ~3(a3 + x ) ) '  

/ m2x y'  = D) ,  

z'=z(-m3X-ka3 + x D ) ,  

S(O)=So~>O, x(O)=xo/>O,  y(O)=yo>~O, z(O)=zo~>O, ' = - -  

(1.2) 

d 

dt" 

The principal question is whether competitive exclusion still holds. We answer this 
in the negative (modulo a technical assumption, see Sect. 4). This result is important 
because the system (1.2) is testable in the l abo ra to ry -S  (~ and D are under the 
control of the experimenter and mi, ai, ?i, i = 1,2, 3, are readily measurable 
quantities [9]. This is one reason why the chemostat plays such an important role in 
microbial ecology (see, for example, the four survey articles, [8], [14], [263, [27]). 
Based on the experiments in [6], one could suggest that S is a sugar, x is a 
bacterium, y and z are protozoa. Such ecosystems are also believed to play a role in 
waste water treatment [21]. 

In Sect. 2 the model is simplified by a change to nondimensional variables and a 
reduction of order. Section 3 analyzes a reduced system, the omega limit set in the 
case of competitive exclusion, and a system of interest on its own as a food chain. 
The local stability has been determined previously [3], [4], [22], [25], but here a 
global result is obtained which answers a question of Sell [22]. Section 4 deals 
briefly with the conditions for competitive exclusion. In Sect. 5, a bifurcation 
theorem is proved which shows the coexistence of the competing predators, or that 
competitive exclusion does not hold. This result, Theorem 5.1, follows the 
development in the previous work [23 with a logistically growing prey. Other results 
for coexistence on this latter system may be found in [1], [16], [23]. Finally in Sect. 
6, some general comments are made about generic considerations. 
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2. S i m p l i f i c a t i o n  o f  the P r o b l e m  

First of  all, the variables in the system (1.2) will be changed to nondimensional ones. 
Let 

S x y 
- 2 -  37-  

S(O)  , 7 1 S ( O )  ' 7 1 7 2 S ( O )  , 

z a 1 a 2 
2 = - -  al - a2 - 

7173S(~  ' S(O) ' 71S(0)  ' 

a3 mi 
a3 - r h l -  i =  1,2,3, 

)qS (~ D ' 

t =  Dt. 

Then (1.2) becomes 

( ? 1~ I~237 t~13Z 
X' = 2 \~11 "~- ~ 1 _ - - - - -  , gt2 + 2 a3 + x,] 

_[ mzx 1"~, 

J 
2'= 2 (  rh32 1) 

\a3 + )2 

d ! 

dt 

Dropping the bars yields 

m l x S  
S ' = I - S  

al + S '  

\a l  + S a 2 + x a3 + x /  

f m2x 5,  y '  
= Y ~ a 2 + x  1 ) 

z' ----- z ( m3x ) 
\ a 3 + - x  1 , 

S(O) = So > O, x(O) = Xo > O, 

y ( O ) = y o  ~>0, z(O)=zo~>O, 
d r 

dt '  

(2.1) 
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which is the system we wish to study. Note  tha t  the 7~'s are nondimensional ,  so all o f  
the variables in (2.1) are nondimensional .  

The  next lemma,  a "conserva t ion  law" changes the system f rom a four  
dimensional  one to a three dimensional  one : since every trajectory is asymptot ic  to 
its omega  limit set, it is sufficient to analyze this system. Note  tha t  the positive cone 
in (S, x , y ,  z)-space is positively invar iant  under  the solution m a p  so the l emma 
yields the boundedness  of  solutions of  the initial value p rob lem (2.1). 

Lemma  2.1. The omega limit set o f  any solution o f  the initial value problem (2.1) lies in 
the hyperplane S + x + y + z = 1. 

Proo f  Let Z(t)  = S(t)  + x( t )  + y( t )  + z(t).  Then S ' ( t )  = 1 - S( t ) ,  X(O) >~ 0 and 
the l emma follows. 

One can use L e m m a  2.1 to eliminate one variable f rom the system (2.1), and use 
will be made  of  this in the next two sections. In view of  the lemma,  trajectories which 
fo rm the positive omega  limit set o f  any solution of  (2.1) are solutions of  

= ( ml(1 :_5 ~-Y_~Z! m2y m3z ~, 
x' X k l + a , _ x _ y _ z  1 a 2 + x  a 3 + x /  

/ m2x  1~ ' y '  =Yt, a Tx J 

\a3 + x ' dt ' 

x(O) = Xo > O, y(O) = Yo > O, 

which satisfy 0 ~< x ,y ,  z ~< 1. 

z(0) = z0 >/0, (2.2) 

The next simplification is to eliminate " inadequa te"  predators  or an "in- 
adequa te"  prey - those which become extinct on the level of  nutrient  available, or 
at the given dilution rate, independent  of  a n y p o p u l a t i o n  interactions. For  example,  
if m,  ~< 1 and Xa(0) > 0 then x '  < (ml/(1 + a l )  - 1)x and l im,~ oo x( t )  = 0 (and 
consequently l im,~ ~ y( t )  = 0 and lim,_~ ~o z(t)  = 0). Similarly i f m  2 ~< 1 or m a ~< 1, 
the corresponding preda tor  becomes extinct. Let 21 = aj(m~ - 1), m~ > 1. A similar 
extinction result to the above  follows if21 >t 1. For  example,  suppose 22 /> 1. Then,  
since x ~< 1, we have 

(m 2 -- 1) 
y'  = y (X -- ~2) ~ O, 

a 2 + x  

and l i m t ~ y ( t ) =  q ~> 0; r / >  0 produces a contradict ion.  The same a rgument  
works  for z(t)  and, with a slight modif icat ion,  for x(t).  This is summar ized  in the 
following statement.  

Lemma 2.2. I f  ml<<.l or 21>~1, then l i m t ~ x ( t ) = 0 ,  l i m t ~ y ( t ) = 0 ,  
l i m t ~ o ~ z ( t ) = 0 .  I f  mz <~ 1 or 22~> 1, l i m t - + ~ y ( t ) = 0 .  I f  m3 <~ 1 or 2a >~ 1, 
lim~+ oo Z(t) = O. 

We make  the following hypothesis  for the remainder  of  the paper  

(H- l )  mi > 1 and 2i < 1, i = 1 ,2 ,3 ;  22 < 23. 
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The last inequality is merely a choice of labeling for the competing predators and 
the assumption that they are "different". 

3. A Food Chain 

In this section we consider the special case z - 0 where the system (2.1) becomes 

m l x S  
S ' = I - S  

a l + S '  

m l x S  m2xy 
X r -  X 

a 1 + S a 2 + x '  

m z x y  
y ' -  y, 

a2 -3v x 

S(O) = So > O, x(O) ~- Xo > O, y(O) = yo > o. 

This describes the omega limit set of the system (2.1) when competitive exclusion 
holds (lim,~ co z(t)  = 0). We describe it first since the results are needed to state the 
theorem in the next se6tion. It is also a system which is essential for the bifurcation 
described in Sect. 5. The system (3.1) is of interest in its own right in that it describes 
a food c h a i n - y  eats x which eats S. It has been studied in [15], [22], [25] and 
related experiments are described in [6] and [15]. The previous work has been a 
local stability analysis and we improve on that in one case, thereby answering a 
question raised in [22]. Although a local stability analysis exists in the literature we 
summarize it here because our notation and point of view are slightly different. 

This system inherits from the larger system (2.1) the properties that the positive 
octant is positively invariant, that ml ~< 1 or 21 >~ 1 forces lim,_~ ~ x( t )  = 0 (and 
hence lim,_~ ~ y(t)  = 0), that m2 ~< 1 or 22 ~> 1 forces lim,~ ~ y(t)  -- 0, and that the 
omega limit set of any solution of (3.1) lies in the set 

T =  { ( S , x , y ) l S  + x + y =  1, S>~O, x ~>O, y ~>O}. 

Since every trajectory is asymptotic to its omega limit set, it is sufficient to analyze 
the system 

x' X \ l  + aa - x - y a 2 + x j  

[~ m2x "~ y '  
= y t - ~ 7 ~  1) (3.1) 

obtained by putting z = 0 in (2.2). 
Note that we may restrict our attention to the triangular region 

T =  {(x,y): 0 ~< x ,y ,  x + y <<. 1}. 

The interesting part of the analysis will be the global stability of the interior 
critical point of (3.1) but first it is necessary to analyze the local behavior near the 
critical points on the boundary of T. (As noted above this has been done in [3], [4], 
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[223.) Critical points on the boundary  for (3.1) are 

Ei = (0, 0), E2 = (1 - R~, 0), 

where 21 = a i / ( m i  - 1), m 1 > 1. 
The variat ional matr ix takes the form 

where 

M=[mll mx21 
Lm2i m 2 2 A  

m l l  
m l a l  _m2y_ m l ( l  -- x -- y )  m 2 y  1 + x - 

1 -{- a l  - x - y a2 + x ( I  + a l  - x - y ) 2  + ( a  2 + x ) 2 ] '  

- -  m l a l  x m 2 x  

m 2 x  
m21 (a2 + X.2- , )  m22 1. 

a 2 + x  

(1 + al - x - y)2 a2 + X '  

m z a 2 y  

m12 

At El ,  this takes the form 

I (ml - 1)(1 - 21) Ol ] 

0 

Thus E1 is an asymptotical ly stable critical point  if ml < 1 or 21 > 1, and a saddle 
point  if rnl > 1 and 21 < 1 (which we are assuming). At E2, 

I 
-- (1 --  21) a lmi  

M = (aa 71- ~ ,1 )  2 

0 

{ m2 }] 
- ( a lm~ i )  2 1 + a2 - 21 

(1 21) 

(m2 - 1)(1 - 21 - 22) 

F o r  E 2 to be biologically meaningful,  i.e., to be in the positive quadrant ,  it must  be 
the case that  0 < 21 < 1. Therefore  E 2 is asymptotically stable if21 + 22 > 1 and a 
saddle point  i f0  < 21 + 22 < 1. A stable E2 will correspond to extinction of  the top 
level predator  and survival of  the intermediate level organism. 

Suppose now that  there is a critical point  (xc, Yc) interior to T. 

ml(1 - xc - y c )  rn2y~ m E x c  
- 1, - 1. ( 3 . 2 )  

1 - t - a l  - - X c - - Y c  a2 + X c  a2 + Xc 

Clearly xc = 22 = a 2 / ( m 2  - 1) > 0 (if m2 > 1), so we are assuming that  y~ > 0 
satisfies 

mi(1 - 22 - y~) m 2 Y c  
- 1. ( 3 . 3 )  

1 + a l  - 2 2  - yc a2 -~- 22 

Equa t ion  (3.3) may  be rewritten 

(rnl - 1)(1 - 22 - 21 - yc) Y~(1 = 22 + al - 2 2  - y j .  
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Since ~'2 -[- Yc must be less than 1, if2~ + 2~2 > 1 no positive solution of(3.3) exists. 
Thus ifE2 is asymptotically stable, there is no interior critical point�9 If21 + 22 < 1, 
then (3.3) has precisely one positive solution Yc. 

The variational matrix evaluated at (x~, yc) takes the form 

M =  

I - m122aa mzyc22 -- mla122 
(1 + a 1 - 2 2 - y ~ ) 2  + ( a 2 + 2 2 )  2 (1 + a 1 - 2 2 - y c )  2 -  1 

(m  2 --  1)yc 0 

22 -[- a2 

Since the determinant of M is positive, the stability depends upon the trace�9 The 
trace of M is negative if 

This simplifies to 

m2Yc mlaa 
< 

(a  2 -k 22) 2 (1 -k a 2 - -  22 - -  yc) 2" 

Yc m la l  
- -  < ( 3 . 4 )  
mz22 (1 + al - 22 - yc) z" 

If (3.4) holds, (xc, Yc) is asymptotically stable. 
If the inequality is (3.4) is reversed then (xc, Yc) is unstable (a repeller) and by the 

Poincar6-Bendixson Theorem there is at least one periodic solution. If there is more 
than one, the inner one is stable from the inside and the outer one is stable from the 
outside�9 Two questions immediately arise: 

I. If (3.4) is satisfied, is (xc,yc) globally asymptotically stable? 
II. If the inequality in (3.4) is reversed, is the limit cycle unique? (In this case it 

must be a global attractor w.r.t, non-critical orbits in the open positive (x,y)- 
quadrant) ? 

Question I which was raised by Sell in [22] is answered the affirmative in 
Theorem 3.1. It is conjectured that II holds. 

In the proof below, the quantity 1 - x(t) - y(t) turns up frequently, so to save 
space, we use S( t )=  1 -  x ( t ) - y ( t )  for this quantity when convenient�9 
Correspondingly, let Sc = 1 - x c -  yc. To establish the global stability of the 
critical point it is only necessary to eliminate limit cycles�9 Lemma 3. I is the critical 
technical step. In the computation necessary to prove the lemma it is convenient to 
change variables to convert a "t ime" integral to a line integral in order to be able to 
apply Green's Theorem. The following observation is useful. 

Remark. 

s ( t )  - & = 
x dt m a -  1 a2+22 dt 

mla l  m2 + -  
(as + Sc)(al -k S(t)) a2 + x 
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Proof of  Remark. Since 

x' m l S  mzy  

al + S a2 + X 

m l S  mlSc m2y~ m2y + 
al + S al + Sc a2 -~ 22 a2 + x 

mla l (S  - S o )  m2 m2ye 
= (Y - Y~) + x) (x - xc) 

(al + S)(al + S~) a2 + x (a2 + 22)(a2 + 

(( mlal m~ ) 
al + S)(a~ + S~) + a2 + x (S - -  Sc) 

(am2 m2y~ )) 
+ + (x - 22) 

2 + X (a2 -k x)(a2 -t- 2 2 

az + S)(a~ + Sc) + ( S - S o ) +  1 + - -  , a2 + x y m 2 -  1 aa + 22 

the remark follows. 

For convenience of the statement of the next lemma, rewrite (3.1) as 

x' = f l ( x , y ) ,  y' = f2(x,y) .  (3.5) 

Lemma 3.1. Let F( t ) = (x(t), y( t )) be an arbitrary periodic orbit of(3.1) with period 
T. Let R denote the set of  points o f  the plane which are interior to F and let 

A = (x(t) ,y(t))  + (x(t),_(t)) dt. 
,J o \ o x  

Then 

( YCm~xc (almlalxc / f f  A = Sc) 2 " T +  R Q(x ,y )dxdy ,  (3.6) 

where Q(x,y)  < O. 

Remark. If the constant in (3.6) is negative the orbit F is asymptotically (orbitally) 
stable. 

Proof of  Lemma 3.1. Differentiation yields 

A =  (L_I + a l - x - y  

_ mla 1 
+ x  ( l + a 2 - - x - - y ) 2  

mzy 11 
a 2 + x  

IF ]} m2y + 1 dt. 
-t- (a2 -t- x) 2 [_a2 + x 

Since x(t) is periodic of period Tthe quantity in the first square bracket integrates to 
zero since it is just x'(t)/x(t) and can be integrated as a logarithm. Similarly the third 
square bracket integrates to zero since it is just y'(t)/y(t),  where y(t) is periodic of 
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period T. Thus 

A = I T ( - m 2 y ( t )  alml )x(t)dt .  (3.7) 
Jo \(a2 + x(/)) 2 (I + al -2 xU-) - y(t)) 2 

The rest of the proof is simply a restructuring of this integral so that an application 
of Green's Theorem yields a function Q(x, y) with the desired sign. The details of 
this are somewhat complicated and tedious. 

First of all 

f ]  m2x(t)y(t) 
(a2 + x(t)) 2 + ~(t) / \a2 + x(t) / 

= oa2 7 x ( t )  \ a l +  ~ t )  1 - x ( t ) /  

= fT  x(t) (miSc_ 1)dt 
o a2 + x(t) ka~ + S~ 

+ f [  x(t) ( m l S ( t )  rnlS~ ~dt 
a2 + x(t) \a2 + x(t) a~ + S~/ 

= I 1 + I 2 .  

We begin with 12. Combining terms yields 

I2 = f T0(/2 X(t)+ x(t) \(mlS(t)(al + Sc) - mlSc(al + S(t))) 1 + ~t))(a~ + Sc) 

al + Sc a2 + x(t) al + S(t)/ 

An application of the remark preceding the lemma yields that 

al + Sc r (aa + x)(al + S) mlal 
al + Sc)(a2 + S) + - -  

m2 -- 1 a2 + 22 

Green's Theorem is now applied to give 

al + Sc . \  ex ~ ) d x a y ,  

where 

m2 ) 

a 2 + x  

m2 (1 + Yc ~lXp, x , 
Ql(X , y ) -  m2 -- 1 m2/[2)y ( 'Y)' 

dx 
x 

Pl(X,y) = (a2 + x)- lp(x,y) ,  
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P ( x , y )  = 
mxal ma(ax + 1 - x -  y) " - - +  

al + S~ a2 + x 
It  follows, upon differentiating, that 

OQI 0P1 
- - < 0 ,  - - > 0  
Ox Oy 

and the integrand is negative. We return now to 11. Since 

( T1Sc- l~ fT x(t) dt, 
11 \al + Sc ,/30 a2 + x(t) 

then, using the differential equation for y, one has 

( ) f i ( y f  ) T ( m I S ~  ) Yc y~T 
1 . m l S c  1 + 1 at---m22\~+-Sc 1 = T - 11 = ~ a l  + S~ a2 + )~z m222 " 

We return now to the second integral in (3.7) and apply the same technique. 
Write 

__ Ir almlx(t) fT  x(t) ~Fmlal(a2+x) mlal ] 
3o ( ~ + ~ ) 2  dt = - o a2 + x(t) I.L (al + S(t)) 2 (al + Sc) 2 (a2 + x) 

First of  all 

F mlal(a + x) mlal(a2 -b 22)1 
+ L J 

Fmxal(aB + 22)~'~ 
+ L -jjdt 

= 13 + I4 + 15. 

[3=_fl x F mxal(a2+x) m,al(az_+x)_~dt 
a2-+ xL- ~ + S-~i (al + Sc)~ .] 

f l x ( S - S c ) ( 2 a x + S + S c )  
= alml -(at + ~ - 1  + S)2 dt 

which can be broken into two integrals as 

1 T x_(S - S , )  d t  q dt, 
13=alml(ax +So) 2do al + S  ax + S ~ J o ( a x  + S )  2 

each of which can be converted to a line integral using the remark preceding the 
lemma. We omit the details but the end result is as follows: 

o a x + S  dr= RkOx Oy,] 
where 

P2 = P(x,y), Q2 - 
m2 -- 1 
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and 

o (al + S) 2 JJ~  \ Ox 

e(x,y) 
P3 = 

1 + a l  - - x - y '  

Q 3 -  m2 ( 1 +  yc xP(x_y) )).  
m 2 -  1 m222 y(1 + a l - x - y  

Furthermore ~?Q2/#x < O, c~Q3/t?x < o, OP2/@ > O, OP3/@ > 0. Thus /3  can be 
written as an integral over R with a negative integrand. 

Finally 

m l a l  dy = - dxdy, 
14= - ( m 2 _  1)(al +S t )  2 r ( m 2 -  1)(al +S~) 2 R 

and 

mlal(a2 + 22) ~r [y ' ' - m~ax(a2 + 22) - maax22 
15 = -  [ [ ) +  1 d t=  (aa+Sc)  2 mz(al +So) 2 3o kY m2(al +Sr 2 T -  T. 

Adding all of the above integrals yields 

( - -mla l ) t2  Yc ) i f  
A = \ (a l  + So) 2 + m~22 T +  R Q(x,y)dxdy, 

where Q(x,y) < 0, and the proof of the lemma is complete. 

Theorem 3.1. I f  the critical point (xc, y~) satisfies 

yc m l a l  
(3.4) 

m222 ~" (1 + al - 22 - yc) 2 

then (xc, yc) is 91obally asymptotically stable w.r.t, the interior of  the first quadrant. 

Proof The condition (3.4) is just the condition for the local asymptotic stability of 
(x~, Yc) as determined by the linearization. Suppose P is an arbitrary periodic orbit 
about (xc, yc). Then by the remark following the statement of Lemma 3. t, every such 
orbit is asymptotically s t ab l e - a  contradiction since an asymptotically stable 
critical point mandates at least one periodic orbit being unstable. Thus there are no 
periodic orbits and the local asymptotic stability of (x~, y~) is global by the Poincar& 
Bendixson Theorem and by the lack of connected saddle points. 

Theorem 3.2. I f  (x~, Yc) exists in the positive octant and 

Yc mla~ 
m22--~ - > (1 + al - 22 - yc)2, (3.8) 

then there exists a periodic orbit for (3.3). 

Proof The proof(as noted above and in [22]) follows from the Poincar&Bendixson 
Theorem. 
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4. Competitive Exclusion 

In this section we obta in  condit ions that  guarantee  that  l i m t .  ~ z(t) -- 0, that  is, one 
of  the predators  becomes extinct. Because of  (H-1) the system is prejudiced in favor  
o fy ( t ) ;  symmetr ic  results could be stated for the conclusion l i m ~  ~ y(t) = 0 if (H- l )  
is not  assumed. Two lemmas  are presented which guarantee  that  the omega  limit set 
of  any solution of  (2.1) has z coordinate  equal to zero. The first l emma  is quite easy 
to prove  and we state it separately even though it could be included in L e m m a  4.2. It  
is a s tandard  observat ion for chemosta t  equat ions [7, Fig. 3]. 

Lemma 4.1. Let (H- l )  hold and let fz(X) = m2/(a: + x) and f3(x) = m3/(a3 + x). I f  
fz(x)  > f3(x), 0 ~< x ~< 1, then limt_~ ~ z(t) -- O for every solution of(2.1) with positive 
initial conditions. 

Proof. Let (S(t), x(t), y(t), z(t)) be a solution of  (2.1). Then 

z ' ( t )  y ' ( t )  

z(t) y(t) 
- x ( t ) [ - A ( x )  - f2(x)3 

~< ( i n f x ( t ) )  (61) 

where 61 = max0 ,<~ ,< l [ f3 (x ) - f2 (x ) ]  < 0. I f  i n f t x ( t ) =  0, then an easy limit 
a rgument  shows l i m ~  ~ z(t) = 0 (and l imt~ o~ y(t) = 0). I f  inft x(t) = 62 > 0, then 
let 6 = 6162 SO that  

z ' ( t )  y ' ( t )  
~..< 6 < O. 

z(t) y(t) 

Then 

z(t) <~ cy(t)e -~t, 

for some c > 0. Since y(t) is bounded,  l im,~ ~ z(t) = O. 
This l emma has a simple biological interpretat ion;  if y is a better  compet i tor  

(has a higher intrinsic growth rate) for every level of  the prey x, then z will become 
extinct. This would be true for example i fm2 >~ m3 and az ~< a3 and at least one of  
the inequalities is strict. I f  there is a value x* ~ (0, 1) such that  fz(x*)  = f3(x*), and 
the two curves, w = f~(x), i = 2, 3, cross, then y has a higher growth  rate for x on one 
side of  x* and z, for x on the other. Coexistence then is conceivable if x(t) oscillates 
abou t  x*. The  next l emma  rules out  one such case. 

Lemma  4.2. Let (H- l )  hold. I f  m3 <<, m2, then l i m t ~  z(t) = 0. 

Proof. The p r o o f  of  this l emma requires a fairly lengthy computa t ion  and the reader 
is referred to L e m m a  4.3 of  [-11] for the p r o o f  of  a quite similar lemma.  L e m m a  4.2 
follows in the same manner .  

The biological basis of  the p r o o f  is quite easy to see. Al though the curves cross at 
x*, 0 < ,~2 < 23 < 1 forces x* < 22. Thus  at the prey level where z has an advantage  
both  predators  are decreasing exponential ly;  when the prey recovers (reaches a 
higher level) y has the advantage.  
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The following theorem follows f rom L e m m a  4.2 and Theorems  3.2 and 3.3. 

Theorem 4.1. Le t  m3 <<. m2 and let (H- l )  hold. I f  ( S(  t ), x (  t ), y (  t ), z(  t ) ) is a solution o f  
(2.1) with posit ive initial conditions, then 

lim (S( t ) ,  x ( t ) ,  y ( t ) ,  z ( t ) )  = (1 - Xc - Yc, x~, yc, O) 
t ~  oO 

~f 

Yc mlal 

m2x2~ < (1 + al - xc - yc) 2 '  (4.1) 

where xc = 22 and yc is a posit ive solution o f  

ml(1 - 22 - yc) m 2 y  
- -  1 .  

1 + al  - -  2 2  - -  Yc a; + 22 

I f  the inequality (4.1) is reversed and  ( S(  t ), x (  t ), y (  t ), z( t ) ) is a noncritical orbit, then it 
approaches (or is) a periodic orbit in the plane S + x + y = 1, z = O. 

Since (H- l )  forces m3 < m2 if a3 ~< a2, the only case where coexistence is 
possible is a2 < a3, m2 < m3. 

5. Coexistence 

In Sect. 3 it was shown that  the system (2.1) possesses a limit cycle in the plane 
S + x + y = 1, z = 0, provided that  

Yc m l a l  - - >  
m2x~ (1 + al  -- xc -- yc) 2 ' 

The uniqueness of  the limit cycle and its stability propert ies  were not  established, in 
contras t  to the case of  a similar p rob lem with a logistically growing prey [5]. I f  
more  than  one limit cycle should exist then the innermost  one is stable f rom the 
inside and the outer  one is stable f rom the outside, so for these two, one Floquet  
multiplier  is one and the remaining Floquet  multiplier cannot  be larger than one. In 
fact, f rom [7] it would follow that  there is at least one stable limit cycle. We need to 
m a k e  a slightly s tronger  assumpt ion:  

(H-2) There  exists a limit cycle for (3.1) which has a Floquet  multiplier  (strictly) 
inside the unit  circle. 

With this assumpt ion ,  we can show that  there is a range in the pa ramete r  space 
where compet i t ive exclusion does not  hold. The uniqueness p r o o f  given in [5] was 
s t rong enough to yield (H-2) as well, but  symmetr ies  used there are not  present  in 
(3.1). 

Theorem 5.1. Let  ai, mi, i = 1,2, be f i x e d  so that m i > 1, 2 i < 1 a n d ( H - 2 )  holds. Fix  
m3 > m2. Then there exis ts  a number  a* > a2 such that Jor a3 < a*, la3 - a~[ 
sufficiently small, we have 22 < 23 and  (2.2) has a periodic orbit in the posit ive octant  
which is arbitrarily near the x -y  plane. ((2.1) has aperiodic  orbit in the posit ive cone in 
E 4 arbitrarily near the plane, S + x + y = 1, z = 0). 
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The proof requires some preliminary notation and auxiliary lemmas. 
Let x(t), y(t) be a periodic solution of period T of the system (3.1) which is given 

by (H-2) for the parameter values mi, ai, i = 1,2. Then (x(t), y(t), 0) is a solution of 
(2.2) for any choice of m3 and a3. Fix m3 and define 

m3J'~ ~ x(~) d~. (5.1) 
#(a3) = - ~  a3 + x(~  

a3 will be treated as a bifurcation parameter. 
Let F be the orbit corresponding to this periodic solution. For each value of a3 

the Poincar~ map associated with F, P: Wo ~ W1 exists, where Wo, WI are open 
subsets of ~, a two-dimensional, transverse section of F. The linearization about 
the periodic orbit and the linearization of the Poincar~ map about the fixed point 
corresponding to F are related. The following statement makes this point precise. 

Lemma 5.1 1-18]. The spectrum of  the linearization of  the Poincarb map union {1} is 
equal to the spectrum of  the linearization of  the solution map defined by 

~(x o, y 0, z o) = (x(T), y(T), z(T)), 

where 

x(O) = x ~ y(O) = yO z(O) = z ~ 

As a consequence of Lemma 5.1, showing that one Floquet multiplier passes 
from inside to outside the unit circle shows that an eigenvalue of the linearization of 
the Poincar6 map passes from inside to outside the unit circle. This is the key 
ingredient in the following bifurcation theorem [18, p. 24]. 

Lemma 5.2. Let W be an open neighborhood of  0 ~ R 2 and let I be an open interval 
about 0 ~ R. Let ~v: W--* R" be such that the map (v, x) ~ q~v(x) is a C k map (k >~ 1) 
from I x W to R 2, and such that q~o(O ) = O for all v ~ I. Define L~ to be the differential 
map dq~(O) and suppose that all eigenvalues of  L~ lie inside the unit circle of  the 
complex plane for v < O. Assume that there is a real, simple eigenvalue l(v) of  L~ such 
that l(0) = 1 and (dl/dv)(O) > O. Let Vo be the eigenvector corresponding to l(0). Then 
there is a C k-1 curve cg of  f ixed points of  q): (v,x) --* (v, ~ ( x ) )  near (0,0) in I • R 2 
which together with the points (v, O) are the only fixedpoints of  q~ near (0, 0). The curve 
cg is tangent to Vo at (0, O) in I • R 2. 

Remark. The direction of tangency of cg given in the last assertion of the lemma is 
more specific than that given in [18] but is easily obtained from the proof. We 
require this more precise location of cg in our application. The following lemma 
from [2] follows from elementary differential equations theory (see also [23]). 

Lemma 5.3. Let A( t ) be a 2 x 2periodic matrix of  period z and suppose that the linear 
system 

Y2/ 

has Floquet exponents 0 and - y < O. Let b( t ), c( t ) be functions of  period z such that 
the mean value of  b is equal to rl < O. Then the linear system 
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(yl , (yl) 
YZ]  = B(t) Y2 
Y 3 J  Y3 

where 

B(t) = ~ A(t) e~t)] 

ko 0 b(t) A 
has Floquet exponents 0, - V, t/. 

Proof of Theorem 5.1. Let a~ be a constant to be determined, and let v = a~ - a3. 
Let F be the orbit associated with the periodic solution (x(t), y(t), 0) when a3 = a~ 
(v = 0). Fix a pointp0 ~ F and let f2 be the transverse section to F atpo, identifying 
P0 with 0 in E 2. Let r denote the Poincar6 map associated with the periodic 
solution (x(t), y(t), 0) for v near 0. There is a neighborhood Wo ofpo in f2 such that 
for v sufficiently close to zero, r is defined on Wo. We investigate the spectrum of 
Lv = d~v(0) by examining the Floquet multipliers of the corresponding system of 
differential equations. 

The matrix associated with the linearization of (2.2) takes the form 

I f~(x(t),y(t),O) fr(x(t),y(t),O) 
. . m2a2 m2x(t) 

y(t) (az + x(t)) 2 a2 + x(t) 1 
m3a3 

z(t) (a2 + x(t)) 2 0 

where x' =f(x,y,z) in (2.2). 

fi(x(t),y(t),o O) ] 

m 3 x ( t )  1 
a 3 q- x(t) 

This can be viewed as partitioned in the form 

M = I V f~(x(t);y(t), 

o o l / '  
a 3 + X(I) . ~  

where the two-dimensional system 

~'= v(t)~ 

has one Floquet multiplier equal to 1 (since ~(t) = / [ x(t)/\ is a periodic solution) and \y(t)] 
one multiplier (call it e-~) inside the unit circle, by the hypothesis (H-2) on the 
planar orbit. Thus the linearization of the Poincar6 map has eigenvalues e-~, e r 
where 

r = ~/(a3) - 1. 

Now 

~(0) = m3 > 1 
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by hypothesis and 

m3 I T 
#(a3) ~< a3-Tdo x(~)de 

so for a3 sufficiently large, #(a3) is arbitrarily small (note that x(t) is independent of 
a3). #(a3) is continuous and decreasing with a3, so there is a unique value a~ of a3 
such that #(a~) = 1. Note also that 

d # _ - m 3 f  T x(r 
da3 T o (a3 d- 

In particular, #(a3) crosses the value 1 non tangentially as a3 passes through a* (as r 
passes through 0) so the Floquet multiplier passes through the unit circle 
transversally; indeed 

c?e~(a'~) = @ (a~) �9 exp[g(a~ - 1)] < 0 
gag 6~a3 

as r passes through zero. Thus (Oe~/Ov)(O) > O. 
The same is now true for the linearization of the Poincar6 map ~ - i.e., Lr has 

eigenvalues e-~, e ~ and e ~ crosses the unit circle nontangentially as r passes through 
zero. 

Applying Lemma 5.2 there is a C 1 curve (s of fixed points of 4~(X), bifurcating 
from (v, 0) at (0, 0). Each such fixed point corresponds to a periodic solution of (2.2) 
and hence of (2.1). Since ~g is tangent to the eigenvector associated with the 
eigenvalue 1 of L0, it is transverse to the x-y plane. Hence one branch lies in the 
positive octant if la3 - a*l is sufficiently small. Since 

m33 x(~) m2 i T x(~) ,r _ _ d ~ > _ _  - - d ~ =  1, 
#(a2)= T.Joae + x(~) T.Joaz + x(~) 

a'~ > a2, so a3 may be chosen to satisfy a3 > a2. 
It remains to show that 2e < 23 by the choice a3 < a~. Note that the choice 

gt3 = a2(m3- 1)/(m2- 1) produces 2e = 23, so a3 > a3 will imply 22 < 23. 
Suppose that a* ~< a3. Let a 3 be chosen such that a2 < a3 < a~, and sufficiently 
close to a* that there is a periodic solution (2(0, flU), 5(t)) of (2.2), of period T, 
guaranteed by the bifurcation at a*. Thus since a2 < a3 < ti3, we have 

Hence, 

or 

1 =#(a2)  > # ( a 3 ) > # ( a 3 ) .  

~(nT") = ~(0) exp[nT(#(a3) - 1)] 

lim ~(nT) = 0, 

contradicting the periodicity of the solution. Hence a* > a3- Thus for a3 < a~ and 
sufficiently close, we shall have a3 > a3 and so 22 < 23. This completes the proof of 
the theorem. The limit cycle which bifurcates into the positive octant represents two 
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coexisting predators, y, z feeding on a single prey x (which of course is supported by 
the nutrient S). 

6. S o m e  C o m m e n t s  on  G e n e r i c i t y  

It is customary to say that a property P is generic for the system of differential 
equations. 

x' = f(x) ,  x e R " ,  f :  R ~ ~ R n (6.1) 

if P holds for fbe longing to a residual set (having 1st category complement) in an 
appropriate function space. The idea is that the right-hand side of (6.1) is an 
"approximation" to the " t rue" situation and so, to be "real", a property should be 
preserved for "most"  small perturbations off.  The property ofinvariant faces of the 
positive cone for system (2.1) can be destroyed by "most"  small perturbations off.  
Moreover the "generic" bifurcation of a limit cycle is that of bifurcation into an 
invariant t o r u s - w h y  does it not occur for (2.2)? This section addresses this 
question. 

The model for a self-renewing organism is usually made by prescribing the 
intrinsic growth r a t e - t h e  per capita growth rate. For example a population 
growing logistically is modeled by setting the intrinsic growth rate equal to a linear 
function 

X ~ X 
- 1  

x K 

or, more generally, for a self-renewing organism is modeled by 

X' 
- -  = f(x) ,  x e R  
x 

where the choice of f (x)  specifies the model. In keeping with the spirit of the idea of 
generic, it is the f ( x )  which is "approximate",  not x f ( x ) .  With this view, the 
invariant faces of the positive cone of a system 

x I = x J ( x l  " " x n )  (6.2) 

are perfectly "generic". They are preserved if f is perturbed, for xi = 0 remains a 
solution. This corresponds, of course, to the biological principle that from zero 
organisms, none are produced. Three of the equations in (2.1) are of this form and 
the remaining one is of that form plus a constant positive forcing term, 
corresponding to the nutrient input (which of course is not self-generating). After 
the transformation to (2.2) all are of the form of the above since the appropriate 
zero solution is maintained under perturbations. 

The second question is "why not an invariant torus?" The answer is that a limit 
cycle is an invariant plane can only be perturbed into another limit cycle. We restrict 
ourselves to three dimensions, as in (2.2) but there is a general principle here that 
after bifurcation from an invariant face, the structure is not more complicated. 

Consider the system 

x'  = x f l ( x , y , z ) ,  y '  = y f z ( x , y , z ) ,  z' = z f 3 ( x , y , z )  (6.3) 
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and suppose that (x(t), y(t) ,  0) is a limit cycle in the z = 0 face. (x(t), y(t)) ,  of course, 
is also a periodic solution of 

y' = xf l(x,y ,O),  y' = yf2(x,y,O). (6.4) 

The variational equation corresponding to linearization of (6.4) about the 
periodic solution has two Floquet exponents - one of which is zero because of the 
periodic solution. Thus the other must be r e a l - t h e y  are eigenvalues of a real 
matrix. The variational matrix for (6.3) about this same solution contains the 
variational matrix for (6.4) in the upper left-hand corner and necessarily has only 
one entry in the third row, in the 3,3 position. Thus the above two real Floquet 
exponents are exponents of the larger system, and the third exponent is necessarily 
real. (We note that we are taking some liberty with the terminology since it is 
multipliers and not exponents which are uniquely defined.) 

The eigenvalues of the Poincar6 map corresponding to the Floquet multipliers, 
may pass through the unit circle, through a change in parameters, by passing 
through + 1 or - 1 or with nontrivial complex part. Since the multipliers are real, 
the last case -which  is needed for bifurcation into an invariant torus - i s  thus 
impossible. Passage through - 1 which produces period doubling is also not 
possible since the exponents are real. Passage through + 1 corresponds to the kind 
of bifurcation shown for (2.2). 

Finally it should be noted that after bifurcation out of the plane, secondary 
bifurcations may be of any type. Invariant tori and periodic doubling bifurcations 
are not prohibited in the system, it is only that they cannot arise from a bifurcation 
out of a limit cycle in an invariant bounding plane. 
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