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A Competition Model for a Seasonally Fluctuating Nutrient 

S. B. Hsu* 

Department of Mathematics, University of Utah, Salt Lake City, 84112, USA 

Abstract. A model of two species consuming a single, limited, periodically added 
resource is discussed. The model is based on chemostat-type equations, which 
differ from the classical models of Lotka and Volterra. The model incorporates 
nonlinear 'functional response' curves of the Holling or Michaelis-Menten type 
to describe the dependence of the resource-exploitation rate on the amount of 
resource. Coexistence of two species due to seasonal variation is indicated by 
numerical studies. 

Key words: Exploitative competition - -  Holling's type-2 functional response - -  
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1. Introduction 

In a previous paper [8], the author analyzed an (n + 1)-dimensional dynamical 
system which corresponds to the competition of n species for a single, essential 
nutrient in limited supply. The system modeled a chemostat, a laboratory apparatus 
used for the production and physiological study of microorganisms. In the chemo- 
stat model, the limiting nutrient is supplied at a constant rate. The input flow of 
medium contains all other factors for growth in excess. The output flow equals the 
input flow, and carries with it cells, waste products, and unused nutrients. The 
system also approximates conditions for plankton growth in lakes, with the input 
of limiting nutrients such as silica and phosphate from streams draining the 
surrounding watershed. 

An important advance of this model over classical Lotka-Volterra formulations of 
competition is that the limiting resource for which competition is being expressed 
is represented explicitly by an equation in the system. In the Lotka-Volterra model, 
only the numbers of competing organisms are represented. The result of leaving out 
an equation for the resource is that the outcome of competition cannot be predicted 
before the organisms are actually grown together. In the present formulation, the 
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outcome of competition can be predicted before the organisms compete, from 
measurements of growth parameters of the organisms when grown alone on the 
resource. This advance brings the theory of competition one step closer to being 
truly predictive rather than merely descriptive ex post facto. 

In this paper, we continue this approach. We now modify the assumptions in [8], 
valid for the chemostat, in order to better simulate the ecological situation in 
natural lakes. First of all, instead of a constant input of limiting nutrient, the 
resource is permitted to vary periodically, to account for changing pattern in the 
watershed as the seasons vary. This changes the system of equations to non- 
autonomous ones. In addition, the death rates- washout rates in the chemostat- 
are allowed to be different for different species. Due to the complexity of this season 
variation problem, we treat only the case of one resource and two competing species. 
The seasonal effect is assumed to be b sin wt. Two new variables are present-the 
amplitude b and the frequency w of the input nutrient concentration. We note that 
it is also possible to perform the laboratory experiment for this seasonal model. 

Our purpose in this paper is to examine the seasonal effect of the competition out- 
come and to examine whether the known 'competitive exclusion principle' [5] 
holds or not. 

In Section 3, we attempt to determine regions of the parameter space where the 
competitive exclusion principle does hold. By extensive numerical studies, we show 
in Section 4 that coexistence is possible with certain suitable amplitudes and 
frequencies. The proofs of theorems in Section 3 are given in Section 6, and the 
model itself is described in Section 2. Section 5 is the discussion section. 

2. Statement of the Model 

The present analysis concerns the behavior of a species-resource system consisting 
of two species, xl and x2, and a single nutrient, S. We specifically assume that the 
species compete purely exploitatively, with no interference between rivals (no toxins 
are produced, for example). Both species have access to the resource and compete 
only by lowering the population of shared resource. For death rates it is assumed 
that the number dying is proportional to the number currently alive. We also 
assume that there are no significant time lags in the system and that the functional 
response of the species obeys the Holling 'nonlearning' curve [6, 7]. With the 
seasonal effect b sin wt, 0 < b < S ~~ the model is given by 

(ml)  [xa(t)S(t)  ~ (m2) [x2(t)S(t)  
S'(t)  = (S (~ + b sin wt - S(t))D - 71  \~-~ - ~ - ~ ]  - 72  \-~2 T - ~ ) ]  

mlxl( t )S( t )  xi(t) = Dlxl( t)  
al + S(t)  

x~(t) = rn2xz(t)S(t) 
a2 + S(t)  - D2x2(t) (2.1) 

S(O) > O, x~(O) > O, x2(O) > O, 



Competition Model for a Seasonally Fluctuating Nutrient 117 

where S (~ + b sin wt is the input concentration at time t, D is the dilution rate, 
x~(t) is the number of t he / t h  species at time t, S ( t )  is the concentration of the 
nutrient at time t, m~ is the maximum growth (' birth') rate of the Rh species, D~ is 
the death rate for the / th  species, y~ is the yield factor for the/ th  species feeding on 
the nutrient, a~ is the half-saturation constant for the/ th  species, which is the nutri- 
ent concentration at which the functional response of the species is half maximal. 
We analyze the behavior of solutions of this system of ordinary differential equa- 
tions in order to answer the biological question Under what conditions will 
neither, one, or both, species survive ? 

3. Statement of  Results 

In this section we state the principal results of the paper. The proofs and certain 
technical lemmas are deferred to Section 6. The first lemma is a statement that the 
system given by (2.1) is as 'well-behaved' as one intuits from the biological problem. 

Lemma 3.1. Solutions of(2.1)  are bounded and remain in the positive oetant. 

The next lemma provides conditions under which the species cannot survive, even 
in the absence of competition: 

Lemma 3.2. Let  

m~ - Dt 1 (3.1) 
a~ms C •  ~ m 

where 

C(a~ + S(~ 2 - B ~ 

For each i = 1, 2 i f  Cs < 0 then limt_~ o~xs(t) = O. 

Before we explain Lemma 3.2, we first introduce a very important parameter A~ 
where 

m ~ -  D;' (3.3) 

~s is the product o f / t h  species' half-saturation constant times the ratio of species 
death rate to the intrinsic rate of increase ms - D~. From (2.1) the number is the 
'break-even' concentration of nutrient for the ith species'dxddt = 0 isocline in the 
S-x~ plane. 

Secondly we note the following two equivalent statements, namely, 

C s < 0  if and only if ms~< D~ or x/(a~+ A ~ ) 2 + B ~ _ a s >  S (~ (3.4) 

and 

C~> 0 if and only if f f ( a ~ + h ~ ) 2 + B  2 _ a ~ <  S (~ (3.5) 

bD 
B = x/~-~ + D 2" (3.2) 
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From (3.4) Lemma 3:2 states that if the maximum birth rate ms is less than or equal 
to the death rate D~ or if the ' mean'  input concentration S (~ is less than or equal 
to the 'break-even' concentration ~., then the ith species will die out as time be- 
comes large. Even if S (~ > ~. the seasonal fluctuation might play some role in 
driving ith species extinct provided 

(x/a~ + ~)2 + B 2 _ a~ > S (~ 

We now state the principal results: 

bD 
where B = 

V ~  + n~" 

Theorem 3.3. I f  C~ < 0 then l i m t ~ x ~ ( t )  = O for  i = 1, 2 and S ( t )  = S (~ + B sin 
(wt - {3) + o(1) where {3 = tan -~ w/D. 

From Lemma 3.2 if C~ < 0, i = 1, 2, then each species will die out as time becomes 
large. As one expects, the concentration of nutrient will fluctuate periodically. This 
is the point Theorem 3.3 states. 

Theorem 3.4. (i) I f  C~ > 0 and C~ < 0 then lim supt~ ~ x~(t) > 0 and limt_. 
x2( t )  = O. 

(ii) I f  C~ < 0 and C2 > 0 then lims~ 00 x l ( t )  = 0 and lim sups-. ~o xg.(t) > O. 

Under the hypothesis of theorem 3.4(i), species 2 cannot survive on the nutrient 
no matter what its rival does, but the rival (species 1) can survive when grown alone 
on the nutrient. Similar explanation follows for (ii). We note that the notation 
lim supt-~ ~ x~(t) > 0 means ith species survives. Mathematically, we cannot rule 
out the possibility that lim inft~ ~ x~(t) = O. 

For the remainder of the theorems, we assume that C~ > 0, i.e., (3.5) holds for each 
i and the species are labeled such that 

0 < ~1 < ~2. (3.6) 

Biologically a species with small half-saturation constant, low death rate, and 
higher intrinsic rate of increase (small 20 should be a tough competitor to beat. 

Theorem 3.5. Let  (3.5) for  each i = 1, 2. Assume (3.6) holds. I f  ml /D1 >1 m2/D2, 

then lim supt~ 0o x l ( t )  > 0 and limt_. ~ x2(t) = O. 

Under assumption (3.5) both species can handily survive when grown alone on the 
nutrient. Theorem 3.5 states that if 0 < ~1 < ~2 and species 1 has higher ratio of 
intrinsic rate of increase to death rate, i.e., (ml - D1)/D1 >1 (m2 - D2)/D2 then 
species 1 outcompetes its rival. It is interesting that under these conditions species 
1 also wins even when it has a higher half-saturation constant, so long as ~ < ~2. 
We also note that except (3.5) the result is independent of seasonal fluctuation. 

It remains to consider the case milD1 < mz/D2. This, under the hypothesis 
0 < 2~1 < A2, implies al < a2. However we were not able to completely analyze the 
remaining case a~ < a2, ml/D~ < mz/D2. We have partial results to indicate that 
any competition outcome is possible, i.e., species 1 wins or both coexist or species 

2 wins. 
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Theorem 3.6. Let  (3.5), (3.6) hold. Suppose al < a2, ml/D1 < m2/D2. 

(i) I f  

S ~~ + B < (ml/D1)a2 - (m2/D2)al, 
(rn~./ D2) - (m~/ D~) 

then l im~  ~ x2(t) = 0 and lim sup t-. o~ x~(t) > O. 

(ii) I fO < C1 < C2 then limt-.~o x l ( t )  = 0 a n d l i m  supt~oo x2(t) > O. 

We note that the inequalities 0 < A~ < A2, a~ < a2, m~/D~ < m2/D2, imply 

(ml/  D1)a2 - (m2/ D2)a~ 
0 < AI < A2 < 

(m~/O2) - (mdO~) 

Theorem 3.6 (i) states that under (3.5) if the ' m e a n '  input concentration S ~~ and 
amplitude b are smaller then species 1 is still a winner. When 0 < A~ < A2 and 
rnl/D2 < rn2/D2 there is only a very limited range of parameters for which we also 
have 0 < (71 < C2. Usually 0 < C~ < (72 holds as b ~ S ~~ and w ~ 0. Then in 
this case the competition outcome will be reversed. 

4. Numerical Study on the Coexistence of the Species 

The principal goal of  this paper is to investigate the effect of seasonal nutrient 
fluctuation on the competition outcomes. When the nutrient is supplied at constant 
rate, that is, b = 0, the species with the smallest A wins the competition. However, 
when the nutrient is allowed to vary periodically and A1 < A2, the numerical study 
show that any competition outcome is possible, i.e., species 1 wins or both coexist 
or species 2 wins. In Lemma 3.2, Theorem 3.3, Theorem 3.4, Theorem 3.5, we 
determined some regions of parameter  space where the competition exclusion 
principle does hold. In the discussion of this section, we assume C~ > 0, i = 1, 2, 
A1 < A2, al < a2, milD1 < m2/D2. The condition A1 < A2 in the absence of 
seasonality means species 1 is favored to win the competition. From the result of 
Theorem 3.6(ii), it indicates that due to the seasonal effect the species x~, x2 may 
coexist or the species x2 may even win the competition. 

In the following numerical study we fix the following data: a~ = 1, a2 = 2, 
ml = 2.111111, m2 = 1.6578, Yl = 2ml, Y2 = 2m2/3, D = 1, D1 = 2, D2 = 1.5, 
S ~~ = 100, which satisfy a~ < a2, A~ = 18.0000018 < A2 = 19.01140684, m~/D1 = 
1.055555 < m2lD2 = 1.105200. Let amplitude b and frequency w be variables. 
Figure 1 is the principal result of  our numerical simulation. Except for a very small 
region (see Fig~ 2) at the right corner of the bot tom of Figure 1, we have three 
regions in the amplitude-frequency space, namely, species 1 wins, both coexist, 
species 2 wins. 

First, in Figure 1 there exists a point b* ~ 42.5 such that for all b < b* and w > 0 
species 1 is always a winner. That  is, species 1 outcompetes species 2 provided b is 
smaller. As we increase b from b* to b* ~ 49, then either xl wins or xl, x2 coexist. 
We note that for each b, b* < b < b* there exist wl, w2 such that xl  wins for 
0 < w < w~ or w > w2 and xl,  x2 coexist for wl < w < w2. Furthermore the 
interval (w~, w2) becomes larger as we increase b. Next, if we increase b further, then 



2.8 

2 , 5 - -  

2 . 0 -  

c 1.5-  ~a 

1.0 - (b, 

0.5 I 

1 I 

Fig. 1 

x 1 wins 

( b~w 6] 

b,w 5) 

~ (b,w,) 

I (b,w 3) 
i I I I 

b~ 50 60 70 
b amplitude 

x 2 wins 

I 
8O 90 95 100 

0.25 

0.20 

0.15 - 

0 .10-  

0.05 - 

9? 

Fig. 2 

C1>C2>0 

/ /c,<o / j  

/ I .......... I / C2 ~iO ~ ~ 
98 99 100 

b amplitude 



Competition Model for a Seasonally Fluctuating Nutrient 121 

for each b > b*, there exist wa < w4 < w5 < w6 such that xl wins for w r (0, wa) 
or (ws, ~ )  and xl, x2 coexist for w ~ (wa, w~) or (ws, wr) and x2 wins for w e (w, wB). 
We note that the intervals (ws, w4) and (wr, w) become smaller and the interval 
(w4, wr) becomes larger as b increases. 

5. Discussion 

This paper is a mathematical analysis of the behavior of a model of two species 
competing exploitatively for a shared nutrient. The input concentration of the 
nutrient varies periodically, and the species consume resources according to a 
saturating functional response. The analysis has dealt principally with parameters: 
S (~ b, w, D of the resource part and parameters of the ith species; a~, the half- 
saturation constant; rndD~ ratio of maximal birth rate to death rate; and ;h. ~- is a 
particularly important parameter. Recall that A~ is the product of the half-saturation 
constant times the ratio of  the death rate to the intrinsic rate of increase of the ith 
species: )~ = a~(DJr~). This number is the 'break-even'  concentration of nutrient 
for the ith species, and it defines the position of the ith species' dxJdt = 0 isocline 

i n  the S-xi plane. A species with a small half-saturation constant, low death rate, 
and high intrinsic rate of increase (small A) should be a tough competitor to beat. 
In fact, if n species are competing for a single, limiting nutrient that is supplied at a 
constant rate, the species with the smallest A wins the competition and all other 
species go extinct [8, 9]. The surviving species and its resource approach constant 
values; there is no limiting periodic behavior. 

When the nutrient is allowed to vary periodically and the consumers also have 
saturating functional responses, the number of possible outcomes is increased to 
include periodic solutions and dynamic coexistence between species. As in the 
constantly supplied nutrient case, the A parameters are important; but, in addition, 
S (~ b, w, D, al, and mJD~ must be considered to determine the outcomes of inter- 
specific competition between the species. 

We have been concerned with answering the question: Under what conditions will 
neither, one, or both species survive or die out?  What is the effect of seasonal 
variation to the competition outcome ? We divide our results into three general 
cases: case I, neither species can survive (even without competition) on this 
resource; case II, the first species can survive on the nutrient but the second cannot; 
case III, each species can, in the absence of competition, survive on the nutrient. 

Case I: This represents the case in which neither species can survive on the nutrient, 
regardless of the presence or absence of its rival. This situation can arise for one of 
two reasons: either the intrinsic rate of increase is negative or zero (mi ~< D~) or the 

'mean '  input concentration S ~~ is too small such that ~(a~ + S~~ 2 - B 2 - a~ 
is below the 'break-even'  density A~ for the species. In either event, both species go 
extinct, and the nutrient concentration approaches S <~ + B sin (wt +/3). We note 
that if the amplitude b = 0, then (3.4) becomes 

)t~ > S cot 
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which is consistent with the results in [8, 9]. Generally speaking, from (3.4) with 
the oscillatory input, S (~ should be higher in order to keep the species from dying 
out as compared to the nonosciUatory case. 

Case II: This situation is readily understood from the outcome in Case I. One of 
the species (say, species 2) cannot survive on the resource no matter what its rival 
does, but the rival (species 1) can survive when grown alone on the nutrient. In the 
limit, this case becomes a one-species single-nutrient system. 

We conjecture that the trajectory tends to a unique 2~r/w-period orbit which is 
globally asymptotically stable. 

Case III: This case represents the most interesting and potentially complex situation 
of the two-species one-resource system. In this case, both species can handily 
survive when grown alone on the nutrient. This condition is met when the 'mean '  

input concentration rate S (~ exceeds the value of X/(a + A) 2 + B 2 - a for each 
species. Consider first the case in which A 1 is less than Az. In the case of a nutrient 
supplied at a constant rate, we have proven that AI < A 2 would be sufficient to 
guarantee that species 1 wins and species 2 dies out. However, when the nutrient 
varies periodically, this relationship between the A's is neither a necessary nor a 
sufficient condition for survival of species 1 and extinction of species 2. 

Under the hypothesis of Theorem 3.5, species 1 wins. Species 1 wins because it has 
higher ratio of intrinsic rate of increase to death rate of the two competitors. It is 
interesting that species 1 also wins even when it has a higher half-saturation 
constant, so long as A1 is less than A2. 

The results in Theorem 3.6 are incomplete. Part (i) says that when al < a2, mffD~ < 
m2/D2, At < A2, C1, Ca > 0 and 

aa(md D~) - at(ma/ D2) 
S c~ + B < 

(mdD~ - mdDO 

then species 1 wins and species 2 dies out. For smaller S ~~ and b, species 1 should 
win. Note that these conditions imply that 

aa(rnff Dt) - -  al(mt/Da) 
)tt < A2 < 

(mzl Da) - (mtl D1) 

We usually designate species 1 the winner in our discussion. Part (ii) is a very inter- 
esting result. It says that if 0 < C~ < C2 then species 2 wins ! This result indicates 
that there may exist a coexistence region in certain parameter space. Although the 
condition 0 < Ct < Ca is very special, it holds when w is small and b is closed to 
S(O). 

For the case b = 0, the equilibrium (At, x~*, 0) is globally stable provided 0 < A1 < 
Aa < S (~ [8, 9]. It is easy to show that (see [3] pp. 348-350 or [2]) there exists an 
asymptotically stable 2rr/w-periodic solution (S(t),  Xl(t), xa(t)) such that limb~o~ 
(S(t),  xl(t) ,  xa(t)) = (At, x~, O) for all sufficiently small b. We note that C1 > Ca 
provided b = O, 0 < A1 < Aa < S ~~ at < aa and ml/D1 < ma/Da. Hence Theorem 
3.6 part (ii) is consistent with the above small parameter result. 
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In Section 4 we demonstrate our numerical study to show that any competition 
outcome is possible. It should be noted that this result strongly depends on both the 
seasonal effect b sin wt and the characteristics of the functional response of the 
species. Without the season effect, then the species with lowest ~ wins [8, 9]. With 
the season effect, it is easy to show that if the species' functional response is linear, 
then only one species survives! 

It is interesting to relate these results to published speculations and conclusions 
about competitive coexistence between species. Stewart and Levin [11] shows 
analytically that coexistence is possible for two species sharing a common limiting 
resource in a periodic environment in which resources fluctuate from high to low 
levels. The resource was depleted at the end of each season, and the populations of 
plankton were restarted in the next season by means of small seed populations. 

Armstrong and McGehee [1] also construct an example showing that coexistence 
is possible for n species sharing a single conservative resource in a periodic environ- 
ment. 

On a final note, system (2.1) can be generalized as following (5.1): 

~=1 (5.1) 

x'~(t) = (g~(S) - D~)x,, i = I, 2 . . . . .  n, 

where g~(S) is bounded for S >1 0, g~(0) = 0 and g[(S) is positive, continuous, 
monotone decreasing, p(t)  > O, p(t  + w) = p(t).  

Even the simplest autonomous case, p(t)  = constant > 0, which we expect com- 
petitive exclusion occurs, difficulties still arise. The interested reader may consult 
with the counterexample demonstrated in McGehee and Armstrong [10]. 

6. Proof 

Proof  o f  Lemma 3.1. Since x~(O) > O, then from the representation 

x~(t) = x,(O)exp f~ (\a-~ T-f(-~)m'S(~) D~) d~, (6.1) 

we have x~(t) > 0 provided S(~:) > -a~ for 0 ~< ~ ~< t. Suppose S( t )  is not positive 
for all t >/0. Since S(0) > 0, there exists a point To with S(To) = 0 and S(t )  > 0 
for0~< t ~  To. For0~< t~< To, 

S ' ( t )  > [S <~ - b - S( t )]D - ~" 
m~ x~(t)S(t) 

t=1 Y~ a~ + S ( t )  

o r  

or  

x~(t)S(t) mi 
s ' ( t )  > - S ( t ) m  - 2 ,  

~=1 Y~ a~ + S ( t )  

s'(t__) S( t )  > - D -  m___3 x~(t) 
= Yt a~ + S( t )"  
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Integrating from 0 to To and taking the exponentials of both sides, it follows that 

f?( S(To) > S(0) exp - D - m, 
= y, o~ u s (~ ) !  

This is a contradiction and hence S(t),  x~(t), i = 1, 2 are positive for  all t I> 0. 

Multiplying the equations for x~ in (2.1) by 1/y~ and adding yields 

x,( , ~,  D~x~( t ) 
S ' ( t )  + ~ = (S (~ + b sin wt - S ( t ) ) D  - ~ (6.2) 

i = 1  Yt t =1 Y |  

Let ~; = rain (D, DI, D2). Then 

S ' ( t )  + ~ <~ + b sin w t ) D  - ~ 
t = 1  = 

Comparing the solutions 

s(t)  + 
xt(t)  

of  the above inequality with solutions of 

z ' ( t )  = (S  (~ + b sin w t ) D  - 71z(t ) 

z(O) = s ( o )  + 
x~(O) 

|=1 Yi 

it follows that 

S( t )  <~ z( t )  for all t /> 0, 

or 

~ ~ S(~ bD 
S ( t )  + x~(t) <<. Ae_ , t  + ~ + sin (wt - q~), (6.3) 

,=~ y,  '7 V ~ - " ~ +  

where 

A = S(O) + [ ~  x~(O)~ + bDw S(~ = ~ w and ~ t a n - - .  
~ ' ~  Yl ~/~2 + w 2 ~ 

Since 

I sin (wt - ~)[ ~< 1 and lira A e -  '~ = 0 ,  

the sum on the left side is bounded, and since each term is positive, each term is 
bounded. 

Before we prove the main results, we note the following lemmas. 

Lemma 6.1. Let  S( t ) ,  xt(t),  i = 1, 2 be solutions o]"(2.1). Then 

S ( t )  = A e -D~ + S (~ + B sin (wt - fl) + h!( t )  + h2(t) (6.4) 
Y~ Y2 
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where 

b Dw S<O) A = S (O)  + xz(O) + x2(O) + D ~ w ~ 
Y~ Y~ + 

b D  
B = V / D ~ ,  fl = tan-1 D 

h~(t) = ( D  - Dt) x ,($)  e -D(~-e) d$ - x~(t), 

Proof .  From (6.2) it follows that 

o r  

o r  

i =  1,2. 

2 1 
S ' ( t )  + D S ( t )  = ( S  (~ + b sin w t ) D  - e=~l.= ~ [x~(t) + D,xi( t )]  

d e~t 
e TM] (S(~ ~_~ [S(t) = + b sin w t ) D  e TM - - -  [x~(t) + Dtx~(t)] 

I=1 Ye 

(6.5) 

fo ~ x~(~) e De d~ OO 

then L'Hospital 's rule yields 

;oXZ) lim (t  x~(~) e -D(t-e) d~ = lira 
e~e d~ 

t ~  ~ JO t ~  ~ e TM 

If 

= l i m  x~(t) e TM 
~ 0 .  

t~ | D e  TM 

fO 
t 

S( t )  = S(O) e -Dr + (S  ~~ + b s in  w~)D e -D(e-r d~ 

~ ' l f l  - y ,  + e d .  

Then (6.4) follows after an integration. []  

Lemlna 6.2. Iflime~oo x~(t) = O, then limt_~ he(x) = O. 

Proof .  If D~ = D then by (6.5) we have lime~ | x~(t) = 0 if and only iflime~ o~ h~(t) = 
0. Suppose D~ ~ D and suppose first 

fo x~(~) e De d~ < O0. 

Then 

f; lime_. ~ xt(~:) e -  D(e - e) d ~  = 0.  

Hence by (6.5) 

lim~_. ~ hi(t)  = O. 



126 

Hence, again by (6.5), we have limt_.oo h~(t) = O. [] 

Lemma 6.3. h~(t) <~ -x~(O) e -Dr < O, i = 1, 2. 

Proof.  From (6.5) one has 

h~(t) = (D - D~)[x~(t) - D f~  x~(~)e-D(t-e> d~] x~(t) 

= - D [ ( D -  D , ) f ~ x , ( , ) e - D ( t - e ' d ,  - x,(t)] 

a,m,xi( t)  ] 
- D , x , ( t ) -  [ ( m , -  D,)x,( t )  ~ T  S-~-(t)] 

S. B. Hsu  

where 

B =  
b D  

V - ~  + w ~" 

I f l i m t . . ~  x~(t) = O, i = 1, 2, then C~ <<. O, i = 1, 2. 

Proof.  From the assumption and Lemma 6.2, it follows that limt~o h,(t)  = O, 
i = 1, 2. By the representation (6.4), we have S ( t )  = S (~ + B sin (wt - fl) + 0(1). 
Since S (~ > b t> 0, then 

b D  
B = < S (~ 

~/w  z + D 2 

given e > 0, satisfying a~ + S ~~ - e > B, there exists t o > 0 such that 

S (~ - ~ + B sin (wt - fl) < S ( t )  < ( S  ~~ + e) + B sin (wt - {3), 

for t /> to. 

a~m~xt(t) 
= -- Dh~(t) - m~x~(t) + a~ + S(t--------) 

<~ - Dhi( t )  - m~x~(t) + m~x~(t) = - D h ~ ( t ) .  

Comparing the solutions h~(t) of the above inequality with the solutions of 

z ' ( t )  = - D Z ( t )  

Z ( O )  = h,(O) - -  - x,(O), 

it follows that 

h~(t) <~ -x~(O) e -Dr < O. [] 

We note the following lemma which provides the necessary condition for both 
organisms xl, x2 to become extinct. 

Lemma 6.4. Le t  

mi - D~ 1 i =  1,2 
atm t ~/(a~ + S(~ 2 - B 2" 
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A rear rangement  of  (6.1) yields 

f i [  am 
x~(t) = X~o exp (m~ - D~) de. 

a, + S ( O J  

F r o m  the assumpt ion  limt_~ co x~(t) = O, it follows tha t  

l im f t [ ( m , _  D , ) -  a~m-2~ ] d e =  - o o .  F o r t / >  to, 
,-,o~jo a, + S ( 0 J  

Ii[ m,_O, , _a,m_, 
a, + s ( e ) l  

aim, ] d e + f f o [ ( m , _ D ,  ) = f i~  [ (m' - D*) a, ~ S ( e ) ]  

a,m, ] de > ~ ~  ( m ' - D ' )  a, T s ( e ) J  

(6.1)' 

(6.6) 

a~m, ] de 

= 2*r a , m , [ ( m t -  D,) 
w [ a,m, 

1 ] 
V'(a, + S ~~ - e) 2 - B ~ < 0. (6.7) 

o,m, 
+ ( m ~ +  D i ) -  ( a~+  S (~ - e) + B sin (we - /3 

o 

By (6.6) we have 

f t t [  a,m, ] de = _oo.  l im (m~ - Di) - (a~ + S ~~ - e) + B sin (we - / 3 )  
t ~ ~ 1 7 6  0 

The integrand of  the above  integral is a periodic funct ion of  period 2zr/w. Hence we 

have  

A = ~ to (mi -- D~) - (a~ + S (~ - e) + B sin (we - /3) 

F r o m  the following integral fo rmula  (e.g. [41, p. 147), 

f dx _ 2 a t a n x / 2  + b a2 
a + b s i n x  ~ _  t a n - 1  ~ - b  2 , < b  2, 

it follows tha t  

21r l,to + 2~I~ de 
A = (mi -- D,) y - a~m, | (a~ + S (~ - e) + B sin (we - / 3 )  

~t tO 

= (mi - Di) 2,r a~m....___~f t~ de 
w w ~to-B (a~ + S (~ - e) + B s i n  e 

2rr a~m....__~ [[C 2 t an -1  (m, Dt) 
w w (a~ + S (~ - ~)2 _ B 2 

(a, + S (~ - e ) t an  (e/2) + B] to+ 2~/,0-~ 

= (m, - Di) 2rr aimt 2 
w w ,V/(at + S~O) - e) 2 - B ~. zr 
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Since 8 is arbitrarily small and A is independent  of  to, it follows that  

m~ - D~ 1 
~<0. D atml V'(at + S<~ 2 - B 2 

The following lemma is similar to Lemma 4.3 of  Hsu, Hubbell,  and Wal tman [8]. 

Lemma 6.5. Let (3.5) and (3.6) hold. I f  milD1 >>. m2/D2 then 

lim x2( t ) = O. 
t . -+  r 

Proof. I f  there exists to such that  S( t )  >1 Au or S( t )  <<. A1 for  t t> to then, f rom (2.1), 
x l ( t )  becomes undounded  or limt~ ~o x2(t) = O. Hence we may assume there exists 
a point  to such that  AI < S(to) < As. Let  ~ > O, at = mdD,  - 1, i = 1, 2. Then 

x'o(t) x',(t) 1 P~(S(t))  (6.8) 
Dzxu(t)  Daxa(t) = (a, + S(t)(a2 + S( t ) )  

where 

Pc(z) = z2(~2  - al) + z[~u(az  - As) - eel(as - A1) ] -1- (r 2 - -  ~2A2al) 
(6.9) 

Pe[S(to)] < 0 if  ~ > 0. (6.10) 

The lemma will be proved by obtaining a representat ion of  x2(t)/x~(t). To analyze 
this representation, informat ion is needed about  the quadratic Pe(z). The technical 
arguments in the p roo f  involve selection of  a proper  value of  ~. To  do this we first 
analyze this quadrat ic  in some detail. 

The  Discriminant D(~) o f  Pc(z) is given by 

D ( 0  = ~2(a2(al + Au)) u - 2~ 'a ,a2[(al  + Au)(a2 + Ax) 

+ 2(As - A1)(al - a2)] + [uz(a2 + Ax)] a. (6.11) 

Under  the assumptions of  the Lemma,  m!/D~ >t m2/D~ > 1, A~ < A2, we have 
three cases, namely al > a2, a~ = a2, a2 > ax. I f  al > as, the discriminant D* of  
D(~) is 

D* = 4c~c~(A2 - a~)(a~ - a2)(a 1 + A1)(A 2 + a2) > 0. (6.12) 

It  follows that  D(r = 0 has two real roots  r Cu. Fur thermore ,  r ~2 are positive. 
I f  r is chosen between r Cu, then D(~*) < 0. Hence Pc,(z) = 0 has no real roots  
and by (6.10), P~.(z) < 0 for  all z. Put  ~ = r in (6.8) it follows that  

r x'u(t) x ; ( t )  1 
Dg.xa(t) Dxx~(t) = [a~ + S(t)][az + S(t)]  P~.[S(t)] 

1 
max P~*(z) = ~ < O, 

~< (a~ + Smax)(a 2 q- Smax)o, ~ ~sm.x 
(6.13) 

where Sm~ = supo~t< ~ S( t ) .  Integrating f rom 0 to t and taking exponentials on 
both  sides of  (6.13) yields 

[ x - - ~ ]  <~ ~x- -~]  <<" M e~'" 



Since a~ 
i =  1,2.  

~ a  2 

and 

al)tlaa - ~*=~a2a~ = a~az(1 - ~*) < O. 
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It  follows that  limt_.co x2(t) = 0, since x l ( t )  is positive and bounded and ~ is 
negative. 

I f  a2 = al,  then f rom the assumption A1 < A2 we have m~/D~ > m2/D2. F r o m  (2.1), 
it follows that  

x'2(t) m2 x'~(t) D~D2 (m_~ 2 m_~) 
x2(t) ml  x l ( t )  = rnl = ~ < O. 

Again we have limt_.,~ x2(t) = O. 

I f  a2 > a~, then f rom (6.12) we have D* < 0. Hence D(~) > 0 for  all ~. Rewrite 
(6.9) for  this case as 

Pc(z) = ~aa(z - Az)(Z + a~) - az(z - hl)(z + a2). (6.14) 

Let  zo > max (Smax, Az) and choose 

al(Zo - A1)(z0 + a2) 
a~(Zo - a2)(z0 + a 0  

i> a2, A2 > A~, a2 > al, it follows that  ~:* > 1. F rom (3.3) we have a~ = ~ ,  
Consider the coefficients of  polynomial  P~(z) in (6.9). Then 

[(Zo - A~)(Zo + a2) 1] > 0 
- = z )(zo + a l )  - J 

Hence Pc,(z) has one positive and one negative root .  However ,  f rom (6.16), 
Pr = 0 and Pr < 0, so Pr < 0 on 0 < S( t )  <<. Smax. The argument  
is complete  as before using (6.8). [ ]  

Proof  o f  Lemma 3.2. From (6.4) and Lemma 6.3, it follows that  

S( t )  <<. S '~ + B s i n ( w t - f l )  + A e - ~  ( x l ( O )  x2_.(O)]e_Dt 
\ Yl Yz l 

= S ~~ + Bs in  (wt - fl) + A1 e -or = Q(t),  (6.15) 

where 

bDw 
A~ = S(O) + D2 + w2 S c~ 

Since 

Q(t) = S ~~ + B sin (wt - fl) + 0(1), 

given e > 0 there exists to such that  for  t >/ to 

S ~ ~  Q(t) < S ~ ~  

F r o m  (6.1)', it suffices to show that  

f t  [(m, - D,) a~m~ ] d~ = - oo. lim 
'-'| Jo L a, + S(~)J 

(6.16) 
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Since 

f l  [ ( m , -  D,) a~m_~ ] d e =  ( f ) o +  f f ) [ ( m ,  - D,) a~m_~ ] d~:, 
a, + S(r o a, + S(~:)J 

by (6.15) and (6.16) we have 

f t  [ ( m , -  D,) aim--L ] d ,  
to ai + S(~:)J 

f ' [  a,m, j ] d , .  
~< (mi - D~) - (ai + S ~~ + e) + B sin (w~: - / 3  

to 

The integrand of the above integral is a periodic function of period 2zr/w, hence it 
suffices to show 

fto+2~,~ [ a,m, ] d ,  < 0. 
A* = ~to (mi - D0 - (as + S ~~ + e) + Bsin (w~ - /3 )  

Since C~ < 0, or 

ms - D~ 1 
- -  < S~O~)2  B 2' a~m~ ~/(ai + - 

let e > 0 be so small that 

m~ - Ds 1 
a~m~ V'(a~ + S ~~ + e) 2 - B 2 

Using the same computation method for A in Lemma 6.4 yields 

A* 2~r [(maSmDi) 1 ] = - -  aim~ < O. [] 
w " X/(a~ + S ~~ + e) 2 - B 2 

Proo f  o f  Theorem 3.3. Theorem 3.3 follows directly from Lemma 3.2, Lemma 6.2 
and Lemma 6.1. [] 

Proo f  o f  Theorem 3.4. Theorem 3.4 follows directly from Lemma 3.2 and Lemma 
6.4. [] 

Proof  o f  Theorem 3.5. Theorem 3.5 follows directly from Lemma 6.5 and Lemma 
6.4. [] 

Proof  o f  Theorem 3.6. For convenience we adopt the notation b~ = mdD~, i = 1, 2. 
We note that bs is different from amplitude b. Choose e > 0 such that S ~~ + B + 
8 < (bla2 - b2al)/(b2 - bl) and choose to such that S( t )  <<. S (~ + B + 8 for 
t >/ to. Then one has 

x~(t) x'l(t) b2S(t)  b IS ( t )  
a2x2(t)  D l x l ( t )  = az + S ( t )  a~ + S ( t )  

= S ( t ) (b2  - bOS( t )  - (bla2 + b2al) 

<~ S ( t )  (b2 - b~)(S ~~ + B + 8) - (b~a~ + bsa~) 
(ax + S (~ + B + 8)(a2 + S (~ + B + 8) 

for t >/ to. 
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Since lim supt~o S( t )  = S > 0 (a consequence of  Lemma 3.1) and since S ' ( t )  is 
uniformly bounded,  there are constants 8 > 0 and 8* > 0 and a sequence of  dis- 
joint  intervals I~ = (t~ - 8, t~ + 8), t~ ~ o% such that  S( t )  > e* for  t ~ I~. In 

particular,  limt_. | ~o S(~) d~ = + oo. Integrating the above inequality gives 

[ ] x2---'~o)] ~ \x~---~o)] exp - C  S(~7) d~7 , for  some C > 0. 
o 

Hence it follows that  l imt~o x2(t) -- 0 and (i) follows directly f rom Lemma 6.4. 

Let  

albxC__..~l 
= a2b2C2 + 81 

where el is a small, positive number.  Let  8 > 0 by a sufficiently small number  
satisfying 

1 _ B2 ] 

- ~/(a~ + S ~~ + 8) 2 - B ~ < 0. 

F r o m  Lemma 6.1 and Lemma 6.4, there exist to > 0 such that  S( t )  <~ S (~ + 
B sin (wt - / 3 )  + 8, for  t t> to. Then  one has 

A = x;( t )  r x'2(t) [ b~_S(t) ) 
D lx l ( t )  D2x2(t) = \a l  + S ( t )  1 - r 

b2S(t )  ) 
a~T- '~ ( t )  1 = g[S(t)] .  

It  is easy to verify g ( S )  is strictly increasing for S 1> 0 provided al < a2, C1 < (72 
and 81 is sufficiently small. Then 

A ~ g [ S  (~ + B s i n  (wt - fl) + 8]. 

Integrating the above inequality gives 

[x (t) l,D1 g[S,O, 81 kx~(to)] <~ k ~ ]  .exp + B sin (ws - ~) + . 
o 

Using the same computat ional  method  in Lemma 6.4 yields 

~ t~176 q- B sin (ws - f l )  + 8] ds 
to 

w X/(al + S(O) + 8)2 _ B 2 

l )] 
~/(a2 + s (~ + e) 2 - B 2 < O. 

Hence limt~ ~o xa(t) = 0 and (ii) follows f rom Lemma 6.4. 
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