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Abstract

Phytoplankton species in a water column compete for mineral nutrients and light, and the existing mod-
els usually neglect differences in the nutrient content and the amount of light absorbed of individuals. In 
this current paper, we examine a size-structured and nonlocal reaction–diffusion–advection system which 
describes the dynamics of a single phytoplankton species in a water column where the species depends 
simply on light for its growth. Our model is under the assumption that the amount of light absorbed by indi-
viduals is proportional to cell size, which varies for populations that reproduce by simple division into two 
equally-sized daughters. We first establish the existence of a critical death rate and our analysis indicates 
that the phytoplankton survives if and only if its death rate is less than the critical death rate. The critical 
death rate depends on a general reproductive rate, the characteristics of the water column (e.g., turbulent 
diffusion rate, sinking, depth), cell growth, cell division, and cell size.
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1. Introduction

Classical phytoplankton competition studies often assume a simple, well-mixed laboratory 
system, such as the chemostat culture system, in which a nutrient medium is pumped, balanced 
by an outflow that removes nutrients and organisms [30]. The chemostat is a basic piece of 
ideal apparatus and it has been thought of as a lake or pond in a laboratory. However, in many 
aquatic environments, the habitat may be poorly mixed, and have spatial gradients of resource 
availability. For example, the vertical transport (motion) of phytoplankton species in the water 
column is determined by vertical turbulent diffusion and advection (sinking or buoyant).

Another factor that may affect the competition between species for resources is size structure 
of algal communities. The simplest competition models neglect differences between individuals, 
assuming a constant quota of resource per individual [12,17]. In fact, quotas may vary. The 
variable-internal-stores models [11,18,29] assume that all individuals have the same quota at any 
instant and the dynamics of quota for a species is governed by an ordinary differential equation. 
Alternatively, Diekmann et al. [3,7,16] proposed a structured population model in which quotas 
may differ among individuals at any instant.

Investigation of the mechanisms contributing to the emergence of size structures in spatially 
varying environments is a challenging issue in mathematical ecology. Resource storage within 
individuals leads to population structure and it must be combined with the spatial variation of the 
environment. There are at least three possible ways to this issue. One is the Lagrangian modelling 
approach [13] which assumes that each competitor population is divided into many subpopula-
tions that move through two model habitats with gradient in nutrient availability. This model 
can not be analyzed mathematically and require extensive computation to achieve results. A sec-
ond approach is an approximation that averages over differences among individuals at a given 
location, in their amounts of stored nutrient. Equivalently, one assumes that at any location, all in-
dividuals have the same quota, as if there were instantaneous redistribution of resources among 
individuals at the same place. This assumption yields a set of analytically and computation-
ally tractable partial differential equations [14,20,23,24]. The third one combines the structured 
population model proposed in [3,7,16] with the physical transport equations governing spatial 
distributions of populations and nutrients. In [15], the authors assume nutrient content of indi-
viduals is proportional to cell size and the habitat is taken to be an unstirred chemostat where 
organisms and nutrients move by simple diffusion.

The growth of population depends critically on the supply of two fundamental types of re-
sources: light and mineral nutrients. In phytoplankton communities, species typically compete 
for nutrient and light which are complementary resources for their growth [4,5,21,25]. There are 
also two possibly extreme cases. In oligotrophic ecosystems with ample supply of light, they 
tend to compete only for nutrients [26,28], and in eutrophic environments with ample nutrients 
supply, they compete only for light [6,8,9,19,22].

In this current paper, we focus on the study of the dynamics of a single species in a water 
column in eutrophic ecosystem, that is, the species depends only on light for its growth. As in 
[15], we shall assume the amount of light absorbed by individuals is proportional to cell size, 
which varies for populations that reproduce by simple division into two equally-sized daughters, 
and species move by vertical turbulent diffusion and advection (sinking or buoyant). Most of 
phytoplankton species have tendency to sink as they are heavier than water while some species 
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will float as they have a lower density than water and it is called buoyant [9]. In this paper, due 
to mathematical restrictions, we only consider the sinking case, that is, we shall assume that the 
advection coefficient is nonnegative.

The rest of the paper is organized as follows. The mathematical model is described in the 
next section. In Section 3, we study a population operator with vertical turbulent diffusion and 
advection. In Section 4, we are able to reduce our structured population model into the classical 
P.D.E. system by using the results in Section 3. We note that our reduced system is similar to 
those in [6,8,19], but the boundary condition at the bottom of the water column is different. We 
may not directly apply the previous work [6,8,19] to our system, and hence, the detailed analyses 
of the reduced system are given in Section 5. Brief discussions are presented in Section 6.

2. Description of the model

In this section, we first review the following single population model with size structure [3,7,
16]:

∂n(t, q)

∂t
+ ∂(g(q)n(t, q))

∂q
= −b(q)n(t, q) + 4b(2q)n(t,2q). (2.1)

Here t denotes time, q stands for the size of an individual cell. n is the population density func-
tion, that is, 

∫ q2
q1

n(t, q)dq represents the number of cells with size between q1 and q2 at time t . 
The functions b(q) and g(q) are the rates at which cells of size q divide and grow, respectively. 
The second term at the left hand side denotes changes due to the growth. The last two terms 
describe the reproduction process. Note that we ignore the death or dilution of cells in (2.1). The 
factor 4 in the birth term may be strange to the readers and we refer the Appendix in [3] for a 
derivation of equation (2.1).

We assume that an individual cannot divide before reaching a minimal size qmin > 0. Con-
sequently, cells with size less than 1

2qmin can not exist, which is expressed by the boundary 
condition

n(t,
1

2
qmin) = 0. (2.2)

Furthermore, we assume that cells have to divide before reaching a maximal size which is de-
noted by qmax. Thus we have to impose the following condition on b:

qmax∫
qmin

b(q)dq = ∞.

Throughout this paper, we impose the following assumptions on g and b:

(Hg) g is a continuous, strictly positive function on [1

2
qmin, qmax].
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(Hb) b(q) = 0 on [1

2
qmin, qmin] and b(q) > 0 on (qmin, qmax),

b is integrable on [qmin, qmax − ε] for all ε > 0 and

lim
ε↓0

qmax−ε∫
qmin

b(q)dq = ∞.

We shall assume that the initial condition n0 is

n(0, q) = n0(q). (2.3)

Next, we shall incorporate size structure (2.1) into a water column with a cross section of 
one unit area. Let x denote the depth within the water column, where x runs from 0 (top) to L
(bottom). Let n(t, q, x) represent the density of species having quota q at time t and depth x. 
We assume that phytoplankton transport is governed by turbulent diffusion D and sinking term 
ν (ν > 0). The specific growth rate can be determined by a production term β(I (x, t)) and cell 
size, which varies for populations that reproduce by division; dn(t, q, x) represents a loss term 
of species. We assume that the specific production rate of a species, β(I (x, t)), is an increasing 
and possibly saturating function of light intensity I (x, t). There is no production without light, 
that is, β(0) = 0. Typically, the Monod function is β(I) := μmaxI

a+I
.

Following [22,27], the light intensity at each depth is described by Lambert–Beer law. This 
law states that the amount of light absorbed at depth x is proportional to the light intensity at 
depth x:

∂I (x, t)

∂x
= −K(x, t)I (x, t). (2.4)

We assume that the constant of proportionality, K(x, t), consists of all components that absorb 
light, including the water itself and the number of cells with size between qmin

2 and qmax at time 
t and depth x:

K(x, t) = k0 + k1

qmax∫
qmin

2

n(t, q, x)dq, (2.5)

where k0 is the background turbidity that summarizes light absorption by all nonphytoplankton 
components, and k1 is the specific light attenuation coefficient of phytoplankton species. From 
(2.4) and (2.5), it follows that the light intensity I (x, t) is given by

I = I (x, t) = I0 exp(−k0x − k1

x∫
0

qmax∫
qmin

2

n(t, q, s)dqds), (2.6)

where I0 is the incident light intensity.
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The zero-flux boundary conditions apply to n(t, q, x) at the top of the habitat (x = 0), and 
absorbing conditions apply at the bottom (x = L). This kind of boundary conditions were used 
in the recent work [14]. These assumptions lead to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂n(t,q,x)
∂t

= D ∂2n

∂x2 − ν ∂n
∂x

+ β(I (x, t)){− ∂[g(q)n(t,q,x)]
∂q

− b(q)n(t, q, x)

+ 4b(2q)n(t,2q, x)} − dn(t, q, x), t > 0,
qmin

2 < q < qmax, 0 < x < L,

νn(t, q,0) − D ∂n
∂x

(t, q,0) = n(t, q,L) = 0, t > 0,
qmin

2 < q < qmax,

n(t,
qmin

2 , x) = 0, t > 0, 0 < x < L,

n(0, q, x) = n0(q, x),
qmin

2 < q < qmax, 0 < x < L.

(2.7)

3. Preliminaries

In this section, we shall study a population operator with vertical turbulent diffusion and 
advection. Let E(q) = exp(− 

∫ q

qmin/2
b(η)
g(η)

dη). Then the transformation

m(t, q) = g(q)

E(q)
n(t, q) (3.1)

leads the system (2.1), (2.2) and (2.3) into the following evolution equation (see, e.g., [3] and [7, 
p. 48]):

⎧⎪⎨
⎪⎩

∂m(t,q)
∂t

= −g(q)
∂m(t,q)

∂q
+ k(q)m(t,2q),

m(t, 1
2qmin) = 0,

m(0, q) = m0(q),

(3.2)

where

k(q) =
{

4 g(q)
E(q)

E(2q)
g(2q)

b(2q), for 1
2qmin ≤ q ≤ 1

2qmax,

0, for q > 1
2qmax,

(3.3)

and m0(q) = g(q)
E(q)

n0(q). It is clear that E(qmax) = 0. From (3.1), it follows that n(t, q) has to go 
to zero as q ↑ qmax (see, e.g., [7, p. 49]). That is, n(t, qmax) = 0 holds automatically.

Throughout the rest of this paper, we make the following assumption:

qmin >
1

2
qmax, (3.4)

which means that the smallest mother is still larger than the biggest daughter or, in other words, 
a cell which is just created cannot divide.

In [15, Section 3.1], the authors considered the system (3.2) in the Hilbert space
L2(

qmin
2 , qmax), that is,

⎧⎪⎨
⎪⎩

∂m(t,q)
∂t

= Am(t, q),

m(t, 1
2qmin) = 0,

0
m(0, q) = m (q),
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where A is the following population operator defined in the L2(
qmin

2 , qmax) space:

Aφ(q) =
{−g(q)

dφ(q)
dq

+ k(q)φ(2q), for qmin
2 ≤ q ≤ qmax

2 ,

−g(q)
dφ(q)

dq
, for qmax

2 < q ≤ qmax,
(3.5)

with a domain D(A) = {φ(q) | φ, Aφ ∈ L2(
qmin

2 , qmax), φ(
qmin

2 ) = 0}.
For λ ∈ C, we assumes that R(λ, A) := (λI − A)−1 denotes the resolvent of A. Let

G(q) =
q∫

qmin
2

dξ

g(ξ)
, (3.6)

π(λ) =
qmax

2∫
qmin

2

eλ(G(ξ)−G(2ξ)) k(ξ)

g(ξ)
dξ, (3.7)

ζ(λ,f ) =
qmax

2∫
qmin

2

eλ(G(ξ)−G(qmax/2))

⎡
⎢⎣f (ξ) + k(ξ)

2ξ∫
qmax

2

eλ(G(η)−G(2ξ)) f (η)

g(η)
dη

⎤
⎥⎦ dξ

g(ξ)
. (3.8)

Then

Lemma 3.1. (See [15, Lemma 3.1].) Suppose that the assumption (3.4) holds. Let ρ(A) and 
σp(A) represent the resolvent set and point spectral set of A, respectively.

(i) If π(λ) �= 1, then λ ∈ ρ(A) and the corresponding resolvent R(λ, A) can be expressed as

(R(λ,A)f )(q) = (1 − π(λ))−1ζ(λ,f )�(λ, q) + Q(λ,f, q), (3.9)

where

�(λ,q) =
⎧⎨
⎩

eλ(G(qmax/2)−G(q)) for qmax
2 ≤ q ≤ qmax,∫ q

qmin
2

eλ(G(ξ)−G(2ξ)−G(q)+G(qmax/2)) k(ξ)
g(ξ)

dξ for qmin
2 ≤ q ≤ qmax

2 ,
(3.10)

and

Q(λ,f, q) =

⎧⎪⎪⎨
⎪⎪⎩

∫ q
qmax

2
eλ(G(ξ)−G(q)) f (ξ)

g(ξ)
dξ, for qmax

2 ≤ q ≤ qmax,∫ q
qmin

2
eλ(G(ξ)−G(q))[f (ξ) + k(ξ)

∫ 2ξ
qmax

2
eλ(G(η)−G(2ξ)) f (η)

g(η)
dη] dξ

g(ξ)
,

for qmin
2 ≤ q ≤ qmax

2 .

Furthermore, R(λ, A) is a compact operator.
(ii) π(λ) = 1 implies λ ∈ σp(A). For any λ ∈ σp(A), its geometrical multiplicity is 1 and �(λ, q)

is its corresponding eigenfunction.
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Suppose that λ̂0 is the unique real number satisfying

π(λ̂0) = 1. (3.11)

Use the similar arguments to those in [7, Chapter II, Theorem 5.1, Theorem 5.10], we have the 
following results:

Lemma 3.2. (See [15, Lemma 3.2].) The operator A has precisely one real eigenvalue λ̂0 which is 
simple. Furthermore, if g(2q) �= 2g(q) for some q ∈ [ 1

2qmin, 12qmax] then λ̂0 is strictly dominant 
(i.e. λ̂0 is greater than the real part of the other eigenvalues of A) and it corresponds to a positive 
eigenvector �(λ̂0, q), where �(λ, q) is defined in (3.10).

For technical reasons, we impose the following additional condition on the function k, which 
is defined in (3.3):

(Hk) k(
qmax

2
) is finite.

Lemma 3.3. (See [15, Theorem 3.1].) The operator A generates a C0 semi-group T(t) on 
L2(

qmin
2 , qmax) under the additional condition (Hk).

Throughout the rest of this paper, we impose the following additional condition on the func-
tion g:

(Hgg) g(2q) < 2g(q) for all q ∈ [1

2
qmin,

1

2
qmax].

Lemma 3.4. (See [7, p. 67, Corollary 9.7].) Suppose (Hk) and (Hgg) hold. Then T(t) := eAt is 
compact for t ≥ G(qmax), where G is defined in (3.6).

Next, we consider the population operator with diffusion and advection in L2 space:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂m(t,q,x)
∂t

= D ∂2m

∂x2 − ν ∂m
∂x

+ {−g(q)
∂m(t,q,x)

∂q
+ k(q)m(t,2q, x)},

t > 0,
qmin

2 < q < qmax, 0 < x < L,

νm(t, q,0) − D ∂m
∂x

(t, q,0) = m(t, q,L) = 0, t > 0,
qmin

2 < q < qmax,

m(t,
qmin

2 , x) = 0, t > 0, 0 < x < L,

m(0, q, x) = m0(q, x),
qmin

2 < q < qmax, 0 < x < L,

(3.12)

We introduce the state X = L2((
qmin

2 , qmax) × (0, L)) with the usual norm and the operator 
A : X →X is defined by

{
Aφ(q, x) = D

∂2φ(q,x)

∂x2 − ν
∂φ(q,x)

∂x
+ {−g(q)

∂φ(q,x)
∂q

+ k(q)φ(2q, x)}, ∀φ ∈ D(A),

D(A) = {φ(q, x) | φ, Aφ ∈X, φ(
qmin , x) = 0, φ satisfies (BC)},
2
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where

(BC) νφ(q,0) − D
∂φ

∂x
(q,0) = φ(q,L) = 0,

qmin

2
< q < qmax.

Note that A =L + A, where

L := D
∂2

∂x2
− ν

∂

∂x
(3.13)

subject to the boundary condition (BC). Then the system (3.12) can be rewritten as follows:

{
dm(t,q,x)

dt
=Am(t, q, x), t > 0,

qmin
2 < q < qmax, 0 < x < L,

m(0, q, x) = m0(q, x),
qmin

2 < q < qmax, 0 < x < L.
(3.14)

We denote by (λ̄i, φi)i≥0 the eigenvalue–eigenfunction pair of the following problem

{−Dφ′′(x) + νφ′(x) = λ̄φ(x), x ∈ (0,L),

νφ(0) − Dφ′(0) = φ(L) = 0.
(3.15)

Suppose λ̄0 is the principal eigenvalue corresponding to the positive eigenfunction φ0(x) which 
is uniquely determined by the normalization max[0,1] φ0(x) = 1. We may assume that 0 < λ̄0 <

λ̄1 ≤ λ̄2 ≤ . . . ≤ λ̄n → ∞. See a detailed explanation for the sign of λ̄0 in Section 5.1.
Recall that A is defined in (3.5), the usual population operator without diffusion and advection 

in L2(
qmin

2 , qmax) space. We denote {λ̂j }j≥0 to be the eigenvalues of A, that is, {λ̂j }j≥0 satisfy 
π(λ̂j ) = 1, j ≥ 0, where π is defined in (3.7). Following [7, Eq. (5.1) on page 58], it is easy to 
see that λ̂j satisfies

1 = 2

qmax∫
qmin

b(ξ)

g(ξ)
exp[−

ξ∫
ξ/2

λ̂j + b(η)

g(η)
dη]dξ.

From Lemma 3.2, it follows that we may assume λ̂0 is the unique real eigenvalue of A. Further, 
λ̂0 is greater than the real part of the other eigenvalues of A and it corresponds to a positive 
eigenvector ψ0 := �(λ̂0, q). Thus, we may assume that

λ̂0 > Re λ̂1 ≥ Re λ̂2 ≥ . . . .

Theorem 3.1. Suppose (Hk) and (Hgg) hold. Then the following statements hold.

(i) The operator A generates a C0 semi-group T(t) on X.
(ii) R(λ, A) is a compact operator ∀λ ∈ ρ(A), where R(λ, A) := (λ − A)−1 is the resolvent 

of A.
(iii) σ(A) = σp(A) = {λ̂i − λ̄j }∞i,j=0, where σ(A) and σp(A) are the spectrum and the point 

spectrum of A, respectively.
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(iv) The operator A has a real dominant eigenvalue λ0, that is, λ0 is greater than the real part 
of any other eigenvalue of A. Furthermore, λ0 is simple.

(v) T(t) is compact for t ≥ G(qmax), where G(q) is defined in (3.6).

Proof. Our proof is motivated by [1,2] and [15, Theorem 3.2]. In fact, if one can establish the 
following claim then the rest of the proofs are same to [15, Theorem 3.2] after we replace the 
operator d� there by L. Note that the operator L is defined in (3.13).

Claim. Given φ(q, x) ∈ D(A), define < Aφ, φ >X:= ∫ L

0

∫ qmax
qmin/2 Aφ(q, x)φ(q, x)dqdx. Then 

<Aφ, φ >X≤ M ‖ φ ‖2
X
, ∀φ(q, x) ∈ D(A).

Obviously, <Aφ, φ >X equals

qmax∫
qmin/2

L∫
0

[D∂2φ(q, x)

∂x2
− ν

∂φ(q, x)

∂x
]φ(q, x)dxdq +

L∫
0

qmax∫
qmin/2

[−g(q)
∂φ(q, x)

∂q
φ(q, x)]dqdx

+
L∫

0

qmax∫
qmin/2

[k(q)φ(2q, x)]φ(q, x)dqdx. (3.16)

The first term of (3.16) equals

qmax∫
qmin/2

{φ(q, x)[D∂φ(q, x)

∂x
− νφ(q, x)] |x=L

x=0 }dxdq

−
qmax∫

qmin/2

L∫
0

∂φ(q, x)

∂x
[D∂φ(q, x)

∂x
− νφ(q, x)]dxdq

= −
qmax∫

qmin/2

L∫
0

∂φ(q, x)

∂x
[D∂φ(q, x)

∂x
− νφ(q, x)]dxdq

= −D

qmax∫
qmin/2

L∫
0

(
∂φ(q, x)

∂x
)2dxdq + ν

qmax∫
qmin/2

L∫
0

∂φ(q, x)

∂x
φ(q, x)dxdq

= −D

qmax∫
qmin/2

L∫
0

(
∂φ(q, x)

∂x
)2dxdq + ν

2

qmax∫
qmin/2

L∫
0

∂

∂x
[(φ(q, x))2]dxdq

= −D

qmax∫ L∫
(
∂φ(q, x)

∂x
)2dxdq + ν

2

qmax∫
[(φ(q,L))2 − (φ(q,0))2]dq
qmin/2 0 qmin/2
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= −D

qmax∫
qmin/2

L∫
0

(
∂φ(q, x)

∂x
)2dxdq + ν

2

qmax∫
qmin/2

[0 − (φ(q,0))2]dq ≤ 0.

By the similar arguments to those in the proof of [15, Theorem 3.2], the second term of (3.16)
equals

L∫
0

qmax∫
qmin/2

[−g(q)
∂φ(q, x)

∂q
φ(q, x)]dqdx

≤ 1

2
M1

L∫
0

qmax∫
qmin/2

(φ(q, x))2dqdx = 1

2
M1 ‖ φ ‖2

X
,

where M1 = max[qmin/2,qmax] |g′(q)| < ∞.
Using the fact that φ(2q, ·) ≡ 0 ∀ q > qmax/2, it follows that the third term of (3.16) equals

L∫
0

qmax/2∫
qmin/2

k(q)φ(2q, x)φ(q, x)dq ≤ M2

L∫
0

qmax/2∫
qmin/2

φ(2q, x)φ(q, x)dqdxdx

≤ 1

2
M2{

L∫
0

qmax/2∫
qmin/2

(φ(2q, x))2dqdx +
L∫

0

qmax/2∫
qmin/2

(φ(q, x))2dqdx} ≤ M2 ‖ φ ‖2
X
,

where M2 := max[qmin/2,qmax/2] k(q) < ∞ by (Hk).
From the discussions above, it follows that

<Aφ,φ >X≤ (
1

2
M1 + M2) ‖ φ ‖2

X
,∀φ ∈ D(A),

i.e. (A, D(A)) is bounded above on the Hilbert space X. Thus, (i)–(iv) are valid by [10, Proposi-
tion, p. 91]. �

By the similar arguments to the proofs in [15, Theorem 3.3], we obtain the results concerned 
with the asymptotic behavior of the solution for (3.14).

Theorem 3.2. Suppose the notations π , ζ and � are defined in (3.7), (3.8) and (3.10), respec-
tively. Let T(t) := eLt eAt be the C0 semi-group generated by A := L + A on X, where eLt and 
eAt are the semi-groups generated by L := D ∂2

∂x2 − ν ∂
∂x

and A respectively. Then the following 
statements hold.

(i) For m0(q, x) ∈ X, there exists a unique solution m(t, q, x) to equation (3.14), which is given 
by

m(t, q, x) = T(t)m0(q, x) ∈ C((0,∞),X);
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(ii) If m0(q, x) ∈ D(A), then m(t, q, x) = T(t)m0(q, x) ∈ C1((0, ∞), X);
(iii) m(t, q, x) := eLt eAtm0(q, x) has the following asymptotic expression

eLt eAtm0(q, x) = e−λ̄0t eλ̂0t [C�(λ̂0, q)φ0(x) + O(e−εt )], as t → ∞,

where C = ζ(λ̂0,m0)

−π ′(λ̂0)
, m0(q) =< m0(q, x), φ0(x) >, and ε is a small positive number.

4. The reduction of system (2.7)

In the previous section, we have shown that the structure of the semigroup for the population 
with turbulent diffusion and sinking term is essentially determined by those of the semigroup for 
the population without spatial variation. We shall use the property of the asymptotic behavior 
of this semigroup and then reduces the model (2.7) into a nonlocal reaction–diffusion–advection 
equation similar to those in [6,19].

Lemma 4.1. Let N(t, x) = ∫ qmax
qmin

2
qn(t, q, x)dq , where n(t, q, x) satisfies the system (2.7). Then

lim sup
t→∞

L∫
0

e
νx
D φ0(x)N(x, t) dx < ∞, (4.1)

where φ0(x) is the positive and normalized eigenfunction of (5.4).

Proof. By direct computation, N(t, x) satisfies the following equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂N(t,x)
∂t

= D ∂2N

∂x2 − ν ∂N
∂x

− dN(t, x)

+ β(I (x, t))
∫ qmax

qmin
2

g(q)n(t, q, x)dq, t > 0, 0 < x < L,

νN(t,0) − D ∂N
∂x

(t,0) = N(t,L) = 0, t > 0,

N(0, x) = N0(x), 0 < x < L,

(4.2)

Since

N(t, x) =
qmax∫

qmin
2

qn(t, q, x)dq ≤ qmax

qmax∫
qmin

2

n(t, q, x)dq,

it follows from (2.6) that

I (x, t) ≤ I0 exp(−k0x − k1

qmax

x∫
0

N(t, s)ds). (4.3)

It is easy to see that there exists a positive number C > 0 such that

g(q) ≤ Cq, ∀ q ∈ [qmin
, qmax]. (4.4)
2
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From (4.1), (4.3) and (4.4), it follows that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂N(t,x)
∂t

≤ D ∂2N

∂x2 − ν ∂N
∂x

− dN(t, x)

+ Cβ(I0 exp(−k0x − k1
qmax

∫ x

0 N(t, s)ds))N(t, x), t > 0, 0 < x < L,

νN(t,0) − D ∂N
∂x

(t,0) = N(t,L) = 0, t > 0,

N(0, x) = N0(x), 0 < x < L,

(4.5)

By (4.5) and the same arguments to those in Lemma 5.1, we conclude that (4.1) is true. �
Let

E(q) = exp(−
q∫

qmin
2

b(ξ)

g(ξ)
dξ) and m(t, q, x) = g(q)n(t, q, x)

E(q)
.

Then (2.7) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂m(t,q,x)
∂t

= D ∂2m

∂x2 − ν ∂m
∂x

+ β(I (x, t)){−g(q)
∂m(t,q,x)

∂q
+ k(q)m(t,2q, x)}

−dm(t, q, x), t > 0,
qmin

2 < q < qmax, 0 < x < L,

νm(t, q,0) − D ∂m
∂x

(t, q,0) = m(t, q,L) = 0, t > 0,
qmin

2 < q < qmax,

m(t,
qmin

2 , x) = 0, t > 0, 0 < x < L,

m(0, q, x) = m0(q, x),
qmin

2 < q < qmax, 0 < x < L,

(4.6)

where k(q) is defined in (3.3) and m0(q, x) = g(q)n0(q, x)/E(q). Abstractly, we rewrite the 
equation of m in (4.6) as follows:

{
dm(t,q,x)

dt
= D ∂2m

∂x2 − ν ∂m
∂x

− dm + β(I)Am, t > 0,
qmin

2 < q < qmax, 0 < x < L,

m(0, q, x) = m0(q, x),
qmin

2 < q < qmax, 0 < x < L,

where A satisfies (3.5).
Treating the substrate concentration I as a known function of time we can solve the equation 

for m by

m(t, q, x) = e−dt eLt eA
∫ t

0 β(I (τ,x))dτm0(q, x), (4.7)

where eLt and eAt are the semi-group generated by L := D ∂2

∂x2 − ν ∂
∂x

and A respectively.

Lemma 4.2.

lim
t→∞

t∫
0

β(I (τ, x))dτ = ∞, ∀ x ∈ (0,L). (4.8)
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Proof. Since β(I (τ, x)) ≥ 0 ∀ x ∈ (0, L), the integral 
∫ t

0 β(I (τ, x))dτ approaches a limit as 
t → ∞, ∀ x ∈ (0, L). We suppose that limt→∞

∫ t

0 β(I (τ, x0))dτ < ∞, for some x0 ∈ (0, L). 
Then

I (t, x0) → 0 as t → ∞. (4.9)

It is easy to see that

I (t, x) ≥ I0 exp(−k0x − 2k1

qmin

x∫
0

N(t, s)ds), ∀ x ∈ (0,L). (4.10)

From (4.1), (4.9) and (4.10), we get a contradiction. Thus, (4.8) is true and we complete the 
proof. �

By (4.7) and Theorem 3.2, it follows that

m(t, q, x) = e−dt e−λ̄0t eλ̂0
∫ t

0 β(I (τ,x))dτ [C�(λ̂0, q)φ0(x) + O(e−εt )] as t → ∞.

That is,

m(t, q, x) = u(t, x)[�(λ̂0, q) + o(1)] as t → ∞, (4.11)

where u(t, x) is a real valued function depending on t and x.
Substituting (4.11) into the equation (4.6), it follows that

⎧⎪⎨
⎪⎩

∂u(t,x)
∂t

= D ∂2u

∂x2 − ν ∂u
∂x

+ λ̂0β(I (x, t))u − du,

νu(t,0) − D ∂u
∂x

(t,0) = u(t,L) = 0, t > 0,

u(0, x) = u0(x),

(4.12)

where

I = I (x, t) = I0 exp(−k0x − k1[
qmax∫

qmin
2

E(q)

g(q)
�(λ̂0, q)dq][

x∫
0

u(t, s)ds])

= I0 exp(−k0x − k̂1

x∫
0

u(t, s)ds), (4.13)

and

k̂1 = k1[
qmax∫

qmin
2

E(q)

g(q)
�(λ̂0, q)dq]. (4.14)
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5. The analysis of the reduced system (4.12)

In this section, we shall concentrate on the study of system (4.12). For convenience, let

F(I (x, t)) = λ̂0β(I (x, t)), (5.1)

where I (x, t) = I0 exp(−k0x − k̂1
∫ x

0 u(s, t)ds) and k̂1 > 0 is defined by (4.14). That is, we shall 
consider the following system:

⎧⎨
⎩

ut = Duxx − νux + F(I (x, t))u − du, 0 < x < L, t > 0,

Dux(0, t) − νu(0, t) = u(L, t) = 0, t > 0,

u(x,0) = u0(x) ≥ 0, 0 ≤ x ≤ L.

(5.2)

5.1. The steady-state solutions

The steady state of (5.3) is described by the system

{−Duxx + νux = F(I (x))u − du, 0 < x < L,

Dux(0) − νu(0) = u(L) = 0,
(5.3)

where

I (x) = I0e
−k0x−k̂1

∫ x
0 u(η) dη.

For a continuous function �(x), consider the eigenvalue problem

{−Dφxx + νφx + �(x)φ = μφ, 0 < x < L,

Dφx(0) − νφ(0) = φ(L) = 0.
(5.4)

Let φ(x) = ψ(x)e
ν

2D
x . Then (5.4) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

−Dψxx +
(

ν2

4D
+ �(x)

)
ψ = μψ, 0 < x < L,

ψx(0) − ν

2D
ψ(0) = ψ(L) = 0.

(5.5)

Hence μ1(�(x)) is a real number if �(x) is a real function. Since ν ≥ 0, the Krein–Rutman 
theorem guarantees μ1(�(x)) has a corresponding eigenfunction which is positive in (0, L). 
Clearly μ1(�(x)) is increasing with respect to �. Let �(x) ≡ 0 and φ0(x) be the corresponding 
normalized positive principal eigenfunction of (5.4). Then we have

μ1(0)

L∫
0

φ0(η) dη = −D(φ0)x(L) > 0,

which implies μ1(0) > 0. Note that μ1(0) = λ̄0, where λ̄0 is the principal eigenvalue of (3.15).
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Define

d∗ := −μ1

(
−F(I0e

−k0x)
)

. (5.6)

Then d∗ ≤ 0 if F(I0e
−k0x) is small enough, d∗ > 0 if F(I0e

−k0x) is large enough. If d∗ ≤ 0, (5.3)
has no positive solution. We assume d∗ > 0.

Theorem 5.1. The system (5.3) has no positive solution for d ≥ d∗, and it has a unique positive 
solution for each d ∈ [0, d∗).

Proof. Clearly, for any d ∈ R1, (d, 0) is a solution pair to (5.3). By the Crandall–Rabinowitz 
global bifurcation theory, there is a positive solution continuum � emanating from (d∗, 0) and 
either become unbounded, or meets {0} × C([0, L]).

Suppose u is a positive solution of (5.3). Then

d = −μ1

(
−F(I0e

−k0x−k̂1
∫ x

0 u(η) dη)
)

∈ (−μ1(0), d∗),

which implies (5.3) has no positive solution when d ≥ d∗. Now it is easy to prove that � become 
unbounded only when d ↓ −μ1(0). Since −μ1(0) < 0, we conclude that for all d ∈ [0, d∗), (5.3)
has at least one positive solution.

Suppose u1 and u2 are two positive solutions of (5.3) corresponding to the same d ∈ [0, d∗). 
We want to show that u1 ≡ u2. Assume by contradiction that u1 �≡ u2. We first claim that 
u1(0) �= u2(0). Otherwise u1(0) = u2(0). By the boundary conditions of u1 and u2 at x = 0, 
we have u′

1(0) = u′
2(0). Let ξi(x) = u′

i (x) and ηi(x) = ∫ x

0 ui(s) ds, i = 1, 2. Then (u1, ξ1, η1)

and (u2, ξ2, η2) are solutions of the ODE system

⎧⎪⎨
⎪⎩

u′ = ξ, 0 < x < L,

ξ ′ = D−1
[
νξ − F(I0e

−k0x−k̂1η)u + du
]
, 0 < x < L,

η′ = u, 0 < x < L,

with the same initial conditions. Therefore (u1, ξ1, η1) ≡ (u2, ξ2, η2), a contraction. Hence 
u1(0) �= u2(0). Without loss of generality, we assume u1(0) > u2(0). Assume u1(x) > u2(x)

for all x ∈ [0, L). Multiplying the equation for u1 by u2e
ν
D

x and the equation for u2 by u1e
ν
D

x , 
then integrating over [0, L] and subtracting, we obtain

L∫
0

[
F

(
I0e

−k0x−k̂1
∫ x

0 u1(η) dη
)

− F
(
I0e

−k0x−k̂1
∫ x

0 u2(η) dη
)]

u1(x)u2(x)e
νx
D dx = 0.

This is impossible, since the left hand side is clearly negative according to our assumption. There-
fore u1 − u2 must change sign in (0, L). Let x∗ ∈ (0, L) be the smallest zero of u1 − u2. Then 
multiplying the equation for u1 by u2e

νx
D and multiplying the equation for u2 by u1e

νx
D , integrat-

ing over [0, x∗] and subtracting, we obtain
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L∫
0

[
F

(
I0e

−k0x−k̂1
∫ x

0 u1(η) dη
)

− F
(
I0e

−k0x−k̂1
∫ x

0 u2(η) dη
)]

u1(x)u2(x)e
νx
D dx

= D[u1(x∗)u′
2(x∗) − u2(x∗)u′

1(x∗)].
The left hand side is negative and the right hand side is nonnegative, which is impossible. In 
summary, we always have u1 ≡ u2. This proves the uniqueness. �
5.2. The global asymptotic stability

Let (μ1(0), φ0) be the positive eigenvalue–eigenfunction pair of (5.4). Then μ1(0) > 0. We 
may assume φ0 is positive and ‖φ0‖∞ = 1.

Lemma 5.1. Assume that u(x, t) ≥ 0 satisfies⎧⎨
⎩

ut ≤ Duxx − νux + F(I (x, t))u − du, 0 < x < L, t > 0,

Dux(0, t) − νu(0, t) = u(L, t) = 0, t > 0,

u(x,0) = u0(x) ≥ 0, 0 ≤ x ≤ L.

(5.7)

Then

lim sup
t→∞

L∫
0

e
νx
D φ0(x)u(x, t) dx < ∞. (5.8)

Proof. Let

W(t) :=
L∫

0

e
νx
D φ0(x)u(x, t) dx.

Let c > 0 be a constant such that F(s) ≤ cs for s ≥ 0. Then

W ′(t) =
L∫

0

e
νx
D φ0(x)ut (x, t) dx

≤
L∫

0

e
νx
D φ0(x)

[
Duxx − νux + F

(
I0e

−k0x−k̂1
∫ x

0 u(η,t) dη
)

u − du
]
dx

=
L∫

0

[D(φ0)xx − ν(φ0)x]e νx
D udx + ce

νL
D

L∫
0

e−k̂1
∫ x

0 u(η,t)dηu(x, t)dx − dW(t)

≤ −μ1(0)W(t) + ce
νL
D k̂−1

1

(
1 − e−k̂1

∫ L
0 u(x,t)dx

)
− dW(t)

≤ ce
νL
D k̂−1 − [μ1(0) + d]W(t).
1
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By Gronwall’s inequality,

W(t) ≤ W(0)e−[μ1(0)+d]t + ce
νL
D k̂−1

1 (μ1(0) + d)
(

1 − e−[μ1(0)+d]t) ,

which implies (5.8). �
Lemma 5.2. If u(x, t) is a nonnegative solution of (5.2), then

lim sup
t→∞

‖u(x, t)‖∞ < ∞.

Proof. Set

J (t) = max
x∈[0,L],s∈[0,t]

u(x, t).

Then J (t) is nondecreasing. Suppose for contradiction that J (t) → ∞ as t → ∞. We can find 
tn → ∞ such that J (tn) = maxx∈[0,L] u(x, tn) = u(xn, tn) → ∞. Define

vn(x, t) = u(x, t + tn − 1)

J (tn)
.

Then vn satisfies

⎧⎨
⎩

(vn)t = D(vn)xx − ν(vn)x + [Fn(x, t) − d]vn,

D(vn)x(0, t) − νvn(0, t) = vn(L, t) = 0,

vn(x,0) ∈ [0,1],

where Fn(x, t) = F(I0e
−k0x−k̂1

∫ x
0 u(y,t+tn−1)dy). Clearly |Fn(x, t) − d| ≤ M0 for some M0 > 0. 

A simple comparison argument gives 0 ≤ vn(x, t) ≤ eM0t for all x ∈ [0, L] and t ≥ 0. By the 
standard parabolic regularity {vn} is bounded in C1+α,α([0, L] × [1/2, 2]). Hence by passing to 
a subsequence we may assume vn → v∗ in C1,0([0, L] × [1/2, 2]). Since |Fn| ≤ M0 + d , we 
may assume, subject to a further subsequence, Fn → ρ∗ weakly in L2([0, L] ×[1/2, 2]). Clearly 
|ρ∗| ≤ M0 + d . And v∗ is a weak solution of

⎧⎨
⎩

vt = Dvxx − νvx + [ρ∗(x, t) − d]v,

Dvx(0, t) − νv(0, t) = v(L, t) = 0,

v(x,0) ∈ [0,1].

Since maxx∈[0,L],t∈[0,1] vn(x, t) = vn(xn, 1) = 1, we have v∗(x0, 1) = maxx∈[0,L] v∗(x, 1) = 1. 
By the strong maximum principle, v∗(x, 1) > 0 for all x ∈ [0, L). Let κ0 = minx∈[0,L/2] v∗(x, 1). 
Then κ0 > 0, and hence

u(x, tn) ≥ (κ0/2)J (tn) → ∞ uniformly for x ∈ [0,L/2],
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which implies

lim
tn→∞

L∫
0

e
νx
D φ0(x)u(x, tn)dx = ∞.

This is in contradiction to Lemma 5.1. The proof is complete. �
Suppose u(x, t) and ũ(x, t) are two nonnegative functions. Set

v(x, t) =
x∫

0

u(η, t)dη, ṽ(x, t) =
x∫

0

ũ(η, t)dη.

Then we have the following comparison lemma

Lemma 5.3. Suppose two nonnegative functions u(x, t), ũ(x, t) ∈ C2,1([0, L] × (0, ∞)) satisfy

ut ≤ Duxx − νux + F
(
I0e

−k0x−k̂1
∫ x

0 u(η)dη
)

u − du, Dux(0, t) − νu(0, t) = u(L, t) = 0,

and

ũt ≥ Dũxx − νũx + F
(
I0e

−k0x−k̂1
∫ x

0 ũ(η)dη
)

ũ − dũ, Dũx(0, t) − νũ(0, t) = ũ(L, t) = 0.

If u(x, t) < ũ(x, t) for all x ∈ [0, L) and small t ≥ 0, then v(x, t) < ṽ(x, t) for all t > 0 and 
x ∈ (0, L].

Proof. It is clear that v(x, t) < ṽ(x, t) for t > 0 small and x ∈ (0, L]. Suppose there is a finite 
maximal time t∗ such that the lemma is true for t < t∗. Clearly v(x, t∗) ≤ ṽ(x, t∗) for all x ∈
[0, L]. We claim that

v(x, t∗) = ṽ(x, t∗) for some x ∈ (0,L]. (5.9)

If this is not the case, we set w(x, t) = ṽ(x, t) − v(x, t). Then

wt ≥ Dwxx − νwx + k̂−1
1

⎡
⎢⎣

k0x+k̂1ṽ(x,t)∫
k0x+k̂1v(x,t)

F (e−s)ds

⎤
⎥⎦ − dw

+ k0k̂
−1
1

x∫
0

[F(I0e
−k0y−k̂1v(y,t)) − F(I0e

−k0y−k̂1ṽ(y,t))]dy

≥ Dwxx − νwx + [C(x, t) − d]w for 0 < x < L, 0 < t ≤ t∗,

w(0, t) = 0, w(L, t) > 0, for 0 < t ≤ t∗,

w(x,0) > 0, for 0 < x ≤ L. (5.10)
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The strong maximum principle then implies w(x, t) > 0 for all 0 < t ≤ t∗ and x ∈ (0, L]. More-
over by the boundary point lemma we have wx(0, t∗) > 0. Since wx is smooth we can find δ1 > 0
such that wx(0, t) > 0 for t ∈ [t∗, t∗ + δ1]. By the smoothness of w we then can find δ2 ∈ (0, δ1)

such that w(x, t) > 0 for all x ∈ (0, L] and t ∈ (0, t∗ + δ2], which contracts the maximality of t∗. 
Therefore there exists a point x ∈ (0, L] such that w(x, t∗) = 0.

Now if w(x, t∗) = 0 for some x ∈ (0, L). Then the maximum principle implies w(x, t∗) = 0
for all x ∈ [0, L]. If w(x, t∗) > 0 for all x ∈ (0, L) while w(L, t∗) = 0, then at (L, t∗), wt ≤ 0, 
wx = ũ − u = 0. By (5.10) we deduce wxx < 0 at (L, t∗). By continuity, we may assume 
wxx(x, t∗) < 0 for x ∈ (L − δ, L), where δ > 0 is suitably small. By Hopf’s boundary lemma 
for elliptic equations we conclude that wx(L, t∗) < 0, which contradicts the boundary condition 
that ũ(L, t∗) = u(L, t∗) = 0. This finish the proof of the lemma. �

We use ud(x) to denote the unique positive solution of (5.3) for d ∈ [0, d∗).

Theorem 5.2. Let u(x, t) be the unique solution of (5.2) with initial data u0(x) ≥�≡ 0. Then

lim
t→∞u(x, t) =

{
ud(x), if 0 ≤ d < d∗,
0, if d ≥ d∗.

(5.11)

Proof. By the maximum principle and the boundary point lemma, u(x, t) > 0 for all t > 0 and 
x ∈ [0, L), ux(L, t) < 0 for all t > 0. So we may assume u0(x) > 0 for x ∈ [0, L) and u0

x(x) < 0, 
for otherwise we can replace u(x, t) by u(x, t + 1) and u0(x) by u(x, 1). Let d ∈ [0, d∗). Since 
d < d∗ = −μ1(−F(I0e

−k0x)) and

F(I0e
−(k0+k̂1δ)x) → F(I0e

−k0x)

uniformly in [0, L] as δ → 0, we may find δ > 0 small enough such that

d < −μ1(−F(I0e
−(k0+k̂1δ)x)). Fix such a δ and let φ be a positive eigenfunction correspond-

ing to μ1(−F(I0e
−(k0+k̂1δ)x)). Choose ε > 0 small so that εφ < u0 in [0, L) and εφ < δ in 

[0, L]. Let u(x, t) be the unique solution of (5.2) with initial condition u(x, 0) = εφ(x). Then 
we can find σ > 0 small such that

0 < u(x, t) < δ for t ∈ (0, σ ] and x ∈ [0,L].

Hence for t ∈ (0, σ ],

u(x, t) = Duxx − νux +
[
F(I0e

−k0x−k̂1
∫ x

0 u(η,t)dη) − d
]
u

≥ Duxx − νux +
[
F(I0e

−(k0+k̂1δ)x) − d
]
u

> Duxx − νux +
[
F(I0e

−(k0+k̂1δ)x) + μ1(−F(I0e
−(k0+k̂1δ)x))

]
u.
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It follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u − εφ)t > D(u − εφ)xx − ν(u − εφ)x

+
[
F(I0e

−(k0+k̂1δ)x) + μ1(−F(I0e
−(k0+k̂1δ)x))

]
(u − εφ), x ∈ (0,L), t ∈ (0, σ ],

D(u − εφ)x(0, t) − ν(u − εφ)(0, t) = (u − εφ)(L, t) = 0, t ∈ (0, σ ]
(u − εφ)(x,0) = 0, x ∈ [0,L].

By the strong maximum principle we obtain u(x, t) − εφ(x) > 0 for t ∈ (0, σ ] and x ∈ [0, L); 
moreover u(L, t) − εφ(L) = 0 and ux(L, t) − εφx(L) < 0. Fixing s ∈ (0, σ ] we have

u(x, s) > u(x,0) in [0,L), u(L, s) = u(L,0), ux(L, s) − ux(L,0) < 0.

By continuity,

u(x, s + t) > u(x, t) in [0,L) for all small t ≥ 0.

Thus we can use Lemma 5.3 to conclude that v(x, t) < v(x, t + s) for x ∈ (0, L] and t > 0, where 
v(x, t) = ∫ x

0 u(η, t)dη. Thus v(x, t) is monotone increasing in t .
By Lemma 5.2, there exists a positive constant C such that v(x, t) < C for all x ∈ [0, L] and 

t > 0. Hence limt→∞ v(x, t) = v∗(x) exists. On the other hand, since by Lemma 5.2 ‖u(·, t)‖∞
is bounded, we can apply the standard parabolic regularity theory to (5.2) to conclude that, for any 
sequence tn → ∞, {u(·, tn)} has a subsequence which converges in C1([0, L]) to some function 
u∗. Since v(·, tn) → v∗(·), we must have v∗(x) = ∫ x

0 u∗(η)dη. Hence u∗ = v′∗. This implies that 
limt→∞ u(x, t) = u∗(x). Since v∗(0) = 0 and v(x) is the limit of an increasing sequence, we have 
v∗(x) > 0 for x ∈ (0, L]. Hence u∗ = v′∗ �≡ 0 is a nontrivial nonnegative steady state of (5.2). By 
the strong maximum principle and Theorem 5.1, u∗ is positive and is the unique positive solution 
of (5.3).

Next we consider dM = −μ1(−F(I0e
−(k0+k̂1M)x)) with M > 0 large. Let φM be the positive 

eigenfunction corresponding to μ1(−F(I0e
−(k0+k̂1M)x)) with ‖φM‖∞ = 1. It is easy to see that 

as M → ∞, μ1(−F(I0e
−(k0+k̂1M)x)) → μ1(0) and φM → φ0 in C1([0, L]), where (μ1(0), φ0)

is the principal eigenpair of (5.4) when � ≡ 0. Since μ1(0) > 0, we can find M0 > 0 large 
enough such that

d > −μ1(−F(I0e
−(k0+Mk̂1)x)),

and

u0(x) < 3MφM(x) for x ∈ [0,L], M <
3MφM(x)

minx∈[0,L/2] φM(x)
for x ∈ [0,L/2].

Let ū(x, t) be the solution of (5.2) with initial data ū(x, 0) = 3MφM(x)
minx∈[0,L/2] φM(x)

. Then we can find 
σ > 0 small such that for t ∈ (0, σ ],
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ūt = Dūxx − νūx +
[
F(I0e

−k0x−k̂1
∫ x

0 ū(η,t)dη) − d
]
ū

≤ Dūxx − νūx +
[
F(I0e

−k0x−Mk̂1x) − d
]
ū

< Dūxx − νūx +
[
F(I0e

−k0x−Mk̂1x) + μ1(−F(I0e
−k0x−Mk̂1x))

]
ū.

Thus for w(x, t) = ū − 3MφM(x)
minx∈[0,L/2] φM(x)

, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt < Dwxx − νwx

+
[
F(I0e

−k0x−Mk̂1x) + μ1(−F(I0e
−k0x−Mk̂1x))

]
w, x ∈ (0,L), t ∈ (0, σ ],

Dwx(0, t) − νw(0, t) = w(L, t) = 0, t ∈ (0, σ ],
w = 0, x ∈ [0,L], t = 0.

By the strong maximum principle we obtain w(x, t) < 0 for t ∈ (0, σ ] and x ∈ [0, L). It follows 
that ū(x, s) < ū(x, 0) for s ∈ (0, σ ]. As before we can deduce that v̄(x, t) = ∫ x

0 ū(η, t)dη is 
monotone decreasing in t . From Lemma 5.3, we also have v̄(x, t) ≥ v(x, t) for all x ∈ [0, L] and 
t > 0. Therefore limt→∞ v̄(x, t) = v∗(x) ≥ ∫ x

0 ud(η, t)dη. We then use the parabolic regularity 
much as before to show that ū(x, t) → (v∗)′(x) in C1([0, L]), and (v∗)′ is a positive steady state 
of (5.2). Thus we must have (v∗)(x) = ud(x).

Since by Lemma 5.3 we have v̄ ≥ v ≥ v. Hence

lim
t→∞v(x, t) =

x∫
0

ud(η, t)dη.

Much as before we conclude that u(x, t) → ud(x) as t → ∞ uniformly for x ∈ [0, L].
Now suppose d ≥ d∗. We notice that the second part of the proof in the d ∈ [0, d∗) case still 

works. In this case the above defined ū(x, t) → (v∗)′(x) and (v∗) is a nonnegative steady state 
of (5.2). Since by Theorem 5.1, when d ≥ d∗ the only nonnegative steady state of (5.2) is the 
trivial solution 0, we have ū(x, t) → 0 as t → ∞ uniformly for x ∈ [0, L]. Hence v̄(x, t) → 0
uniformly for x ∈ [0, L] as t → ∞.

Using Lemma 5.3 we deduce 0 < v(x, t) < v̄(x, t). This implies v(x, t) → 0 uniformly for 
x ∈ [0, L] as t → ∞. Then using the parabolic regularity as before we deduce u(·, t) converges 
in C1([0, L]) to some nonnegative steady state of (5.2). Since d ≥ d∗, this nonnegative steady 
state must be 0. This completes the proof. �
5.3. The critical death rate d∗

The critical death rate, as defined in (5.6), is clearly depended on the diffusion coefficient 
D > 0 and the sinking velocity ν ≥ 0. In this section we give a brief discussion on how d∗
changes as D and ν change.

We for consider d∗ as a function of D: d∗ = d∗(D).
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Let H be the closure of {θ ∈ C1([0, L]) : θ(L) = 0} under the norm

‖θ‖ =
⎛
⎝ L∫

0

θ2dx +
L∫

0

θ2
x dx

⎞
⎠

1/2

.

Then d∗(D) can be characterized as

d∗(D) = sup
ϕ �=0,ϕ∈H

∫ L

0 e(ν/D)x[F(I0e
−k0x)ϕ2 − Dϕ2

x ]dx∫ L

0 e(ν/D)xϕ2dx
. (5.12)

Theorem 5.3. For any ν ≥ 0 and L > 0,

lim
D→∞d∗(D) = −∞; lim

D→0+d∗(D) =
{

F(I0) if ν = 0,

−∞ if ν > 0.

Proof. It is obvious that d∗(D) ≤ F(I0). Assume by contradiction that there is a sequence 
Dn → ∞ such that limn→∞ d∗(Dn) > −∞. By the definition there are positive functions φn(x)

satisfying ‖φn‖∞ = 1 and

{−Dnφn,xx + νφn,x − F(I0e
−k0x)φn = −d∗(Dn)φn in (0,L),

Dnφn,x(0) − νφn(0) = φn(L) = 0.

Set φn = ψne
(ν/2Dn)x . Then ψn(x) satisfies

⎧⎪⎪⎨
⎪⎪⎩

ψn,xx = 1

Dn

(
ν2

4Dn

− F(I0e
−k0x) + d∗(Dn)

)
ψn in (0,L)

ψn,x(0) − ν

2Dn

ψn(0) = ψn(L) = 0.

As Dn → ∞, ‖ψn‖∞ and d∗(Dn) are both bounded, we can use the Lp regularity to conclude 
that by passing to a subsequence ψn(x) → ψ∞(x) in C1([0, L]), and ψ∞(x) is a weak solution 
of the problem

ψ∞,xx = 0 in (0,L), ψ∞,x(0) = ψ∞(L) = 0.

Clearly ψ∞ ≡ 0. On the other hand, it is not difficult to see that ‖ψ∞‖∞ = 1. This contradiction 
proves limD→∞ d∗(D, ν, L) = −∞.

Let ν = 0. Then

d∗(D) = sup
ϕ �=0,ϕ∈H

∫ L

0 [F(I0e
−k0x)ϕ2 − Dϕ2

x ]dx∫ L
ϕ2dx

.

0
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Set for ε ∈ (0, L/4),

φε(x) =
⎧⎨
⎩

1, 0 ≤ x ≤ ε,

2 − x/ε, ε < x ≤ 2ε,

0, 2ε < x ≤ L.

Then we have φε ∈ H and

d∗(D) ≥
∫ L

0 [F(I0e
−k0x)φ2

ε − Dφ2
ε,x]dx∫ L

0 φ2
ε dx

≥ F(I0e
−2k0ε) − D

ε2
.

Letting D → 0+, we obtain lim supD→0+ d∗(D) ≥ F(I0e
−2k0ε). Since ε can be arbitrarily small, 

we get

lim sup
D→0+

d∗(D) ≥ F(I0).

On the other hand, it is easy to see that d∗(D) ≤ F(I0). Hence we have

lim sup
D→0+

d∗(D) = F(I0).

Now let ν > 0 be fixed. Recall that there is for each D > 0 a function φ(x) > 0 (in [0, L)) 
such that {

Dφxx − νφx + F(I0e
−k0x)φ = d∗(D)φ, 0 < x < L,

Dφx(0) − νφ(0) = φ(L) = 0.
(5.13)

Let ψ(x) = e−(ν/D)ηxφ(x), where η > 0 is some constant to be chosen later. Then ψ satisfies

{
Dψxx + ν(2η − 1)ψx + [ν2η(η − 1)/D + F(I0e

−k0x) − d∗(D)]ψ = 0,

Dψx(0) − ν(1 − η)ψ(0) = ψ(L) = 0.
(5.14)

Set η = 1/2. Then (5.14) becomes

{
Dψxx + [−ν2/4D + F(I0e

−k0x) − d∗(D)]ψ = 0,

Dψx(0) − (ν/2)ψ(0) = ψ(L) = 0.
(5.15)

Let xD ∈ [0, L] such that ψ(xD) = max0≤x≤L ψ(x). Since ψx(0) > 0 and ψ(L) = 0, xD ∈
(0, L). Hence ψx(xD) = 0 and ψxx(xD) ≤ 0. From (5.15) one has

d∗(D) ≤ F(I0e
−k0xD ) − ν2/(2D),

and hence

lim
D→0+d∗(D) = −∞.

The proof of the theorem is complete. �
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To emphasized the dependence of d∗ on the sinking velocity ν, we write d∗ = d∗(ν). Then we 
have

Theorem 5.4. d∗ is a decreasing function of ν, and

lim
ν→∞d∗(ν) = −∞. (5.16)

Proof. For any fixed ν > 0, let φ(x) = φν(x) with ‖φ‖∞ = 1 be the unique positive eigenfunc-
tion such that {−Dφxx + νφx − F(I0e

−k0x)φ = −d∗(ν)φ in (0,L),

Dφx(0) − νφ(0) = φ(L) = 0.

First we observe that by the Hopf boundary lemma, φx(L) < 0. Integrating the equation for φ
over [0, L], one has

L∫
0

[F(I0e
−k0x) − d]φ(x)dx = −Dφx(L) > 0.

Note that F(I0e
−k0x) − d∗ is a decreasing function, while φ(x) is positive on (0, L), one has

−Dφx(x) + νφ(x) =
x∫

0

[F(I0e
−k0y) − d]φ(y)dy > 0 for any x ∈ (0,L).

Set ξ(x) = φ(x)e− νx
D . Then

ξx(x) = φx(x) − (ν/D)φ(x) < 0 for any x ∈ (0,L).

One can also check that ξ satisfies

{−Dξxx − νξx = [F(I0e
−k0x) − d∗(ν)]ξ in (0,L),

ξx(0) = ξ(L) = 0.
(5.17)

Differentiating (5.17) with respect to ν (denoted by ′) one has

{−Dξ ′
xx − νξ ′

x − ξx = [F(I0e
−k0x) − d∗(ν)]ξ ′ − d ′∗(ν)ξ in (0,L),

ξ ′
x(0) = ξ ′(L) = 0.

(5.18)

Multiplying the equation for ξ ′ with ξ and the equation for ξ with ξ ′, integrating over [0, L] and 
subtracting, one obtain

−d ′∗(ν)

L∫
ξ2 = −

L∫
ξξx > 0.
0 0



S.-B. Hsu et al. / J. Differential Equations 259 (2015) 5353–5378 5377
Hence

d ′∗(ν) < 0,

which implies d∗(ν) is a decreasing function.
Now set ψ(x) = φ(x)e− νx

2D . Then ψ(x) satisfies

⎧⎨
⎩−Dψxx + ν2

4D
ψ = [F(I0e

−k0x) − d∗(ν)]ψ in (0,L),

Dψx(0) − (ν/2)ψ(0) = ψ(L) = 0.

Let xν be the points such that ψ(xν) = max0≤x≤L ψ(x). Then from the boundary conditions of 
ψ we conclude xν ∈ (0, L) and hence ψxx(xν) ≤ 0. Therefore

F(I0e
−k0xν ) − d∗(ν) − ν2

4D
≥ 0.

Since F(I0e
−k0xν ) is bounded, (5.16) follows immediately. �

6. Discussion

In this paper, we incorporate size-structured populations into a water column where the 
species depends only on light for its growth and we assume that the amount of light absorbed 
by individuals is proportional to cell size. For the restrictions of mathematics, the advection term 
is assumed to be nonnegative (zero or sinking case) and the boundary conditions at the bottom 
are the Dirichlet type. This kind of boundary conditions have been used in the recent work [14]. 
Those two assumptions make Theorem 3.1 valid and we are able to reduce the system (2.7) into 
(5.2) (or (4.12)) (see Section 4). It is worth pointing out that the analyses of the system (5.2) also 
rely on the sign of the advection term.

With a general reproductive rate which is an increasing function of light intensity, we first 
define a critical death rate. Then we show that the phytoplankton survives if and only if its death 
rate is less than the critical death rate (Theorem 5.2). From (5.1), (5.6) and (5.12), it follows that 
the critical death rate is also affected by the size structure. With size structure, the prediction of 
the global dynamics requires the principal eigenvalue λ̂0 that depends on the functions governing 
cell division in relation to size, b(q), and cell growth in relation to size, g(q) (see (3.11)). In 
other words, the critical death rate depends on the reproductive rate, the characteristics of the 
water column (e.g., turbulent diffusion rate, sinking, depth), cell growth, cell division, and cell 
size.

In the previous work [8,19], the zero-flux boundary conditions apply to species at the top 
and bottom of the habitat. Due to the difference in the boundary conditions at the bottom, the 
dependence of d∗ on the diffusion coefficient D > 0 and the sinking velocity ν ≥ 0 are very 
different from those in [19] (see subsection 5.3). Besides, the dependence of d∗ on the depth L is 
difficult and unclear. Finally, we point out that if the boundary conditions at the bottom in (2.7)
are changed into the zero-flux type, then the arguments in the proof of Theorem 3.1 don’t work. 
It remains a challenging and interesting problem, and we leave it for future investigation.
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