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Abstract. A resource based ecological competition model with interference is 
proposed. The model is based on Lotka-Volterra dynamics with two predators 
competing for a single, limited prey. Interference effects are considered in this 
article. When the interference coefficient, expressing the damage effect from its 
rival, is small, the mathematical analysis shows that the winner in purely 
exploitative competition still outcompetes its rival. However, if the interference 
coefficient is large enough then the competition outcome will depend on initial 
population of predator species. 
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1. Introduction 

The classical theory of ecological competition between two or more species, 
attributed to Lotka and Volterra [-11], is an extension of the basic logistic model of 
single-species growth that dates from Verhulst [-10]. The dynamical equations for 
this theory for two competitors, 1 and 2, are often written as: 

dNa/dt = rlNa(1 - (N1 + ~Nz)/K1) 

dN2/dt = r2N2(1 - (/3N1 + Nz)/K2), (1.1) 

where Ni is the number of the ith competing species, rl and K~ are the intrinsic rate of 
increase and the carrying capacity of the ith competitor, respectively, and c~ and/3 
are the interaction or "competition" coefficients, expressing the per capita 
competitive effect of species 2 on 1, and 1 on 2, on the growth rate and realized 
carrying capacity of the rival species. In the absence of competition ( ,  =/3 = 0), 
each population grows to its respective carrying capacity. In the presence of 
competition, one or the other rival may survive while its competitor dies out, or else 
the rivals may coexist. In the two-species case, there are four possible outcomes 
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provided that the initial populations are both positive; which outcome occurs 
depends on the carrying capacities and competition coefficients. Competitive 
stability (coexistence) occurs when ~ < K1/K2 and fl < K2/K1, competitive in- 
stability (initial number of each rival determines winner) occurs when these 
inequalities are both reversed, and competitive dominance (one or the other species 
wins regardless of initial numberg) occurs when one but not both of these 
inequalities are reversed. A pervasive problem with classical theory is that it is 
"phenomenological", seeking to describe how the numbers of competitors change 
without ever being specific about which resources are the focus of competition, nor 
about how efficiently the rivals exploit or control these limited resources. 

During the last 20 years increasing attention has been given to the details of the 
processes underlying consumer-resource interactions, with the goal of constructing 
more mechanistic theories of interspecific competition. Research has been focused 
on three principal questions. First, do the rival species compete only indirectly by 
lowering the shared pool of limited resources (exploitative competition), or do they 
also compete more directly by harming their rivals or by sequestering some of the 
resources for their exclusive use (interference competition) [8]? Second, how 
efficiently do the rivals exploit these limiting resources? In Particular, how do the 
per capita consumption rates of each species respond to a change in resource 
concentration (nutrients, prey, etc.) in the environment ("functional" response)? 
Finally, how do these resources, once consumed, translate into a particular rate of 
population growth ("numerical" response)? 

In this article we present a mathematical model with two species exploiting a 
single, limited resource and interfering each other directly at the same time. In 
theoretical ecology the distinction between exploitation and interference is ill- 
defined and not absolute. Sometimes a species can be exploiting and interfering at 
the same time [6]. Especially interference competition, while common in nature, is 
mediated through a diversity of mechanisms. As yet there is little consensus about 
the way that interference should be modeled mathematically given that the effects 
of toxins or injury are so varied, and are different from the effects of resource 
sequestering. In order to understand this complicated problem, we choose to model 
the simplest possible predator (consumer) functional response to increasing prey 
(resource) density. This is the response in which the feeding rate of the predator 
increases linearly with prey density (Type I under Holling's [4] classification). The 
interference effect of the predator species on the growth of its rival is assumed to be 
proportional to its current population. 

The remainder of this paper is organized as follows. A statement of the model 
and definition of the parameters appears in section 2. The analytical results are 
given without proof in section 3. The proofs are deferred to section 4. Section 5 is 
the discussion section. 

2. Statement of the Model 

The present analysis concerns the behavior of a predator-prey system consisting of 
two predator species, N1 and N 2 and one prey species R. We specifically assume 
both predator species have access to prey and compete not only by lowering the 
population of shared prey but also by interfering with its rival. The interference 
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effect of the predator species on the growth of its rival is assumed to be proportional 
to its number present. Death rates are assumed to follow a "Type III"  survivorship 
[9] in which the number dying is proportional to the number currently alive. We 
also assume that there are no significant time lags in the system, that growth rate is 
logistic in the prey species in the absence of predation, and that the functional 
response of the predator is linear. With these assumptions the model is given by: 

N '  1 = N l [ b l  R - D1 - ~21N2] 

N '  2 = N2[b2R  - D2 - ~12N1] (2.1) 

where 

R ( 0 ) > 0 ,  N~(0)>0 f o r  i = 1 , 2  

d 
' - t = time, 

dr '  
R(t)  = the number of prey species at time t, 

N M )  = the number of ith predator at time t, 
r = the intrinsic rate of increase for prey species, 

K = the carrying capacity for the prey species, 
k~ --- the feeding rate per predator (predator species i) per unit consumed, 
b~ = the birth rate per predator (predator species i) per unit prey consumed, 

Di = the death rate of ith predator 
egj = the interference coefficient measuring the damage effect of predator 

species i on predator species j. 

It is noted that the coefficients K, k~, bi, D~ are strictly positive and e12, eex are 
nonnegative. 

We analyze the behavior of solution of this system of ordinary differential 
equations, in order to answer the biological question: Under what conditions will 
neither, one or both species of predator survive or die out? If only one predator 
survives, we also seek to determine the limiting behavior of the surviving predator 
and its prey. 

3. Statement of Results 

In this section we state the principal results of the paper. The proofs are deferred to 
the next section. The first lemma is a statement that the system given by (2.1) is as 
"well-behaved" as one infers from the biological problem. It is easy to prove the 
lemma and we omit it. 

Lemma 3.1. Solut ions o f (2 .1 )  are posi t ive and  bounded. Furthermore,  f o r  any e > 0 

there exis ts  to > 0 such that R(t)  <~ K + ~ f o r  t >~ to. 

The next lemma provides conditions under which the predators cannot survive 
on the prey, given the carrying capacity of each prey population, even in the absence 
of competition. The proof  for this lemma follows directly from (2.1) and Lemma 3.1 
and we omit it. 
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Lemma 3.2. A necessary condition for either predator species Ni to survive is 
biK > Di. 

This lemma states if the death rate D~ of the ith predator is too high or if the 
carrying capacity K of the prey species is too small to support the ith predator, then 
the ith predator will die out. We note the result is independent of competition and 
interference. 

We state the principal result in the case of inadequate carrying capacity of prey 
in three parts. We are able in Theorem 3.3 to determine the asymptotic behavior of 
the solutions. The theorem may be summarized as the unsuccessful competitor does 
not affect the eventual behavior of the survivor and its prey. 

Theorem 3.3. Let 4~ = Di/bl, i -- 1,2. 
O) If41 > K for i = 1,2, then lim~ooR(t) = K, l im t~Ni ( t )  = 0, i = 1,2. 

(ii) I f  4 2 < K < 22 then the trajectory of(2.1) approaches the equilibrium (El) as 
t --+ oo where 

( e 2 )  = ( 4 2 ,  N L  = 1 - . 

(iii) I f  2z < K < 41 then the trajectory of(2.1) approaches the equilibrium (E2) as 
t --* oe where 

( e 2 )  = ( 4 2 ,  o ,  = 1 - . 

In order to discuss the interior equilibrium point, we may assume as a basic 
hypothesis: 

4 1 < K ,  4 2 < K .  

Under this assumption, the equations of (2.1) may be relabeled without loss of 
generality, so that we assume 

(H) 41 < 4 2 < K .  

The following theorem is our main results concerning the effect of interference. 

Theorem 3.4. Let (H) hold and 0{22 > 0, 0{12 ~ 0. 
(i) I f  r(1 - 42/K) < (k2/0{22)(b242 - D2) then the equilibrium (El) is 9lobally 

asymptotically stable in the interior of  the first octant. 
(ii) I f  r(1 - 4z/K) > (k2/0{21)(b242 - D2) then the unique interior equilibrium 

(Ec) = (Ro N2c, N2~) exists and is unstable where 

K > Rc ---- r0{210{12 + k20{12D1 + k10{22D2 >~ 22, 
r 
20{210{12 + k2b10{12 + klb20{21 

1 
N2c = - - ( b a R c  - D1) > O, 

0{21 

N 2 c = ~ ( r ( 1 - ~ ) - k 2 N 2 c )  > 0 "  
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Furthermore, in this case the equilibria (El)  and (E2) are both asymptotically stable 
and there exists a two-dimensional stable manifoM through (E~). 

4. Proof 

Before we explore the behavior of the solutions of (2.1), we need the following 
lemmas. The proofs of (i) and (ii) of Lemma 4.2 are straightforward and are 
omitted. The proof  of (iii) of Lemma 4.2 comes from [5]. 

Lemma 4.1 (Coppel [2, p. 141]). I f  a function f ( t) has a finite limit as t ~ Go and f(")( t) 
(the nth derivative) is bounded for  t >i to, then limz~ ~f(k)(t) = O, 0 < k < n. 

Lemma 4.2. (i) I f  limt~ o0 Ni(t) = O, i = 1,2, then 2~ >>. K, i = 1,2. 
(ii) Let (H) hold. Then the equilibrium (EI) is asymptotically stable. 

(iii) The solution o f  (2.1) with R ( 0 ) > 0 ,  N I (0 )>  0, N 2 ( 0 ) = 0  satisfies 
lim~_~ o0 R(t) = 21, l i m t ~  Nl( t )  = N* and N2(t) = 0. 

Proof  o f  Theorem 3.3. Part (i) follows directly from Lemma 3.2 and the first 
equation of (2.1). We only need to prove (ii). The proof of (iii) is similar to that of 
(ii). 

From Lemma 3.2, Lemma 4.2 (i) and (H), it follows that lim~. o0 N2(t) = 0 and 
lira supt~o~ Nl( t )  > 0. If l imz.~Nl(t)  exists and is equal to c > 0, then since by 
Lemma 3.1, N~(t) is bounded, Lemma 4.1 implies limt_.~R(t) = 21. Again using 
Lemma 3.1, R"(t) is bounded and hence l imt~R ' ( t )  = 0 and c = N*. 

If l i m t ~ N l ( t )  does not exist, choose a sequence {t,} such that 
lim~. oot, = 0% Nl(t,) is a relative maximum, Nt( t , )  > e for some e > 0, for all n and 
l im, .~Nl( t , )  = NI~ for s o m e  N l o  ~ /> e > 0. By (2.1), we have lim,_~R(t,) = 21. 
Then ( 2 1 , N 1 ~ , 0 ) ~  where ~ is the omega limit set of the solution 
(R(t), Nl(t), N2(t)) of (2.1) and lies on the R - N1 plane. Using Lemma 4.2 (iii), it 
follows that the solution of(2.1) with R(O) = 21, NI(O) = Nlo,  N2(O) = 0 satisfying 
lim~.~R(t) = 21, l i m t - ~ N l ( t ) =  N* and N2(t)=-O. This and the invariance 
property of the omega limit set [3] imply that (21, N~, 0) ~ (2. However, (21, N*, 0) is 
asymptotically stable by Lemma 4.2 (ii). Hence the trajectory (R(t), Nl(t), Nz(t)) 
approaches the equilibrium (E~)= (21, N*, 0). In particular, limt~ ~ N l ( t ) =  N*. 
This is the desired contradiction. 

Proof  o f  Theorem 3.4 (i). First we show that l imt~oR(t)N2(t)  = 0. Let ~ > 0, t />  0 
be selected below. 

R'(t) Nz ( t  ) N'~(t) 
R(t~ + ~ 2 ( t )  tI s l ( t ~  

: r ( 1 -  R ( t ) )  - k l N l ( t )  - k2N2(t) + r - D2 - ~ lzNl( t ) )  

- tl(blR(t) - D1 - o~21N2(t)) 

<~ r ( 1 -  R ~ ) )  - keN2(t)  + ~(beR(t) - D2) - ~l(b~R(t) - Dl - ~2~N2(t)) 

(r ) 
= (r - ~D~ + ~D1) + R(t)  - -K + ~b2 - ~bx + N~(t ) ( ,1~l  - ~ ) .  (4 .1)  
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Let r /=k2 /e21  and  choose ~ > 0  
- r /K + 4b2 - t/b1 < 0, i.e., 

4 > D22 + and ~21 

Since 

is equivalent to 

satisfying r -- 402 + t/D1 < 0 

+ 
0~21 ,/ 

and 

~21 J D22 0~21 ,] 

we can choose 4 satisfying the above inequalities. Let 4" = r - 402 -l- D1 < 0. 
Integrat ing f rom 0 to t and taking exponentials  on bo th  sides of  (4.1) yields 

\Ro-o J \ N z ( 0 ) J  \N1 (0) /  

I t  follows that  l i m , ~ R ( t ) ( N 2 ( t ) )  r = 0. We claim lim,.o~R(t)N2(t) = 0. I f  4 > 1, 
then (R(t)Nz(t))  ~ = (R(t)) r R(t)(Nz(t))  r <~ (sup0 <, ~ o~ R(t)) r R(t)Nz(t)  ~ ~ 0 as 
t--* oo. I f  4 < 1, then R(t)Nz(t)  = (N2(t)) 1-~. R(t)(Nz(t))  ~ <~ (SUpo<,<| 1-r 
R(t)(N2(t)) r ~ 0 as t -4 oo. Hence lim,~o~R(t)N2(t) = O. 

Next  we show that  l imt_ .~N2( t )=0 .  F r o m  (2.1) it follows that  
N'2(t) <<. b2N2(t)R(t) - D2N2(t). Then limt~ooN2(t)R(t) = 0 yields l imt_~Nz( t )  
= 0. Using the a rguments  in Theorem 3.3 yields the conclusion of  (i). 

Proof  o f  Theorem 3.4 (ii). Under  the assumpt ion  

and (H), we have K > Rc >~ 22. Hence the existence and uniqueness of  the 
equilibrium (Ec) follows directly f rom algebraic computa t ion .  F r o m  an e lementary 
linear stability analysis about  (Ec), the characteristic polynomial  for the var ia t ional  
matr ix  evaluated at (Ec) is 

f ( z )  = z 3 + A l z  2 -t- A2 z + A 3 

where 

r 
A 1 -= ~ R  c > 0, 

A2 = k2b2XzcRc  + k l b l X x c R c  - o~21o~12XlcX2c, 

r 
A3 = - ~.e12e21 - klb2~21 - k2ble12 < O. 

Since A1 > 0 and A3 < 0. F r o m  the Rou th -Hurwi tz  criterion, (Ec) is unstable. 
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Among three roots o f f ( z )  = 0, one is positive, real and the other two, real or 
complex, have negative real parts. Hence (Ec) is an unstable saddle point and there 
exists a two-dimensional stable manifold through (Ec) [3]. 

From Lemma 4.2 (ii), the equilibrium (El) is always asymptotically stable. The 
asymptotic stability of (E2) simply follows from the assumption 

r(1 
and linear stability analysis about (E2). 

5. Discussion 

Exploitative competition and interference competition are common in nature. 
Exploitation is usually defined as the ability of a species to find, occupy and retain 
vacant vital resources. Interference is regarded in its pure form as the ability of a 
species to damage another either directly by attacking its individuals or indirectly 
by harming its resources or blocking its access to them. However, the distinction 
between these two forms of interspecies competition is not absolute. Sometimes a 
species can be exploiting and interfering at the same time. Brian [1] refers to 
interference and exploitation as "isolated components of the dual competition 
concept" and concludes that the Lotka-Volterra model (1.1) involves competition 
by interference alone while the Windsor model [12] (i.e. the second and third 
equations in (2.1) with 512 = 5 2 1  = 0 )  involves only exploitation. 

In this paper we combine these two models into our model (2.1). We assume two 
predator species are competing for a single prey species which grows logistically and 
the predators consume prey according to a linear functional response. The mass- 
action formulation of feeding rate is most accurate at low prey densities. In 
addition, we assume these two predator species interfere with each other directly. 
The interference effect of a predator species on the growth of its reval is assumed to 
be proportional to its current population. Under the assumption (H), if the 
competition is purely exploitative, i.e., cq 2 = 521 = 0, predator species N1 is always 
the winner [5] (for the case 5 1 2  = 521  ---~ 0 ,  A. Leung [7] discusses the same problem 
including even 21 = 22). Taking into account the interference effects, Theorem 3.4 
says if the interference coefficient 521 is small, i.e., r(I - 22/K) < 
(k2/O~zl)(ba22 - D), species NI still outcompetes species N2 even if species N1 does 
not interfere with species N2 (i.e., 512 = 0). However if 521 is sufficiently large, i.e., 
r ( 1 -  22 /K)>  (kz/o~21)(b1).2- D1), then the initial populations of the rival 
predator species influence the outcome of  competition. We note that large e21 does 
not guarantee that species N2 will outcompete species N1 provided the initial 
population of N2 is smaller compared to that of N1. 
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