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1. Introduction. The invasion speed is a fundamental characteristic of bio-
logical invasions, since it describes the speed at which the geographic range of the
population expands, see, e.g., [6, 8, 9, 15] and references therein. Aronson and Wein-
berger [1, 2] first introduced the concept of the asymptotic speed of spread (in short,
spreading speed) for reaction-diffusion equations and showed that it coincides with the
minimal wave speed for traveling waves under appropriate assumptions. Weinberger
[20] and Lui [13] established the theory of spreading speeds and monostable traveling
waves for monotone (order-preserving) operators. This theory has been greatly de-
veloped recently in [21, 10, 11, 12] to monotone semiflows so that it can be applied to
various discrete- and continuous-time evolution equations admitting the comparison
principle.

It is known that many discrete- and continuous-time population models with
spatial structure are not monotone. For example, scalar discrete-time integrodiffer-
ence equations with non-monotone growth functions, and predator-prey type reaction-
diffusion systems are among such models. The spreading speeds were obtained for
some non-monotone continuous-time integral equations and time-delayed reaction-
diffusion models in [17, 19], and a general result on the nonexistence of traveling
waves was also given in [19, Theorem 3.5]. The existence of monostable traveling
waves were established for several classes of non-monotone time-delayed reaction-
diffusion equations in [22, 4, 16, 14]. For certain types of non-monotone discrete-time
integrodifference equation models, non-monotone traveling waves and even traveling
cycles were observed in [7] by numerical simulations. In [7, 9, 15, 8], the monotone
linear systems, resulting from the linearization of the non-monotone discrete-time
models at zero, were used to estimate spreading speeds. It is worthy to find suffi-
cient conditions under which the spreading speed is linearly determinate for these
non-monotone systems.

The purpose of our current paper is to study the spreading speeds and traveling
waves for non-monotone discrete-time systems. As a starting point, we consider scalar
integrodifference equations with non-monotone growth functions. The key techniques
are to sandwich the given growth function in between two appropriate nondecreasing
functions (for spreading speeds) and to construct a closed and convex subset in an
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appropriate Banach space (for traveling waves). Consequently, we obtain a set of
sufficient conditions for the existence of the spreading speed, and the existence and
nonexistence of traveling waves. It turns out that the spreading speed is linearly
determinate and coincides with the minimal wave speed of traveling waves for this
class of non-monotone discrete-time integrodifference equation population models.

The rest parts of this paper are organized as follows. In section 2, we first present a
general result for monotone integrodifference equations, then we establish the spread-
ing speed c∗ by the comparison method and a fluctuation type argument. In section
3, we use the Schauder fixed point theorem to obtain the existence of traveling waves
with the wave speed c > c∗. The property of the spreading speed is employed to prove
the asymptotic property of the wave profile at +∞ and the nonexistence of traveling
waves with c < c∗. A limiting argument gives the existence of the traveling wave with
the wave speed c∗. Section 4 is aimed at the applications of the main results to three
types of growth functions arising from population biology.

2. Spreading speeds. Let C be the space of all bounded and continuous func-
tions from R to R equipped with the compact open topology. For a given number
r > 0, let Cr := {φ ∈ C : 0 ≤ φ(x) ≤ r, ∀x ∈ R}.

Let k(x) be a nonnegative Lebesgue measurable function on R. Throughout this
paper, we assume that the kernel k(x) has the following property:

(K)
∫

R
k(y)dy = 1, k(−y) = k(y), ∀y ∈ R, and

∫

R
e−αyk(y)dy < ∞, ∀α ∈ [0,∆),

where ∆ > 0 is the abscissa of convergence and it may be infinity.

We consider a discrete-time integrodifference equation

(2.1) un+1(x) =

∫

R

h(un(y))k(x − y)dy, x ∈ R, n ≥ 0

with u0 ∈ C. Assume that there exists β > 0 such that

(H1) h ∈ C([0, β], [0, β]), h(0) = 0, h′(0) > 1, h(β) = β, and there is L0 > 0 such
that |h(u1) − h(u2)| ≤ L0|u1 − u2|, ∀u1, u2 ∈ [0, β].

(H2) u < h(u) ≤ h′(0)u, ∀u ∈ (0, β), and h(u) is nondecreasing in u ∈ [0, β].

Let U(x) be a continuous function on R. We say U(x + cn) is a traveling wave
solution of (2.1) with the wave speed c if un(x) = U(x + cn), ∀n ≥ 0, satisfies (2.1),
and U(x+ cn) connects 0 to β if U(−∞) = 0 and U(+∞) = β. It is easy to see that
U(x+ cn) is a traveling wave solution of (2.1) if and only if

U(ξ) =

∫

R

h(U(ξ − c− y))k(y)dy, ∀ξ ∈ R.

Define

(2.2) c∗h = inf
µ∈(0,∆)

ln
(

h′(0)
∫

R
e−µyk(y)dy

)

µ
.

The following result is essentially due to Weinberger [20], and shows that c∗h is not only
the spreading speed but also the minimal wave speed of monotone traveling waves for
system (2.1).

Theorem 2.1. Let (H1) and (H2) hold. Then the following statements are valid:

(i) For any u0 ∈ Cβ with compact support, the solution of (2.1) satisfies
lim

n→∞,|x|≥cn
un(x) = 0, ∀c > c∗h.
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(ii) For any u0 ∈ Cβ \ {0}, the solution of (2.1) satisfies lim
n→∞,|x|≤cn

un(x) =

β, ∀c ∈ (0, c∗h).
(iii) For any c ≥ c∗h, (2.1) has a traveling wave U(x+ cn) connecting 0 to β such

that U(x) is nondecreasing in x, and for any c ∈ (0, c∗h), (2.1) has no traveling
wave U(x+ cn) connecting 0 to β.

Proof. The existence of the spreading speed, together with the formula (2.2), and
traveling waves is a straightforward consequence of [20, Theorems 6.1-6.6] in the case
where ∆ = +∞, and [11, Theorem 2.11 and Theorem 2.15] with τ = 0 in the case
where ∆ < +∞. Indeed, the proof of [11, Theorem 3.10] implies that [11, Theorem
3.10] with infµ>0 Φ(µ) replaced by inf0<µ<∆ Φ(µ) is still valid, provided that (C5)
holds for all µ1, µ2 ∈ (−∆,∆) and Φ(µ) assumes its minimum value at µ∗ ∈ (0,∆).
Thus, the formula (2.2) also holds in the case where ∆ < +∞. By [11, Theorem
3.5], it follows that the number r = rσ in [11, Theorem 2.15] can be chosen to be
independent of σ > 0. For any u0 ∈ Cβ \ {0}, it is easy to show that there exists an
integer n0 ≥ 1 such that un0

(x) > 0 for x in an interval of length greater 2r. Taking
un0

(x) as a new initial data, we see that conclusion (ii) holds. The nonexistence of
traveling waves is implied by conclusion (ii) (see also [11, Theorem 4.1]).

Next we consider the discrete-time integrodifference equation

(2.3) un+1(x) =

∫

R

f(un(y))k(x− y)dy, x ∈ R, n ≥ 0

with u0 ∈ C. Assume that there exists b > 0 such that
(F1) f ∈ C([0, b], [0, b]), f(0) = 0, f ′(0) > 1, and there is L > 0 such that |f(u1)−

f(u2)| ≤ L|u1 − u2|, ∀u1, u2 ∈ [0, b].
(F2) f(u) ≤ f ′(0)u, ∀u ∈ [0, b], and there is u∗ ∈ (0, b] such that f(u∗) = u∗,

f(u) > u, ∀u ∈ (0, u∗), and 0 < f(u) < u, ∀u ∈ (u∗, b].
Define

f+(u) = max
0≤v≤u

f(v), f−(u) = min
u≤v≤b

f(v), ∀u ∈ [0, b].

It then follows that

f−(u) ≤ f(u) ≤ f+(u), ∀u ∈ [0, b],

that both f+ and f− are nondecreasing and Lipschitz continuous, with the Lipschitz
constant L, on [0, b], and that there exists δ0 ∈ (0, b] such that f±(u) = f(u), ∀u ∈
[0, δ0]. Let u∗± be such that f±(u∗±) = u∗±. Then 0 < u∗− ≤ u∗ ≤ u∗+ ≤ b.

To obtain the upward convergence as stated in Theorem 2.1 (ii), we need to
impose one of the following two additional conditions on f .

(C1) u∗ = b and f(u) is nondecreasing in u ∈ [b− ε0, b] for some ε0 ∈ (0, b).

(C2) f(u)
u is strictly decreasing for u ∈ (0, b], and f(u) has the property (P) that

for any v, w ∈ (0, b] satisfying v ≤ u∗ ≤ w, v ≥ f(w) and w ≤ f(v), we have
v = w.

Motivated by the proofs of [17, Theorems 2.9 and 2.12], we have the following
observation.

Lemma 2.2. Either of the following two conditions is sufficient for the property
(P) in condition (C2) to hold:

(P1) uf(u) is strictly increasing for u ∈ (0, b].

(P2) f(u) is nonincreasing for u ∈ [u∗, b], and f2(u)
u is strictly decreasing for u ∈

(0, u∗].
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Proof. Let v, w ∈ (0, b] be given such that v ≤ u∗ ≤ w, v ≥ f(w) and w ≤ f(v).
In the case where (P1) holds, since vf(v) ≥ f(w)f(v) ≥ wf(w), it follows that v ≥ w,
and hence v = w. In the case where (P2) holds, we have v ≥ f(w) ≥ f(f(v)) = f 2(v),

and hence, f2(v)
v ≤ 1 = f2(u∗)

u∗ . It then follows that v ≥ u∗, and hence, v = u∗. Since
u∗ ≤ w ≤ f(v) = f(u∗) = u∗, we further have w = u∗ = v.

Now we are a position to prove the main result of this section.
Theorem 2.3. Let (F1) and (F2) hold and c∗f be defined as in (2.2) with h = f .

Then the following statements are valid:
(1) For any u0 ∈ Cu∗

+
with compact support, the solution of (2.3) satisfies

lim
n→∞,|x|≥cn

un(x) = 0, ∀c > c∗f .

(2) For any u0 ∈ Cu∗
+
\ {0}, the solution of (2.3) satisfies

u∗− ≤ lim inf
n→∞,|x|≤cn

un(x) ≤ lim sup
n→∞,|x|≤cn

un(x) ≤ u∗+, ∀c ∈ (0, c∗f ).

(3) If, in addition, either (C1) or (C2) holds, then for any u0 ∈ Cu∗
+
\ {0}, the

solution of (2.3) satisfies lim
n→∞,|x|≤cn

un(x) = u∗, ∀c ∈ (0, c∗f ).

Proof. For convenience, let c∗ = c∗f . Define

Q(φ)(x) =

∫

R

f(φ(x − y))k(y)dy, Q±(φ)(x) =

∫

R

f±(φ(x − y))k(y)dy.

Clearly, Q± is monotone (order preserving) on Cb and

Q−(φ) ≤ Q(φ) ≤ Q+(φ), ∀φ ∈ Cb.

By Theorem 2.1, it follows that c∗ is the spreading speed for the discrete-time system
un+1 = Q±(un) on Cu∗

±
.

Case 1. For a given φ ∈ Cu∗
+

with compact support, let un = Qn(φ), u+
n =

(Q+)n(φ), ∀n ≥ 0. By the comparison principle (see, e.g., [20, Proposition 4.1]), we
have

0 ≤ un(x) ≤ u+
n (x), ∀x ∈ R, n ≥ 0.

For any c > c∗, Theorem 2.1 (i) implies that lim
n→∞,|x|≥cn

u+
n (x) = 0, and hence

lim
n→∞,|x|≥cn

un(x) = 0.

Case 2. For a given φ ∈ Cu∗
+
\ {0}, define ψ(x) = min

(

φ(x), u∗−
)

. Then ψ ∈

Cu∗
−
\ {0}. Let u−n = (Q−)n(ψ), ∀n ≥ 0. Since ψ ≤ φ, it follows from the comparison

principle that

0 ≤ u−n (x) ≤ un(x) ≤ u+
n (x), ∀x ∈ R, n ≥ 0.

For any c ∈ (0, c∗), Theorem 2.1 (ii) implies that lim
n→∞,|x|≤cn

u±n (x) = u∗±. Thus, we

have

u∗− ≤ lim inf
n→∞,|x|≤cn

un(x) ≤ lim sup
n→∞,|x|≤cn

un(x) ≤ u∗+.

Case 3. In the case where (C1) holds, we see that u∗ ≤ u∗+ ≤ b = u∗. Further,
it follows from the definition of f− that f−(u) = f(u), ∀u ∈ [b − ε0, b], and hence,
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u∗− = u∗. Since u∗− = u∗+ = u∗, the upward convergence in case (3) follows from the
conclusion in case (2).

In the case where (C2) holds, we use similar arguments as in the proof of [17,
Lemma 3.10] (see also the proof of [19, Theorem 2.5]). For any (v, w) ∈ [0, b]2, let

(2.4) g(v, w) =

{

min{f(u) : v ≤ u ≤ w}, if v ≤ w,

max{f(u) : w ≤ u ≤ v}, if w ≤ v.

Then g(v, w) is nondecreasing in v ∈ [0, b] and nonincreasing in w ∈ [0, b]. Moreover,
f(u) = g(u, u), and g(v, w) is continuous in (v, w) ∈ [0, b]2 (see [18, Section 2]). For a
given u0 ∈ Cu∗

+
\ {0}, let un = Qn(u0), ∀n ≥ 0. Then we have

un+1(x) =

∫

R

g(un(x− y), un(x − y))k(y)dy, n ≥ 0.

For any β ∈ (0, c∗), we define

U∗(β) := lim inf
n→∞,|x|≤βn

un(x), U∗(β) := lim sup
n→∞,|x|≤βn

un(x).

Let c ∈ (0, c∗) be given. We fix a number γ ∈ (c, c∗) and define

V∗(c, γ) = inf
c<β<γ

U∗(β), V ∗(c, γ) = sup
c<β<γ

U∗(β).

It then follows that

V∗(c, γ) ≤ U∗(β) ≤ U∗(β) ≤ V ∗(c, γ), ∀β ∈ [c, γ].

By the conclusion in case 2, we have

0 < u∗− ≤ U∗(β) ≤ U∗(β) ≤ u∗+, ∀β ∈ (0, c∗),

and hence,

0 < u∗− ≤ V∗(c, γ) ≤ V ∗(c, γ) ≤ u∗+ ≤ b.

For any β ∈ (c, γ), we choose two sequences nj → ∞, and xj ∈ R with |xj | ≤ βnj

such that limj→∞ unj
(xj) = U∗(β). It is easy to see that

U∗(γ) ≤ lim inf
j→∞

unj−1(xj − y) ≤ lim sup
j→∞

unj−1(xj − y) ≤ U∗(γ), ∀y ∈ R.

Since unj
(xj) =

∫

R
g(unj−1(xj − y), unj−1(xj − y))k(y)dy, it follows from Fatou’s

lemma that

U∗(β) ≥

∫

R

lim inf
j→∞

g(unj−1(xj − y), unj−1(xj − y))k(y)dy,

and hence

U∗(β) ≥

∫

R

g(U∗(γ), U
∗(γ))k(y)dy

= g(U∗(γ), U
∗(γ)) ≥ g(V∗(c, γ), V

∗(c, γ)).
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Similarly, we have

U∗(β) ≤ g(U∗(γ), U∗(γ)) ≤ g(V ∗(c, γ), V∗(c, γ)).

Thus,

(2.5) V∗(c, γ) ≥ g(V∗(c, γ), V
∗(c, γ)), V ∗(c, γ) ≤ g(V ∗(c, γ), V∗(c, γ)).

By the definition of function g, we can find v, w ∈ [V∗(c, γ), V
∗(c, γ)] ⊂ (0, b] such

that

g(V ∗(c, γ), V∗(c, γ)) = f(v) and g(V∗(c, γ), V
∗(c, γ)) = f(w).

It then follows from (2.5) that

(2.6) f(w) ≤ V∗(c, γ) ≤ v, w ≤ V ∗(c, γ) ≤ f(v),

and hence,

f(w)

w
≤ 1 =

f(u∗)

u∗
≤
f(v)

v
.

This, together with the strict monotonicity of f(u)
u on (0, b], implies that v ≤ u∗ ≤ w.

By (2.6) and the property (P), we obtain v = w. It then follows from (2.6) that
V∗(c, γ) ≥ f(w) = f(v) ≥ V ∗(c, γ), and hence, 0 < V∗(c, γ) = V ∗(c, γ) ≤ b. From
(2.5), we have

V∗(c, γ) ≥ g(V∗(c, γ), V∗(c, γ)) ≥ V ∗(c, γ),

and hence, 0 < V∗(c, γ) = f(V∗(c, γ)). By the uniqueness of positive fixed point of f
in [0, b], it follows that V∗(c, γ) = u∗. Consequently,

u∗ = V∗(c, γ) ≤ U∗(c) ≤ U∗(c) ≤ V ∗(c, γ) = u∗,

which implies that limn→∞,|x|≤cn un(x) = u∗ for any c ∈ (0, c∗).
Remark 2.1. Under the assumption that

∫

Rm k(y)dy = 1, k(x) = k(y), ∀x, y ∈
R

m with |x| = |y|, Theorem 2.3 is still valid if we replace
∫

R
with

∫

Rm .

3. Traveling waves. In this section, we establish the existence and nonexistence
of traveling waves for systems (2.3) by appealing to the Schauder fixed point theorem
and the property of the spreading speed.

For a given λ > 0, let

Xλ := {φ ∈ C(R,R) : sup
ξ∈R

|φ(ξ)|e−λξ < +∞}

and ‖φ‖λ = supξ∈R
|φ(ξ)|e−λξ . It then follows that (Xλ, ‖ · ‖λ) is a Banach space.

Define

Φ(λ) =
ln

(

f ′(0)
∫

R
e−λyk(y)dy

)

λ
, ∀λ ∈ (0,∆),

and

K(c, λ) = f ′(0)e−cλ

∫

R

e−λyk(y)dy, ∀c ∈ R+, λ ∈ (0,∆).
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By [11, Lemma 3.8], it follows that for any c > c∗f , there exist 0 < λ1 = λ1(c) < λ2 =
λ2(c) < ∆ such that Φ(λ1) = c and Φ(λ) < c, ∀λ ∈ (λ1, λ2). Thus, we have

K(c, λ1) = 1, K(c, λ) < 1, ∀λ ∈ (λ1, λ2).

Note that if f ′′(0) exists, then f(u) ≥ f ′(0)u − au2, ∀u ∈ [0, δ], for appropriate
a > 0 and δ > 0. To obtain the existence of traveling waves, we impose the following
weaker condition on f (cf. [3]).

(F3) There exist real numbers δ∗ ∈ (0, δ0], σ > 1 and a > 0 such that f(u) ≥
f ′(0)u− auσ, ∀u ∈ [0, δ∗].

Theorem 3.1. Let (F1) − (F3) hold. Then the following statements are valid:
(1) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x+ cn) with U ∈ Cu∗

+
\ {0}

and U(−∞) = 0.
(2) For any c > c∗f , (2.3) has a traveling wave U(x+cn) such that U ∈ Cu∗

+
\{0},

U(−∞) = 0 and

u∗− ≤ lim inf
ξ→+∞

U(ξ) ≤ lim sup
ξ→+∞

U(ξ) ≤ u∗+.

If, in addition, either (C1) or (C2) holds, then U(+∞) = u∗.
Proof. Case 1. Assume, by contradiction, that for some c0 ∈ (0, c∗f ), (2.3) has a

traveling wave un(x) := U(x+c0n) with U ∈ Cu∗
+
\{0} and U(−∞) = 0. By Theorem

2.3 (2), there holds

lim inf
n→∞,|x|≤cn

un(x) ≥ u∗− > 0, ∀c ∈ (0, c∗f ).

Choose c̃ ∈ (c0, c
∗
f ) and let x = −c̃n. Then lim inf

n→∞
un(−c̃n) = lim inf

n→∞
U((c0− c̃)n) > 0,

but lim
n→∞

U((c0 − c̃)n) = U(−∞) = 0, a contradiction.

Case 2. Let c > c∗f be given. Define a mapping T : Cb → Cb by

(3.1) T (φ)(ξ) =

∫

R

f(φ(ξ − c− y))k(y)dy, ∀ξ ∈ R, φ ∈ Cb.

Let T± be defined as in (3.1) with f replaced by f±. It then follows that T± is
nondecreasing with respect to the pointwise ordering on Cb, and that

T−(φ) ≤ T (φ) ≤ T+(φ), ∀φ ∈ Cb.

Following [3], we define

φ+(ξ) := min{u∗+e
λ1ξ , u∗+}, ∀ξ ∈ R.

Since f+(u) is nondecreasing in u and φ+(ξ) ≤ u∗+, ∀ξ ∈ R, we obtain

(3.2) T+(φ+)(ξ) ≤

∫

R

f+(u∗+)k(y)dy = f+(u∗+) = u∗+, ∀ξ ∈ R.

Note that f+(u) ≤ f ′(0)u, ∀u ∈ [0, b], and φ+(ξ) ≤ u∗+e
λ1ξ , ∀ξ ∈ R. Thus, we further

have

T+(φ+)(ξ) ≤

∫

R

f ′(0)φ+(ξ − c− y)k(y)dy

≤ f ′(0)

∫

R

u∗+e
λ1(ξ−c−y)k(y)dy

= u∗+e
λ1ξK(c, λ1) = u∗+e

λ1ξ, ∀ξ ∈ R.(3.3)
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By (3.2), (3.3) and the definition of φ+, it then follows that T+(φ+) ≤ φ+. We
first fix a sufficiently small ε∗ ∈ (0, λ1(σ − 1)] such that λ1 + ε∗ < λ2, and hence
K(c, λ1 + ε∗) < 1. We then choose a sufficiently large number M ≥ 1 such that

(3.4)

(

1 +
a(u∗+)σ

f ′(0)δ∗M

)

K(c, λ1 + ε∗) < 1.

Following [19], we define

φ−(ξ) := max{0, δ∗(1 −Meε∗ξ)eλ1ξ}, ∀ξ ∈ R.

Let ξ0 := − lnM
ε∗ . Then we have

φ−(ξ) = 0, ∀ξ ≥ ξ0, φ−(ξ) = δ∗eλ1ξ − δ∗Me(λ1+ε∗)ξ , ∀ξ ≤ ξ0.

Since δ∗ ≤ u∗+, ξ0 ≤ 0 and 0 < ε∗ ≤ λ1(σ − 1), it is easy to see that

0 ≤ φ−(ξ) ≤ φ+(ξ), (φ−(ξ))σ ≤ (u∗+)σe(λ1+ε∗)ξ, ∀ξ ∈ R.

Clearly, we have

(3.5) T−(φ−)(ξ) ≥ 0, ∀ξ ∈ R.

Since φ−(ξ) ≥ δ∗eλ1ξ − δ∗Me(λ1+ε∗)ξ, ∀ξ ∈ R, it follows from (3.4) that

f ′(0)φ−(ξ) − a(φ−(ξ))σ ≥ f ′(0)δ∗eλ1ξ − f ′(0)δ∗Me(λ1+ε∗)ξ − a(u∗+)σe(λ1+ε∗)ξ

= f ′(0)δ∗eλ1ξ − f ′(0)δ∗Me(λ1+ε∗)ξ

(

1 +
a(u∗+)σ

f ′(0)δ∗M

)

≥ f ′(0)δ∗eλ1ξ −
f ′(0)δ∗M

K(c, λ1 + ε∗)
e(λ1+ε∗)ξ, ∀ξ ∈ R.

In view of (F3) and the fact that f−(u) = f(u), ∀u ∈ [0, δ0], we then have

T−(φ−)(ξ) ≥

∫

R

(

f ′(0)φ−(ξ − c− y) − a(φ−(ξ − c− y))σ
)

k(y)dy

≥

∫

R

(

f ′(0)δ∗eλ1(ξ−c−y) −
f ′(0)δ∗M

K(c, λ1 + ε∗)
e(λ1+ε∗)(ξ−c−y)

)

k(y)dy

= δ∗eλ1ξK(c, λ1) −
δ∗M

K(c, λ1 + ε∗)
e(λ1+ε∗)ξK(c, λ1 + ε∗)

= δ∗eλ1ξ − δ∗Me(λ1+ε∗)ξ, ∀ξ ∈ R.(3.6)

By (3.5), (3.6) and the definition of φ−, it follows that T−(φ−) ≥ φ−.
Now we fix a number λ ∈ (0, λ1). It is easy to see that both φ− and φ+ are

elements in Xλ. Thus, the set

Y := {φ ∈ Xλ : φ−(ξ) ≤ φ(ξ) ≤ φ+(ξ), ∀ξ ∈ R}

is a nonempty, closed and convex subset of Xλ. For any φ ∈ Y , we have

φ− ≤ T−(φ−) ≤ T−(φ) ≤ T (φ) ≤ T+(φ) ≤ T+(φ+) ≤ φ+,
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and hence T (Y ) ⊂ Y . For any φ, ψ ∈ Y , there holds

‖T (φ) − T (ψ)‖λ = sup
ξ∈R

|T (φ)(ξ) − T (ψ)(ξ)|e−λξ

≤ L · sup
ξ∈R

∫

R

|φ(ξ − c− y) − ψ(ξ − c− y)|e−λξk(y)dy

≤ L‖φ− ψ‖λ

∫

R

e−λ(c+y)k(y)dy

=

(

Le−λc

∫

R

e−λyk(y)dy

)

‖φ− ψ‖λ.

This implies that T : Y → Y is continuous. We further show that T (Y ) is precompact
in Xλ. For any φ ∈ Y , ξ1, ξ2 ∈ R, we have

|T (φ)(ξ1) − T (φ)(ξ2)| =

∣

∣

∣

∣

∫

R

f(φ(z)) (k(ξ1 − c− z) − k(ξ2 − c− z)) dz

∣

∣

∣

∣

≤ b

∫

R

|k(ξ1 − c− z) − k(ξ2 − c− z)|dz

= b

∫

R

|k(ξ1 − ξ2 + y) − k(y)|dy

= b · g(ξ1 − ξ2),

where g(ξ) =
∫

R
|k(ξ + y) − k(y)|dy, ∀ξ ∈ R. Since limξ→0 g(ξ) = 0, it follows that

the family of functions {T (φ)(ξ) : φ ∈ Y } is uniformly bounded and equicontinuous
in ξ ∈ R. Thus, for any given sequence {ψn}n≥1 in T (Y ), there exist nk → ∞ and
ψ ∈ C(R,R) such that limk→∞ ψnk

(ξ) = ψ(ξ) uniformly for ξ in any compact subset
of R. Since φ−(ξ) ≤ ψnk

(ξ) ≤ φ+(ξ), ∀ξ ∈ R, we have φ−(ξ) ≤ ψ(ξ) ≤ φ+(ξ), ∀ξ ∈ R,
and hence, ψ ∈ Y . Note that

lim
ξ→+∞

(φ+(ξ) − φ−(ξ))e−λξ = 0

and

lim
ξ→−∞

(φ+(ξ) − φ−(ξ))e−λξ = 0.

Therefore, for any ε > 0, there exists B > 0 such that

0 ≤ (φ+(ξ) − φ−(ξ))e−λξ < ε, ∀|ξ| ≥ B.

Since limk→∞(ψnk
(ξ) − ψ(ξ))e−λξ = 0 uniformly for ξ ∈ [−B,B], there exists an

integer N > 0 such that

|ψnk
(ξ) − ψ(ξ)|e−λξ < ε, ∀ξ ∈ [−B,B], k ≥ N.

It then follows that

‖ψnk
− ψ‖λ = sup

ξ∈R

|ψnk
(ξ) − ψ(ξ)|e−λξ ≤ ε, ∀k ≥ N.

This implies that limk→∞ ψnk
= ψ in Xλ. By the Schauder fixed point theorem, there

exists U ∈ Y such that U = T (U), and hence, U(x+ cn) is a traveling wave of (2.3).
Since φ−(ξ) ≤ U(ξ) ≤ φ+(ξ), ∀ξ ∈ R, we have U(−∞) = 0 and U ∈ Cu∗

+
\ {0}.
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Let un(x) := U(x + cn), ∀n ≥ 0, and fix a number c̄ ∈ (0, c∗f ). By Theorem 2.3
(2), it follows that

0 < u∗− ≤ lim inf
n→∞,|x|≤c̄n

un(x) ≤ lim sup
n→∞,|x|≤c̄n

un(x) ≤ u∗+,

and hence,

u∗− ≤ lim inf
n→∞

un(−γn) ≤ lim sup
n→∞

un(−γn) ≤ u∗+

uniformly for γ ∈ [0, c̄]. This implies that

u∗− ≤ lim inf
n→∞

U(sn) ≤ lim sup
n→∞

U(sn) ≤ u∗+

uniformly for s ∈ [c− c̄, c]. Let

an = n(c− c̄), bn = nc, ∀n ≥ 1.

Thus, there exists N0 > 0 such that an+1 − bn < 0, ∀n ≥ N0, and hence,

∪n≥m[an, bn] = [am,+∞), ∀m ≥ N0.

It then follows that

u∗− ≤ lim inf
ξ→+∞

U(ξ) ≤ lim sup
ξ→+∞

U(ξ) ≤ u∗+.

If, in addition, either (C1) or (C2) holds, then Theorem 2.3 (3) implies that

lim
n→∞,|x|≤c̄n

un(x) = u∗, ∀c̄ ∈ (0, c∗f ).

By the same arguments as above, we further have U(+∞) = u∗.
Theorem 3.2. Let (F1)−(F3) hold. Then (2.3) has a traveling wave U(x+c∗fn)

such that U ∈ Cu∗
+
\ {0, u∗} and

u∗− ≤ lim inf
ξ→+∞

U(ξ) ≤ lim sup
ξ→+∞

U(ξ) ≤ u∗+.

If, in addition, either (C1) or (C2) holds, then U(+∞) = u∗.
Proof. Choose a sequence {cj}j≥1 ⊂ (c∗f ,+∞) such that limj→∞ cj = c∗f . By

Theorem 3.1 (2), it follows that (2.3) has a traveling wave Uj(x + cjn) such that
Uj ∈ Cu∗

+
\ {0}, Uj(−∞) = 0 and

u∗− ≤ lim inf
ξ→+∞

Uj(ξ) ≤ lim sup
ξ→+∞

Uj(ξ) ≤ u∗+.

Without loss of generality, we assume that Uj(0) = 1
2u

∗
− > 0, ∀j ≥ 1. Note that

(3.7) Uj(ξ) =

∫

R

f(Uj(ξ − cj − y)k(y)dy, ∀ξ ∈ R, j ≥ 1.

It follows that

|Uj(ξ1) − Uj(ξ2)| ≤ b · g(ξ1 − ξ2), ∀ξ1, ξ2 ∈ R, j ≥ 1,
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where g(ξ) is defined as in the proof of Theorem 3.1. Then the family of functions
{Uj(ξ) : j ≥ 1} is uniformly bounded and equicontinuous in ξ ∈ R. Thus, there exist
jk → +∞ and U ∈ C(R,R) such that limk→∞ Ujk

(ξ) = U(ξ) uniformly for ξ in any
compact subset of R. Clearly, U ∈ Cu∗

+
and U(0) = 1

2u
∗
−. Letting j = jk → +∞ in

(3.7) and using the dominated convergence theorem, we obtain

U(ξ) =

∫

R

f(U(ξ − c∗f − y)k(y)dy, ∀ξ ∈ R,

and hence, un(x) := U(x + c∗fn) is a traveling wave of (2.3). As in the proof of
Theorem 3.1 (2), we see that Theorem 2.3 (2) and (3) imply the asymptotic behavior
of U(ξ) as ξ → +∞.

Compared with Theorem 3.1 (2), we expect that U(−∞) = 0 in Theorem 3.2.
However, we are not able to prove it at this moment since the limiting function U(ξ)
may not be nondecreasing on R.

4. Examples. In this section, we present illustrative examples by choosing three
types of growth functions from population biology.

First, we consider the logistic type function f(u) = ru
(

1− u
K

)

, r > 0, K > 0.

Clearly, f ′(0) = r, maxu∈[0,K] f(u) = f(K/2) = rK
4 , f(u)

u = r(1 − u
K ) is strictly

decreasing on (0,K], and u∗ := K(1 − 1
r ) is the unique positive fixed point of f on

[0,K]. Assume that 1 < r < 4 so that we have f ′(0) > 1 and f((0,K]) ⊂ (0,K]. It is
easy to verify that f(u) is strictly increasing on [0, u∗] if r ∈ (0, 2]. In the case where
r ∈ (1, 2], we choose b =: u∗, and hence, u∗− = u∗+ = u∗. In the case r ∈ (2, 4), we

choose b := rK
4 , and hence, u∗+ = b, u∗− = f(b) = r2K(4−r)

16 . Note that

f2(u)

u
=

r2

K3

(

K2(K − u) − ru(K − u)2
)

.

It then follows that f(u) satisfies the property (P2) if r ∈ (2, 3]. By Theorems 2.1
and 2.3 and Theorems 3.1 and 3.2, we have the following result.

Example 4.1. Let f(u) = ru
(

1 − u
K

)

with K > 0 and r ∈ (1, 4), b, u∗+ and u∗−
be defined as above, and c∗f be defined as in (2.2) with h = f . Then the following
statements are valid:

(i) c∗f is the spreading speed of (2.3) in the sense that both conclusions (1) and
(2) in Theorem 2.3 hold. Further, the conclusion (3) in Theorem 2.3 holds
in the case where r ∈ (1, 3].

(ii) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x+ cn) with U ∈ Cb \ {0}
and U(−∞) = 0, and for any c ≥ c∗f , (2.3) has a traveling wave U(x + cn)
with U ∈ Cu∗

+
\ {0, u∗} and

u∗− ≤ lim inf
ξ→+∞

U(ξ) ≤ lim sup
ξ→+∞

U(ξ) ≤ u∗+.

Further, U(+∞) = u∗ in the case where r ∈ (1, 3]. If r ∈ (1, 2], then
U(−∞) = 0 and U(ξ) is nondecreasing in ξ for all c ≥ c∗f . If r ∈ (2, 3],
then U(−∞) = 0 for all c > c∗f .

In Example 4.1, we can also verify that for any r > 0, uf(u) is strictly increasing
on [0, 2K/3] and strictly decreasing on [2K/3,+∞). It then follows that f(u) satisfies
the property (P1) if r ∈ (2, 8/3], but does not satisfies the property (P1) if r ∈ (8/3, 4).
So we chose to use the property (P2) to obtain the upward convergence as stated in
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Theorem 2.3 (3) for r in a larger interval (1, 3]. By taking u0 as a constant function
in integrodifference equation (2.3), we see that the upward convergence implies that
u∗ is a globally attractive fixed point for the map f on (0, u∗+]. Note that |f ′(u∗)| =
|2 − r| > 1, ∀r ∈ (3, 4). By [5, Theorem 3.8], it then follows that for any r ∈ (3, 4),
u∗ is a unstable fixed point of f . This implies that the upward convergence does not
hold for any r ∈ (3, 4). Thus, the interval (1, 3] for parameter r is optimal for the
upward convergence.

Among other things, Kot [7] observed numerically four types of discrete-time
traveling waves for the integrodifference equation (2.3) with f(u) = (1 + r0)u− r0u

2

and k(x) = 3e−6|x|: a simple monotone traveling for r0 = 0.9 ([7, Figure 7]); a
traveling wave with damped spatial oscillations for r0 = 1.9 ([7, Figure 8]); a traveling
two-cycle for r0 = 2.2 ([7, Figure 9a,b]; and a traveling four-cycle for r0 = 2.5 ([7,
Figure 10a-d]. Clearly, this system is a special case of Example 4.1 with r = 1 + r0
and K = (1 + r0)/r0. It is easy to see that our analytic results in Example 4.1 are
consistent with these numerical simulations. Note that there is an increasing sequence
of parameter values r1 = 3 < r2 ≈ 3.449 < r3 ≈ 3.544 < r4 ≈ 3.564 < . . . at which the
logistic map f(u) = ru

(

1 − u
K

)

repeatedly undergoes a period-doubling bifurcation
(see, e.g., [5, Section 3.5]). Further, when r ≈ 3.839, f has a unique asymptotically
stable periodic orbit of minimal period 3. It is a challenging problem to prove the
existence of a traveling three-cycle for the integrodifference equation (2.3) associated
with the logistic map when r ≈ 3.839.

Next, we consider the Ricker type function f(u) = que−pu, q > 1, p > 0. Clearly,

f ′(0) = q and f(u)
u = qe−pu is strictly decreasing on (0,+∞). It is easy to see that

u∗ := ln q
p is the unique positive fixed point of f on [0,+∞), that maxu∈[0,+∞) f(u) =

f(1/p) = q
pe , and that f(u) is strictly increasing on [0, u∗] if q ∈ (1, e]. In the case

where q ∈ (1, e], we choose b := u∗, and hence, u∗− = u∗+ = u∗. In the case where

q > e, we choose b := q
pe , and hence, u∗+ = b, u∗− = f(b) = q2

pee
−q/e. Note that

f2(u)

u
= q2e−p(u+que−pu).

An elementary analysis shows that f(u) satisfies the property (P2) if q ∈ (e, e2]. By
Theorems 2.1 and 2.3 and Theorems 3.1 and 3.2, we have the following result.

Example 4.2. Let f(u) = que−pu with q > 1 and p > 0, b, u∗+ and u∗− be defined
as above, and c∗f be defined as in (2.2) with h = f . Then the following statements are
valid:

(i) c∗f is the spreading speed of (2.3) in the sense that both conclusions (1) and
(2) in Theorem 2.3 hold. Further, the conclusion (3) in Theorem 2.3 holds
in the case where q ∈ (1, e2].

(ii) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x+ cn) with U ∈ Cb \ {0}
and U(−∞) = 0, and for any c ≥ c∗f , (2.3) has a traveling wave U(x + cn)
with U ∈ Cu∗

+
\ {0, u∗} and

u∗− ≤ lim inf
ξ→+∞

U(ξ) ≤ lim sup
ξ→+∞

U(ξ) ≤ u∗+.

Further, U(+∞) = u∗ in the case where q ∈ (1, e2]. If q ∈ (1, e], then
U(−∞) = 0 and U(ξ) is nondecreasing in ξ for all c ≥ c∗f . If q ∈ (e, e2], then
U(−∞) = 0 for all c > c∗f .
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In Example 4.2, for any q > e2, we have |f ′(u∗)| = |1− ln q| > 1, and hence, u∗ is
an unstable fixed ploint of f . As discussed in Example 4.1, it follows that the interval
(1, e2] for parameter q is optimal for the upward convergence.

Finally, we consider the generalized Beverton-Holt type function f(u) = pu
q+um ,

m > 0, and p > q > 0. Clearly, f ′(0) = p/q and f(u)
u = p

q+um is strictly decreasing on

(0,+∞). It is easy to see that u∗ := (p−q)
1
m is the unique positive fixed point of f on

[0,+∞), and that f(u) is strictly increasing on [0,+∞) in the case where m ∈ (0, 1].
In the case where m > 1, we have

max
u∈[0,+∞)

f(u) = f(ū) =
p(m− 1)ū

qm
, ū :=

(

q

m− 1

)
1
m

.

By elementary analysis, it follows that f(u) is strictly increasing on [0, u∗] if m ∈
(1, p/(p− q)], that uf(u) is strictly increasing on [0,+∞) if m ∈ (0, 2], that uf(u) is

strictly increasing on
[

0, (2q/(m− 2))
1
m

]

if m > 2. Define b := u∗ if m ∈ (0, p/(p−q)]

and b := f(ū) if m > p/(p− q). It then follows that u∗− = u∗+ = u∗ in the case where
m ∈ (1, p/(p− q)], and

u∗+ = b, u∗− = f(b) =
p2(m− 1)ū

q2m+ pm(m−1)m−1q
(qm)m−1

,

in the case where m > p/(p− q). Note that f(u) satisfies the property (P1) if either

m ∈ (0, 2], or m > max (2, p/(p− q)) and f(ū) ≤ (2q/(m− 2))
1
m . By Theorems 2.1

and 2.3 and Theorems 3.1 and 3.2, we have the following result.
Example 4.3. Let f(u) = pu

q+um with m > 0 and p > q > 0, b, u∗+ and u∗−
be defined as above, and c∗f be defined as in (2.2) with h = f . Then the following
statements are valid:

(i) c∗f is the spreading speed of (2.3) in the sense that both conclusions (1) and
(2) in Theorem 2.3 hold. Further, the conclusion (3) in Theorem 2.3 holds in
the case where either m ∈ (0,max (2, p/(p− q))], or m > max (2, p/(p− q))

and f(ū) ≤ (2q/(m− 2))
1
m .

(ii) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x+ cn) with U ∈ Cb \ {0}
and U(−∞) = 0, and for any c ≥ c∗f , (2.3) has a traveling wave U(x + cn)
with U ∈ Cu∗

+
\ {0, u∗} and

u∗− ≤ lim inf
ξ→+∞

U(ξ) ≤ lim sup
ξ→+∞

U(ξ) ≤ u∗+.

Further, U(+∞) = u∗ in the case where either m ∈ (0,max(2, p/(p− q))],

or m > max (2, p/(p− q)) and f(ū) ≤ (2q/(m− 2))
1
m . If m ∈ (0, p/(p− q)],

then U(−∞) = 0 and U(ξ) is nondecreasing in ξ for all c ≥ c∗f . If either

p/(p − q) < m ≤ 2, or m > max (2, p/(p− q)) and f(ū) ≤ (2q/(m− 2))
1
m ,

then U(−∞) = 0 for all c > c∗f .
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