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Abstract. In this paper we present a mathematical model to
describe the deformations of a cantilever by its own weight. Our
primary concern is the uniqueness property of the associated two-point
boundary value problem (2.2). We find an optimal condition on the
parameter L such that for any @, —7m < e <w, the solution of (2.2)
is unique.

1. Introduction. In this paper we are concerned with the
question of uniqueness of the deformations of a cantilever by its
own weight. We assume that a cantilever of nonuniform density
is held fixed at an angle « at one end, say, the origin, and is free
at the other end. Let L be the total length of the cantilever, s
be the arc length from the origin and 0 = 8(s) be the local angle
of inclination (see Figure 1). From the derivation in [5], it follows
that

M _ F(sysind(s) =0,7 0<s<L,
(11) ds
7(0) = a, %(L)=o, i< a<a

where m= m(s) is the local moinent,.

PP , — L ‘
as W)= [ oG)ds
and p = p(s) is the density function satisfying

(1.3) and p (s) = po > 0, for all s=0.
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FiGc. 1

As in [1], we assume the local moment m(s) is a function . of - the
curvature dé/ds, i.e.,

(1.4) m(s) = M(¥), = —‘f—,_
S

where the function M € C¥*(R) satisfies
(15) M0)=0 and M'(¥v)>0 forall vyveRr.

We note that in the case when the density is uniform and
Euler-Bernoullis’ law [5] holds, it follows that o(s) = p, M(¥)
= EIY where EI is the flexural rigidity. Then, from the equations
(1.1), (1.4) we deduce :

ET ‘f;f = o(L — 5) sin #(s),

(1.6) _
50) =, -9 (1)=o0.
ds
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The special. case (1.6) has been extensively studied in [2]. Our
main concern in this paper is the following: Find the optimal
conditions on the parameter L such that for any &, —z< @<,
the problem (1.1) & (14) has a unique solution. Our main
contribution is Theorem 1 in section 2. The result, in particular,
solves the conjecture on the uniqueness property stated in [2] for
the special case (1.6).

9. Main Results. Before we state and prove our main results,
we shall reformulated our problem. First of all, we rewrite (1.1)
(14) as
M'(3'(s)) §"'(s) — W(s) sind(s) = 0,
6(0) = &, ' (L)=20 ;
Let 6(s) = 8(L —s) and W(s) = W(L —s). Then (2.1) becomes

M'(= 6'(s)) 6" (s) — W(s)sind(s) =0, 0<s<L,
0(0)=0, oL)=a, —s<a<n.

(2.1)

2.2)
We note that from (12), (1.3) the function W(s) satisfies

W(s) = /;L_s (3 ds= pos for all s>0, and
W(0)=0, Wi(s)>0 for s>0.
If 0<ea <z then we set v(s) = 0(s) — = and (2.2) takes the form-

M (—v'(s)) v (s) + W(s)sinv(s) =0, 0<s<L,
V(0 =0, v L)=f=a—z, —z<p=Z0.

(2.3)

(24)

If —z<a<0 then we set v(s) = 6(s) + = and (2.2) is reduced to

M'(—v'(s)) v (s) + W(s) sinv(s) =0, 0<s< L,

(2.5) 2(0) = 0, pL)=f=a+z 0Z5p<=z.

The following lemma asserts the uniqueness property when the
initial local angle is zero. '

LemMA 21. If @ =0, then 6(s) =0 is the unique solution of
(2.2) for amy L>0.

-~ Pproof. Multiplying (2.2) by 6’(s) and integrating the resulting
equation from 0 to L, we obtain :
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(2.6) A M/ (— ,6’(3)) 0"’ (s) 0'(s) ds = j‘; W(s)sin 0(s) 6'(s) ds .

We claim that ¢’ (L) =0. If ¢/(L)=~=0 then the left-hand side

of (2. 6) is : o

Lus = (7P M= ) v dv >0

by (15). However from (2.3) and 6(L) =0 we see that the
right-hand side of (2.6) may be computed as follows: :

RHS = (— cos 6(s)) W(s)|§ + | cos 0(s) s W'(s) ds
= —W(L)+ [ coso(s)«W'(s)ds
< —W(L) + fL W (s) ds ='o'.

Thus we obtain a contradiction and hence. ¢ (L) = 0. Slnce
0(L) =0, ¢’(L) = 0, the conclusion ﬂ(s) = 0 follows dlrectly from
the uniqueness of solutions of ordinary dxfferentlal equat;ons.

Before dealing with the case — r<a<r, aﬁéO we shall
consider the following initial value problem ‘

M'(— v'(s))v(s) + W(s) v(s) sinv = 0,
2.7 v’ (0) =0, ‘
v(0) = a.

In (2.7) the function W(s) is assumed to be well-defined on 82 0
and to satisfy

W(0)=0, W(s)>0 for >0,

(28) W(s) = pos . for some po=>0.

We denote the solution of (2.7) by u(s, ). From the uniqueness
of solutions of ordinary differential equations, it follows that

2.9 : ‘ v(s, a + 2z) =2z + v(s, a),
(2.10) v(s, ) =0, v(s,z)==z v(s, —zn)=—~1x.

From (2.9), (2.10), we shall consider v(s, @) only for —r<a <.
Next we introduce the following notations ' '
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’ dv
A(s, a) = —=— (s, @),
: da

#(s) = A(s, 0).
Differentiating (2. 7) with respect to a ylelds
M'(— (s, @) A"(s, @) — M”(-— (s, @) V' (s, a) A'(s, @)
+ W(s)(cosv(s, @) A(s, @) = 0,
A0, @) =1,
A’ (0, a) =0. o
Setting @ = 0 in (2. 1) y1elds o
- M’(0) ¢"(S) + W(S) ¢(S) = 0
S (0)=1, ¢(0)=0.

Since” M’(0) >0, from (2.8) it is ‘easy to verify the solution ¢(s)
of (2.12) is oscillatory over [0, ]. Let 2, be the first zero of ¢(s).

(2.11)
(2.12)

LEMMA 2.2. Suﬁpose tkqt e o
(213) . o YM(¥y)=M(0)y*  fordl Vv ER.

Then for any a0, —r<a<rm, the ﬁrst zero of v(s, a) must be
areater than 1. '

Proof. The existence of the first zero of v(s, @) is obvious
from equation (2.7) and conditions (2.8) on W(s). We first consider
the case 0 < e <z and we shall prove the lemma by contradiction
Suppose there exists @, 0 <e<m, such that first zero L* of v(s, a)
satisfies L*< 1;. We may rewrite the equation in (2. 7) in the
following form - ’

(2:14) — —d— (M(—v'(s)) + W(s) sinv(s) = 0.

Multxplylng (2 14) by ¢ and mult1p1ymg (2.12) by v, subtractmg
the resulting expressions from each other and integrating the. final
equation from 0 to L*, we obtain ’

— [¥ oM (= ()Y ds= M) [ o) #7()ds .

= _/Q‘L* W(s) ¢($) v(s) (1 _ E%g.sl) ds

(2.15)
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Since ¢(s) >0, v(s)>‘0 for 0<s<L* it follows that the
right-hand side of (2.15) is positive. In order to get a contradiction,
it suffices to show that the left-hand side of (2.15) is nonpositive.
In fact, the left-hand side of (2.15) is

. LHS = — 6(L*) M(—v/(L")) + $(0) M(0)
| + [ M- () (s) ds
— M (O)[(L*) ¢/ (L*) — 9(0) '(0)]
+ M) [ 0/(s) #/(s) ds
=~ $(L*) M(—'(L*))
+ [T 0O (=7 (5) — M/ (O)(—v'(s))] ds.

(2.16)

Since v'(s) <0 and ¢'(s) <0 on [0, L*] from the assumption (2.13),
it follows that LHS < 0. Thus we complete the proof for the
case 0 <a<z. The case —z<e2<0can be argued in a similar
way. In that case, o(s)<<0, v'(s)>0, ¢(s) >0, ¢'(s) <0 for
0<s<L* From assumption (2.13), it can be shown that from
(2.16) . the left-hand side of (2.15) is nonnegative while the
left-hand side of (2.15) is nonnegative while the right-hand side of
(2.15) is negative.

.In the fbllowing, we shall state and proVe our main result.

THEOREM 1. Let
I(2.17) ; YM""(y) >0 forall v€R.

Then for any o, —z<a<x, the problem (22) has a unique
solution provided that L < 2,.

Proof. From Lemma 2.1, it suffices to consider two cases,
namely, 0<a <z and —z<a@<<0. We first consider the case,
0<a@<z Letw(s)=0(s)—z Then the problem (2.2) takes the
form of (24), '

M'(—v'(s))v"(s) + W(s)sino(s) = 0,

(2-4) 1),(0) — 0’ v(L) =’ g —r<< < 0.

It is easy to verify that the function M(y) with property
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(2.17) must also satisfy (2.13). Hence by Lemma 2.2, the first zero
of v(s, @), 0<a <z, must be greater than 1,. Since L < 1,, the
initial value @* which gives rise to (L, a*) =8, —z<<g<<l,
must satisfy — z <a* <pg. (Note that the case g =0 is already
taken care of by Lemma 2.2.) Thus let (@, #) be the first zero
of v(s,a) —B=0, —z<a<<pB. Obviously from (2.10) and the
continuous dependence on initial data, we have lim,.,;- %1(a, £) =0
if =40, and lims.c—n*+ % (a, B) = + . To complete the proof, it
suffices to show that

(2.18) -5{;@1(4,/9))<0 for —r<a<p<O0.

Since
(2'19) 7)(?!1(% /9)’ a) - .8 = 0, fOI' au s (_ T, /9)!
differentiating (2.19) with respect to e yields

@Y (g, 8) + Aly; (@, 8), @) =0,
da

U’(’yx(ﬂ, B)’ d)

or

dys _ —A(y(a, 8), @)
(220) i @D (s (a, B), @)

Since v (y:(a, 8), a) > 0, from (2.20) it suffices to show that

(2'21) A(?Jl(“: /9)’ a) > O-

Now we consider the equation (2.11) for A(s, @) and rewrite it
- in the following form

@ (M’ (— (s, @) A'(s, @) + W(s)(cos (s, @)) A(s, @)

ds
(2.22) = (,
A0, @) =1,
A’(0, @) = 0.

From now on for convenience we denote »(s) =v(s, @) and
A(s) = A(s, @). We claim that A(s)>0for 0<s<y (a ).
This implies that, in particular, (2.21) holds. We shall argue by
contradiction. Suppose that the claim is not true, then we have
two possible cases.
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Case 1: There exists s*, 0<s* < yy,(a, B) such that A(s*) = 0,
A’(s*) <0 and A(s) >0, A'(s) <0 for 0 <s < s*.
We first note that from the uniqueness of solutions of ordinary
differential equations, it is impossible to have A(s*) =0, A’ (s*)=0
for equation (2.22). Now we compare the following two identities:

(214) - % (M (—v'(s))) + W(s) sinv(s) = 0,
and
(2.22) _“i”;— (M’ (—v'(s)) A’(s)) + W(s)(cosv(s)) A(s) = 0.

Multiplying (2.14) by A and multiplying (2.22) by v, subtracting
the resulting equations from each other and integrating the final
expression from 0 to s*, we obtain

- A(s>i~<M<—-v'<s>>>ds
228) = [ o) L ar(— () ar(s)) ds

: (s) -0
+ fo W(s) A(s) o(s) [%_ — cos v(s)] ds=0.

Since sinv/v>cosv for v [— =z, z] and A(s) >0, v(s) <0 for
0 < s<s* it follows that

(2.24) fo T W(s) As) v(s) [—S!‘—;%SL— cos v(s)] ds < 0.

Let.
— [ d —
L=- [ A) S M (- v()) ds,
and
L= [T o(s) 2 (M'(~ v/ (s))A'(5)) ds.
‘In order to get a contradiction, it suffices to show that L +1,<0.
Since M (0) =0, A’(0) =0, A(s*) = 0, it follows from integrating

by parts that

L= [ &) M(—v(s)) ds,
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and
L= —o(s*) M'(—v'(s*)) A(s*)
+ [T~ ()Y (s) A ) ds.
Then
| I+ I = —o(s*) M'(— v'(s*)) A’(s*)
(2.25)

+ [T A (= 0/()) o (5)+ M(=0'(s))] ds -

Since A’(s*) <0, v(s*) <0, M’'(— v'(s*)) > 0, the first term on the
right-hand side of (2.25) is nonpositive. To complete our proof
for Case 1, we now only have to show that

(2.26} M (—v'(s))v'(s) +M(—v’(s))_20 for 0<s<ss*.
Since v = — 9'(s) £ 0 for 0 < s < 5%, this follows from
(2.27) M) >M(y)y for v <0,

which, in turn, follows from our hypothesis on M, namely,
M) =0and M"(y) <0 for v £0. Thus we have arrived at a
contradiction in Case 1.

Case 2: There exist v and s* such that v <s* < y(a, B), such
that A(r)>0, A(7) =0, A(s*) =0, A'(s*) <0 and A(s)>0,
A'(s) <0 for r <s<<s*. We proceed an in Case 1 except replacing
the lower limit 0 of integrals in (2.23) by . We then have

@28) L+ Lt [ W) A o) XD —cosn(e)]ds =0,

where
.._— s ¥ _4—- .
L=~ [ A S (M(=v'(s)) ds,
Bo=— [T o) 2 (M'(— 0/ (s)) A'(s)) ds -
T ds
The third term in (2.28) is again negative, and to reaéh a

contradiction, it suffices to show that I, + I, < 0. In fact, following
similar arguments in Case 1, we deduce that
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I+ I = A(r) M(— v'(7)) — o(s*) M'(— v'(s*)) A’(s*)

+ fr CAN(S)[M(— v'($)) v'(s) + M (— v'(s))] ds
< 0.

This finishes the proof for Case 2. .
Next consider the case —z < & <<0. The proof is similar to

that of the case 0 <& < z. We let v(s) = 0(s) + =. Then problem

(2.2) takes the form of (2.5) |

M'(—9'(s))v""(s) + W(s)sinv(s) =0,

(25) v(0)=0, o(L)=8 0<p<=z.

As before the case p =0 is taken care of by Lemma 2.2. So we
assume 0<pg<<=z  Since lims.,p-y(e, 8)=0 ({Hf #>0) and
limg,.- ¥1(a@, f) = + oo, it suffices to show that

%(yl(a, B))>0 for 0L p<a<=z.

By (2.20) and the fact that »(s) >0, v'(s) <0 for 0<s < ¥.(a, B),
‘we only have to prove that

A(?lx(ﬂ, ﬂ)r d) >0 for ac (/99 71') .

As in the case 0<a <=z, we claim that A(s, ¢)>0 for
0< s<y(a B). The proof of this assertion is similar to that of
the case 0<a <z (with some obvious modification) and is
therefore omitted.

REMARK 1. In the case of liner elasticity, M (y) = EIvy, EI >0,
a simple proof of Theorem 1 is possible. Since M'(y) = EI, (24)
becomes

ETv'(s) + W{(s) sin v(s) =0,
7)’(0) = (, v(L) =48, BE (— o) O] .

The case g = 0 follows from Lemma 2.2, thus we assume g <<O0.
Suppose v;(s), v:(s) are two distinct solutions of (2.29). We may
‘assume that there exists L* < L such that 0> v,(s) > v.(s) for
0<s<<L* v (L*) =v(L*) and v,/(L*)>v,/(L*). ' Compare the
following two identities :

(2.29)
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(2.30) s ETv/'(s) + W(s)sinv(s) =0
(2.31) EIv,”’(s) + W(s) sinv:(s) = 0.

Multiplying (2.30) by #.(s) and multiplying (2.31) by »(s),
subtracting the resulting equation from each other and integrating
the final equation from 0 to L*, we obtain ‘

EL [ [0:/(5) 0:(s) = 0:7/(5) ()] ds

2.32 L* sinp,(s) _ sin(s)
282) 4 [T W) () mals) (RO n0() ) g

=0.

Since the function sin#/v is strictly increasing in — =z <v<0,
it follows that

S5 W) i) ) (SR2E) . SBS) ) s .

On the other hand, we have
fo - [2,"(s) v:(s) — 2" (s) v1(s)] ds
= 9,/ (L*) vo2(L*) — v/ (L*) v,(L*)
= 9, (L*) (v, (L*)— v/ (L*)) > 0.
This gives rise to a contradiction in view of (2.32) and the

uniqueness of (2.29) is established.

REMARK 2. The conclusion of Theorem 1 also holds when the
function M () is replaced by M (v, s) where M (v, s) satisfies
(i) M(@,s)=0foralls=0

Gy M (4 sy>0forall y R, s>0

oy
o M
<
(iii) 0705 (0,s)<0,s=0
(iv) v "”;% (4, 5)>0 for all ¥ € R, s> 0.

REMARK 3. Let 9:(a) be the first zero of #(s, @), e 0. From
[3] or [4], we may show that

lim yl(a) = 11 .

a0
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From this and Lemma 2.2, the condition L < 1, is optimal for the
uniqueness property of problem (2.2) for any &, —z<a <z
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