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A MATHEMATICAL MODEL OF THE CHEMOSTAT 

WITH PERIODIC WASHOUT RATE* 


G. J. BUTLERt, S. B. HSUS AND PAUL WALTMANS 

Abstract. In  its simplest form, the chemostat consists of several populations of microorganisms compet- 
ing for a single limiting nutrient. If the input concentration of nutrient and the washout rate are constant, 
theory predicts and experiment confirms that at most one of the populations will survive. In nature, however, 
one may expect the input concentration and washout rate to vary with time. In this paper we consider a 
model for the chemostat with periodic washout rate. Conditions are found for competitive exclusion to 
hold, and bifurcation techniques are employed to show that under suitable circumstances there will be 
coexistence of the competing populations in the form of positive periodic solutions. 

1. Introduction. Under the simplest of circumstances, when two or more popula- 
tions compete exploitatively for a single limiting substrate in a chemostat, all but one 
of the populations become extinct [lo]. Built into the analysis of this competition in 
the chemostat are, however, a number of assumptions which are certainly not always 
met in nature and which might not be met even in the laboratory. Since competitive 
exclusion is a key concept in ecology, it is important to understand exactly which 
assumptions imply competitive exclusion. This seems to be particularly compelling 
since there is much theoretical literature demonstrating competitive exclusion but many 
examples in nature demonstrating coexistence. 

In the traditional chemostat equations two "constants" are under the control of 
the experimenter, the concentration of the input nutrient and the overflow rate (the 
pump rate). In nature one anticipates that both of these vary with time. The variable 
nutrient chemostat has been investigated by Hsu [9], Smith [14], and Hale and 
Somolinos [7], when the input concentration is periodic, and coexistence of the 
competing predator population was established in the form of a periodically oscillating 
solution. 

In this paper we study the other control parameter-the "washout" rate-and 
consider the question of coexistence. We might note that a variable washout rate can 
even occur unexpectedly in the laboratory if the pump's efficiency changes with 
fluctuations in the line voltage. 

A bifurcation theorem is used to establish the existence of a periodic solution 
corresponding to the coexistence of the competitors within appropriate parameter 
ranges. We also determine parameter regions where competitive exclusion holds. 
Previous work on this question can be found in Stephanopoulos, Frederickson and 
Aris [15] where the focus of their attention is somewhat different from ours. 

General background on the chemostat can be found in the survey articles [6], [16], 
[171. 

We present the model in § 2 together with some preliminary results and results 
pertaining to competitive exclusion. Section 3 contains our principal theorems concern- 
ing coexistence, with a discussion of stability in § 4. In § 5 we consider our results in 
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the light of recent work of Hirsch [8] and Hale and Somolinos [7].This general approach 
may also be applied when other parameters in the model are allowed to vary periodi- 
cally. 

2. The model-preliminary results and extinction. If we assume that nutrient uptake 
is described by Michaelis-Menten kinetics, the model equations are 

So  is the constant input concentration of substrate S, D ( t )  is a positive continuous 
periodic function with period w >0, representing the washout rate. y ,  mi, a,  are positive 
constants which are the yield, intrinsic growth rate and Michaelis-Menten constant, 
respectively, for the ith competitor. 

The variables in the above system may be rescaled by measuring S in units of S O ,  

x ,  in units of soy,and x ,  in units of Soy,. If time is then measured in units of the 
mean value ( 1 1 0 )56 D ( f )  dt of D ( t ) , the system takes the form 

where mi and ai have also been rescaled and D ( t )  has mean value I. The period of 
D has also been resealed, but we shall again label it o. 

It is not hard to show that the solutions of (2.1) are nonnegative and bounded, 
as the following lemma indicates: 

LEMMA2.1. (i) The nonnegative ( S ,  x , ,  x2 )  -cone R is positively invariant for (2.1) 
as are the bounding faces x l  = 0 and x,  =0. 

(ii) Solutions of (2.1) are uniformly asymptotically bounded as t + W, i.e. the system 
is dissipative. In fact, lim,,, ( S ( t )+x , ( t )+x2( t ) )  = I, and the rate of convergence is 
exponential. 

(iii) There is a constant 7>0 such that b,,,S (  t )  2 7 for all solutions S (  t ) .  
ProoJ: (i) and (ii) Since the arguments are quite standard, we omit the details, 

save to note that if z ( t )= S ( t )+x , ( t )+x , ( t ) ,  then 

z ( t )= 1 + ( z o - 1) exp I,' -D ( s )  ds. 

Since D ( t )  is a positive continuous periodic function, d l  =min D ( t )  exists and is 
positive. It follows from (2.2) that S ( t )+x , ( t )+x,(t)  + 1 exponentially as t + co. 

(iii) In fact 

For suppose that lh,,,S ( t )< 7.Since G,,, x i ( t )5 1, by (2.2),we may find t, +co 
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and T~ with 0 < 770< 7 such that S( t , )  < T,, S( t , )x , ( t , )  < rlo for i = 1,2, and S1(t ,)+0 
as n +co.But then 

a contradiction. 
2.2. The triangular region A: S +x ,  +x2=COROLLARY 1, S, x , ,  x ,  2 0 ;  is a global 

attractor for (2.1), and solutions of (2.1) approach A exponentially as t +a. 
Proof: Immediate from the proof of the preceding lemma. 
It will be convenient to use the notation ( f )for the mean value of any continuous, 

o-periodic function J; i.e. ( f )= ( l l o )J," f ( s )  ds. 
Analogously to the case in which (2.1)is autonomous, we define A, to be a i / ( m i- I ) ,  

( m i# I), i = 1,2. In the autonomous case, the relative values of the A, completely 
determine the outcome [ l o ] ;in the periodic case, this is not always the case as we 
shall see. 

If the mean washout rate is too high, one or both of the competing populations 
will go to extinction. This is the content of the next lemma: 

LEMMA2.3. A necessary condition for both competitors to go extinct is that 

A suficient condition for xi to go extinct is that m i / ( a i  + 1 )  < 1. 
Proof: Assume that x ,  and x,  go extinct, that is to say, lirn,,, x , ( t )= lirn,,, x 2 ( t )= 

0 for all solutions of (2.1).Suppose that we had m i / ( a i +1)> 1 for some i. Choosing 
a solution of (2.1) with x,(O)>0 ,  so that x , ( t )>0 for all t 2 0 ,  we have 

By Corollary 2.2, S ( t )  + 1 as t +co, and so we may choose to sufficiently large that 
m , S ( t ) / ( a ,+S ( t ) )2 ( D )for all t 2 to.Integrating (2.3)from t = toto t = to+ mo,  we have 

{ m i S ( t )  
x,( to+ m u )  = x, ( t o )  exp 

J,l+mu 
a,+ S ( t )

- D ( t )  Id t 2 x , ( t o ) > 0 .  

Letting m + co,we find Kt,, x , ( t )>0, contrary to supposition. This proves the first 
part ofthe lemma. For the second part let 1 -m , / ( a ,+ 1) 2 ~ ,= >0. Since El,,S ( t )5 1, 
we have m i S ( t ) / ( a i+ S ( t ) )5 m , / ( a ,+ 1)+ E ,  for t 2 ti, say, and so x : ( t ) / x i ( t )5 
1 - E ,  -D ( t ) ,  for t 2 ti. Upon integrating both sides of this inequality, it then follows 
that lim,,, xi(  t )  =0, since ( D )= 1. 

Lemma 2.3 dealt with extinction that occurs regardless of competition. In the 
following result, extinction occurs as a result of competition. 

LEMMA2.4. Let A ,  <A,  < 1, m ,  2 m,. Then for all solutions of (2.1) with positive 
initial conditions, we have x 2 ( t )  +0 as t +a. Furthermore, for any given compact set of 
initial conditions which is disjoint from the x,-axis, convergence of x ,  to zero occurs at a 
uniform exponential rate. 

Proof: The proof proceeds very much along the lines of that of [ l o ,  Lemma 4.31; 
hence we give only an outline. It is possible, under the hypotheses of the lemma and 
Lemma 2.1 (iii), to choose [> 0 such that [ ( m 2 S / ( a 2 +  S )  - 1)- ( m , S / ( a ,+S )- 1)< 
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-ql  <0 for some q l  >0. Since 

and ji (1-D(s)) ds is bounded for all t, an integration gives 

( x ~ ( ~ ) ) ~ S  Ic0 e-"l'x,(t) exp 

for some c, >0 depending upon initial conditions, where co may be chosen uniformly 
for initial conditions in any compact set disjoint from the XI-axis. From Lemma 2.1, 
xl( t )  is bounded (again uniformly for any compact set of initial conditions) and so 
the result follows. 

An intuitively obvious case of Lemma 2.4 occurs when competitor x, out-competes 
x, at all pertinent levels of nutrient density, i.e. if mlS/(al  +S)> m2S/(a2+ S )  for all 
S>O. For this case, provided that A 2 S  1, we have 1= (m, +Al)/(al+Al)  = 
(m2+ A2)/(a2+ A2) < mlA2/(al+A,), which implies that A l  <A,. Letting S +  CO in the 
inequality mlS/ (a l  + S)> m,S/(a,+ S) ,  we also have m, 2 m,; so Lemma 2.4 shows 
that lim,,, x,(t) =0. If A,> 1 (or is undefined), Lemma 2.3 gives the same result. 

If one of the competitors is absent, we obtain the 2-dimensional subsystem 

where x represents the remaining competitor (with m = mi, a = ai for i = 1 or 2, as 
appropriate). 

By Lemma 2.1, for any solution of (2.4), S( t )  +x(t)  = 1+R(t)  where R(t)  = O(ea') 
as t + a ,  for some a<0. (Repeat the proof of Lemma 2.1, using (2.4) in place of 
(2.1).) Fix such a solution (S,(t), x l (  t)). Then x l ( t )  solves an equation of the form 

where r( t )  = O(en') as t +co and depends on the choice of xl(t).  For the moment 
rewrite (2.5) as 

which in turn is viewed as a perturbation of 

Equation (2.7) has a unique positive w-periodic solution $(t) which is globally 
asymptotically stable for positive solutions of (2.7). This was shown in [ l ]  using 
Massera's theorem. It is not difficult to show, by linearizing about +(t),  that the 
convergence is uniformly exponential on compact sets of initial conditions. In particular 
$(t) is exponentially asymptotically stable. A simple Gronwall's inequality argument 
shows that if y( t)  is any solution of (2.6) then 

y( t )  = +( t )  + O(eP') for some P <O.  

Note that +(t)  is independent of the choice of x,(t) ,  although (2.6) is not; in particular 
x,(t)  converges exponentially to +( t )  as t +CO. Define +(t) = 1-+(t).  Then S,( t )  
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converges exponentially to $(t) as t + 03. Now 

and 

Thus (+(t),  4 ( t ) )  is a solution of (2.4) and is globally exponentially asymptotically 
stable for strictly positive solutions. This is just the analogue of the global stability 
result for the simple chemostat with constant washout rate D. 

Referring back to (2.4) with m = mi, a = a ,  i = 1 or 2, we have shown the following: 
LEMMA 2.5. Assume that mi/(l  + a,) > 1 (A, < 1). There are positive w-periodic 

functions Si(t) ,  +,(t), such that the solutions (S,(t), 4 , ( t ) )  of (2.4) (with m = mi, a = a,) 
are exponentially asymptotically stable ,for (2.4), and x = 4i is globally asymptotically 
stable for (2.7). 

Returning to the full 3-dimensional system, we see that there may be three periodic 
solutions of (2.1) on the boundary of 0, the constant solution E,= (1,0,0) and the 
solutions 

E, is globally asymptotically stable for (2.1) if m a ~ ~ = , , ~ m , / ( a , + l ) < l  
(mini=,,,A,  > 1). This follows from Lemma 2.3. If A ,  < 1< A2, Eo has a 2-dimensional 
stable manifold (the (S, x2)-plane) and a 1-dimensional unstable manifold. If A ,  < A 2  < 
1, E, has a 1-dimensional stable manifold (the S-axis) and 2-dimensional unstable 
manifold (the (x,, x2)-plane). 

Assuming that A ,  < A, < 1, each of the solutions E ,  i = 1,2, has at least a 2- 
dimensional stable manifold (the (S, xi)-plane). 

Linearizing (2.1) about E ,  yields the matrix 

with a similar expression for E,. 
Thus the Floquet exponent that determines local stability for El  is I = 

(m2S,/(a2+ S,))- 1, i.e. El is exponentially locally asymptotically stable if (m2S,/(a2 + 
S,))< 1 and unstable if (m2S,/(a2+ S , ) )> 1. 

In the cases that one or both of the competitors xi go extinct, as given by Lemmas 
2.3 and 2.4, we are able to obtain the following results. 

THEOREM2.6. Let A ,  < A 2 <  1 and let m, 2 m,. Then all solutions of (2.1) with 
positive initial conditions satisfy S (  t) + S,( t), x,  ( t) + 4,( t), x2(t) + 0 as t + a,where 
S,, 4, are given by Lemma 2.5. The rate of convergence is exponential. 

To deal with the case that x, out-competes x,, we could employ the ideas of Hale 
and Somolinos [7], where they give a general discussion of dissipative systems, applying 
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this to chemostat equations with a periodically varying imput. We prefer, however, to 
give the following alternative argument: 

Consider two systems 

(2.9) X ' = X AF(t,  X, y), y '= y~ G(t,x, y), x(O), y(O)ZO, 

(2.10) x l=xr ,F( t ,x ,O) ,  x(0)ZO. 

Here x is a vector in R V k  = 1 or 2), y is a vector in RnPk, and for r-dimensional 
vectors u = (u,, . . ,u,), v = (v,, . . . , v,), the notation u A v indicates the vector 
(ulvl, . . . ,u,v,). (See [3], where this notation is introduced.) Assume that F and G 
are, respectively, continuous k-vector-valued and (n - k)-vector-valued functions 
which are w-periodic in t and C' in (x, y).  Identify the x variable with points of Rk, 
the y variable with points of R " - ~ ,  and (x, 2') with points of Rn = Rk xRnPk,  SO that 
(2.9), (2.10) are defined, respectively, on the nonnegative cones %,, %, of Rn, Rk. Note 
that the interior of %,, its bounding (n - 1)-dimensional faces and all lower dimensional 
boundaries are invariant for (2.9), with a similar statement holding for (2.10). 

LEMMA2.7. Assume the following hypotheses hold: 
(i) (2.10) has a jn i te  number of periodic solutions, all of which are hyperbolic (have 

no Floquet exponents with zero realpart) when considered, together with y = 0, as solutions 
of (2.9). 

(ii) All solutions of (2.10) are periodic or asymptotically periodic as t -+ a. 
(iii) There is a solution J/ of (2.10) which is globally asymptotically stable for all 

solutions of (2.10) with positive initial conditions. 
(iv) The solution (J/,O) of (2.9) is asymptotically stable. 
(v) All solutions (x, y)  of (2.9) with positive initial conditions are bounded and 

satisfy y( t) -+ 0 as t -+ a. 
Then ($I, 0) is globally asymptotically stable for solutions of (2.9) with positive initial 

conditions. 
Proof: Consider the discrete dynamical systems (2.9)', (2.10)' obtained from (2.9) 

and (2.10) by use of the period map. Thus (2.9)' is defined by the map T: %, -+ %, 
given by 

T(a, b)=(x(O, a, b; w),yiO, a, b ; w)) 

where (xis, a, b; t), y(s ,  a, b; t)) denotes the solution (x, y)  of (2.9) with initial condi- 
tions x(s)  = a, y(s) = b. (2.10)' is defined by the restriction of T to %,. 

Let a, b > 0. By (v), the orbit {Tn(a,  b)):=, of (2.9)' has a nonempty positive 
omega limit set R c (ek.Let p E 0.Then the orbit of (2.9)' through p is also contained 
in R. If p E int gk, then Tnp -+ p, = (+(0), O), by (iii), and so p, E R. It now follows from 
(iv) that R = {p,}. Thus we have 

If p E d%k, the boundary of (e,, it follows from (ii) that the positive omega limit 
set of the orbit {Trip):=, is a fixed point q of T, lying in a%,. Thus q E R. By (i), q is 
a hyperbolic, unstable fixed point of T and possesses an unstable manifold Wu(q)  
and a stable manifold Ws(q)( Wyq)  may be the single point (9)). Since the bounding 
faces and all lower dimensional boundaries of %, are invariant under T, it is easily 
seen that the stable and unstable manifolds of q must lie in a%,. Thus the orbit 
{Tn(a, b)):=, is disjoint from W7(q). Since q E 0,it follows from Hartman's theorem 
[12] (see p. 80 and discussion on p. 88) that R must contain some point q,, of Wu(q), 

otherwise R %,, q. q, cannot lie in that part of Wu(q)  (if any) which is not in #q, 
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would not be contained in %,. If k = 1, this forces q , to lie in int %, and so R c int %, # 0, 
allowing us to complete the argument as before. If k =2, either q , E int Wk or q,  E a%,. 
In the latter case, the positive omega limit set of { T " q , ) ~ = P = ,is a fixed point q2 of T, 
with q2E 8% From (i) and (iii), it follows that 9, is a hyperbolic unstable fixed point 
of T which possesses a stable manifold in the 1-dimensional set since it is the 
positive omega limit set of the orbit through q,. Note that this forces W u ( q 2 )to be 
disjoint from d g k  As before, R must contain some point 9, of the unstable manifold 
W u ( q 2 )of q2, with 9, # q,, 9, E gk Since q3 cannot lie in 8gk, it must be interior to 
Wk. Now we may finish the argument as before. This completes the proof of the lemma. 

LEMMA2.8. Let x = J, be a positive periodic solution of (2.10) which is exponentially 
asymptotically stable. Suppose that for each compact set K of initial conditions disjoint 
from the set x =0 ,  there exist M,  /3 >0 such that for each solution of (2.9) with initial 
conditions in K, we have 

Then ($, 0 )  is exponentially asymptotically stable for (2.9). 
Proof. Put 5 = x -$, 77 =y in the first equation of (2.9) to obtain 

where A ( t )  is an w-periodic k x k matrix, B ( t )  an w-periodic k x ( n- k )  matrix and 
r(t, 6, q )  satisfies r -,0 uniformly in t as (5,7 )-+ (0,O). 

Since x =  J, is exponentially asymptotically stable for (2.10), the fundamental 
matrix Y ( t )associated with the linear system 

satisfies 1 1  Y ( t )  ~ - ' ( s ) l I  5 c e-a( t -s) ,  0 5 s 5 t ta,for some C, a >0 [2]. 
Let F 2 0 be given. Choose a=a ( & )so that 151+17715 u implies lr(t,5, r l ) (5 

& ( ( 5 ( +  5 C, for all t. By the wriation of constants formula, we have ( r l ( ) .Let 1 1  B ( t ) J J  

and so 

(2.13) ( 5 ( t ) l 5  C e-"'(5(0)(+ I"' C e-m('-s)  { c , 77 (~ )+~ ( l 5 (~ ) I+ l 77 i s )o~ds 

provided that ( 5 ( s ) (+ ( r l( s ) ]5 u, 0 5 s 5 t. 
Let 0 <a,<+ ( O )  and let 

K = ( ( ~ 0 ,  - * ( o ) I  5 g o ,  lyol5 go>.yo) E R": 1x0 

By hypothesis, there exist M, P > O  such that any solution ( x ,  y )  of (2.9) with 
(x(O),  y ( 0 ) )  E K satisfies ( y ( t ) ( S  e-P'. Without loss of generality, mayM ( ~ ( o ) (  we 

assume that a <p. 


Suppose that / ~ ( 0 ) ( 5  5 a".Then (2.13) gives
a,, (17(0)1 

I,'~ e - ~ ( ' - ' )(2.14) 1 ~ ( t ) ( ~ C e - " ' 1 ~ ( 0 ) 1 +  ( ( c ,  + & ) M / T ( o ) I  e-P" t-l5(s)l) ds, 

provided that 1[(s)l+ (rl(s)l 5 u, 0 5  s 5 t. 
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Put z ( t )= 1t(t)l em'. Then we have 

z ( t )5 C z ( 0 ) +SofC E Z ( S )ds+ So' + E ) M ( ~ ( o ) ((c, e ( n - B ) s d s  

(2.15) 

5 ( C z ( 0 )+ e)"lrl(o)l)  + 1C B Z ( S )ds.+

P - a  

Gronwall's inequality yields 

provided that 1f(s)l+ IT(s)l 5 a, 0 5  s 5 t. We also have 

Fix e < a /  C and let 

Then if 1f(0)/+ IT(0)15 6 and provided that I t(s)l+ IT(s)l 5 a, OZ s 5 t, we have by 
(2.16) and (2.17), 

/ t ( t ) l +  lT(t)I 5 a. From this it follows that (2.16) and (2.17) are valid for all t 2 0 for 
all solutions (6 , q )  with 1f(0)l+lrl(0)I56. The lemma now follows from (2.16) and 
(2.17), since C B- a < 0. 

Proof of Theorem 2.6. In (2.4), put m = m, ,  a = a,, y = S+ x - 1 ,  and rewrite the 
equations as 

Consider also the system 

The periodic solutions of (2.18) are (0,O) and (+, ,0 ) .  By Lemma 2.5, all solutions of 
(2.19), except for x = 0 ,  approach 4, as t + m, and (4,,0 )  is exponentially asymptoti- 
cally stable for (2.18). It is easily verified that (0,O) is a hyperbolic unstable periodic 
solution of (2.18), and clearly y ( t )+0 for all solutions of (2.18) with positive ipitial 
conditions. Lemma 2.1 gives boundedness of solutions. Applying Lemma 2.7, it follows 
that (4 , ,0 )  is globally asymptotically stable for solutions of (2.18) with positive initial 
conditions. 
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Next we put X I  = x, S +  x ,  +x,- 1 =y, ,  x, =y,, y = ( y , ,  y,), and rewrite (2.1) as 

We also consider 

The periodic solutions of (2.20) are (0 ,0 ,  0 ) ,  (+,,0 , O ) ,  ( 0 ,0 ,  4,), corresponding to E,, 
El and E,, respectively. Now (4,,O)is exponentially asymptotically stable for the 
subsystem of (2.20) with y2 =0, and by Lemma 2.4, y, +0 uniformly exponentially for 
solutions of (2.20) with initial conditions in any given compact set disjoint from the 
x-axis. Lemma 2.8 shows that ($ , ,0 , 0 ) is exponentially asymptotically stable for (2.20). 
Again it is easily verified that ( O , O , O )  is a hyperbolic unstable periodic solution of 
(2.20). Since y = ( y , ,  y2) +0 as t + for any solution of (2.20) with positive initial 
conditions and solutions are bounded, we again apply Lemma 2.7 and obtain the 
theorem. 

3. Coexistence results. Throughout this section, we shall assume that 0 <A ,  < 1 .  
Since ( D )= 1 ,  this means that m ,  > 1 .  Our main purpose in this section is to prove the 
following: 

THEOREM^.^. L e t m , ,  a ,  begiven (suchthatO<A,<l) .  Thereexistscr=cr(m,, a , )  
such that for any a, > a, m,  (the bifurcation parameter) can be chosen such that A ,  <A ,  
and (2.1) possesses on w-periodic solution ( S ( t ) ,  x , ( t ) ,  x , ( t ) )  near El and bifurcating 
from it, in which S, x ,  and x, are all positive. 

THEOREM3.2. Let m, ,  a , ,  a,  be as above. There exists a continuous one-parameter 
family of positive w-periodic solutions of (2.1) connecting the solutions E ,  and E,. 

The approach used in this section and the next is similar to that used by Cushing 
131, [41, C5l. 

Proof of Theorem 3.1. As a result of Lemma 2.1, in considering (2.1) we may 
restrict our attention to the invariant triangle A: S +x ,  +x, = 1 ;S, x , ,  x, 2 0. Eliminating 
S from (2.1) restricted to A, leads to the equations 

(3.1) x ;  = x , f , ( t , X I ,  x,), x: = x2f2(t,X I ,  x2) 

where J;(t, x , ,  x,) = ( m i ( l  - x ,  -x,)/ I +ai - x l  -x,) -D ( t ) ,  i = 1,2. Denote (aJ;/dx,) by 
J;,, and note that for i # j, J;,(t, x, ,  x,) <0 on R x A, i.e. (3.1) is competitive. We also 
haveAi( t ,  x , ,  x,) < O  on R x A, i = 1,2. 

We have shown (Lemma 2.5) that if x, -= 0, so that (3.1)reduces to xi = x ,  f , ( t ,  x , ,  0 ) ,  
then there is a positive periodic solution x ,  = 4,which is globally attracting for positive 
solutions of that equation. We shall find conditions for which there is a bifurcation of 
this periodic solution into a periodic solution of (3.1) lying in the positive ( x , ,  x2)-  
quadrant. First we set 5, =x ,  -+,, 5, = x, to write (3.1)  in the form 

51 = { f i ( t ,41 ,O ) + ~ I ~ I I ( ~ ,  41f12(t,41 ,0)6,+g1(t,6 1 ,6 2 ) ,4 1 , 0 ) ) 5 1 +
(3.2) 

54=f2(t9 41,0)&+g2(f5 51,6 2 )  

where gi = gi(t ,c,, 5,) = 0(5:+ 6:) as (& ,6)-+ (0 ,  0 ) ,  uniformly with respect to t. 
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We put 

and note that (a,,) <0. With this notation, (3.2) may be written as 

Let B denote the Banach space of continuous w-periodic scalar functions on R with 
the uniform norm. We require a lemma on the Fredholm alternative which we state 
in a form used by Cushing [4] .  

LEMMA3.3 [4].  Let a, E B, i, j = 1,2. 
(a) If ( a ,  ,) f 0 # (a,,), then the system 

has no nontrivial periodic solution, in which case, if h , ,  h, E B, the system 

has a unique solution ( e l ,5,) E B x B. The operator L:  ( B  x B )+ ( B  x B )  defined by 
(5, ,  5,) = L ( h l ,  h,) is a compact, linear operator, and may be decomposed as follows: 
L ( h l ,  h,) = h , ) ,  L2h2) where L , ,  L,  :B + B are compact linear operators. ( L l ( a I 2 L 2 h 2 +  

(b) If (a,,) = 0 and ( a , , )# 0 ,  then (3.4) has exactly one independent solution in 
B x B. 

(c) If b E B with (b)=O,  and f E B, then ( ' =  be+ f has a solution 5~ B ifl 
( f ( t )exp (4;b ( s )  d s ) )  =0. 

Since a , , ,  a,, satisfy the conditions of Lemma 3.3(a),we may define the compact 
linear operators L, L , ,  L,, given by that lemma and reformulate the problem of finding 
nontrivial periodic solutions of (3.3) as that of finding a nontrivial solution in B x B 
of the operator equation 

(3.6) ( 5 1 ,5 2 )  = 5 2 )  + G ( ~ I ,P L * ( ~ I ,  5 2 ,  P ) .  

Here L* and G are operators from B x B to B x B given by 

where g ,  and g, are given in (3.3). L* is a compact linear operator and G is continuous 
and compact with ' 3 5 1 ,5 2 ,  ~ u . =) o(Il(51,52111) as Il(51,6 2 ) ) )' 0 .  

The next two lemmas are a basic bifurcation theorem, and a global bifurcation 
theorem due to Rabinowitz: 

LEMMA3.4 [ l  11. Let T, = PA+N be a continuous oneparameter family of operators 
from a Banach space X to itself; such that A is compact and linear and N satisjes 
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11 Nx -Ny 1 1  = o( J Jx-y 11). Then a bifurcation of the zero solution of the equation T,x = x 
(XE X )  can only occur at a characteristic value p *  (reciprocal of a nonzero eigenvalue) 
of A, and will occur ifp* has odd multiplicity. In this case, the bifurcation point corresponds 
to a continuous branch of eigenvectors of T, in a neighbourhood of the zero of X. 

LEMMA3.5 [13]. Let T,, A, N, X be as above, and let X be the closure of the set 
of all nontrivial solutions of T,x = x as p ranges over R. Ifp* is a simple characteristic 
value of A, then Z contains two subcontinua 2 2 ,  2, whose only point in common for p 
near p *  is (p*,  O), and each of which either 

(a) is unbounded, or 
(b) contains (p,  0) where p u.f p *  is a characteristic value of A. 

We see that p *  is a characteristic value of L* iff the system 


has a nontrivial w-periodic solution. Since ( D ) =  1, this is the case iff p *  = 
[(I -+ , ) / ( I+  a, -+,)I-' by Lemma 3.3(b), from which it follows that the eigenspace 
of ( p * ) , ~ *  is one-dimensional. Lemma 3.3(c) may now be used to show that p *  is a 
simple characteristic root of L* (see [I, p. 331). 

Since the two quadrants x,, x, >0 and x, >0 >x,, and the x, -axis, are invariant 
for (3.1), and since (+,, 0) is an isolated periodic solution of (3.1) restricted to the 
x,-axis, bifurcation theory (Lemmas 3.4 and 3.5) shows that as we vary m2 through 
the critical value p*, positive nontrivial periodic solutions of (3.1) appear as a branch 
of solutions of (3.2) bifurcating from the zero solution. (There is also a branch of 
periodic solutions with x,(t) <0 which are not of biological significance.) 

In order to show that we really can get coexistence of x,, x, in the form of periodic 
oscillations, we must show that as m2 passes through the value of p*, the ordering 
A ,  <A2 is maintained. Otherwise it could be the case that m, = p *  corresponds to 
A ,  =A2 and we have a nongeneric bifurcation resulting in a continuum of periodic 
solutions for the same value m2 = p *  and no positive periodic solutions at all for 
m 2 > p *  or m,<p*. 

We shall need the following result which may be of interest in its own right: 
LEMMA3.6. If (S,, +,, 0) is a positive periodic solution of (2.1), then (S , )>  A,. 
ProoJ: Let (S,(t) ,  +,( t ) ,  0) be a solution which is periodic of period w. Then 

1 
m, = 

(S , l ( a ,+ S,)) 

since (D)  = 1; 

and 

Hence the proof of Lemma 3.6 is complete if one shows that the right-hand side of 
(3.8) is positive. Since 
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this amounts to showing that the bracketed quantity is positive as the second factor 
is always positive (in fact bounded below by a ,  > 0). 

Since 

and 

(S,) 
- 1- a l ( l / (a l+  SI)), 

(a ,+ S,)  

then 

From the Cauchy-Schwarz inequality it follows that 

( l / ( a ,  + S,))(a,+ S,)- 12 0 

with equality only if S ,  is constant. The lemma follows. 
Consider p* as a function of a,. Again denoting 1 -4, ( t )  by S,(t) ,  we have that 

If A* is the value of A, corresponding to m, = p* then 

Thus, lim,,,, A?(a,) = (S,), and (Sl)> A ,  by Lemma 3.6. It follows that if a, is chosen 
sufficiently large, then A ,  <A?, for the bifurcating periodic solutions of (2.1) near the 
bifurcation point. This completes the proof of Theorem 3.1. 

Proof of Theorem 3.2. Applying Lemma 3.5 to (3.2) (and (3.1)), yields the following 
possibilities: 

(i) There are positive periodic solutions for all m2 < p*. 
(ii) There exists 6, such that there are positive periodic solutions corresponding 

to m, which become unbounded as m,+ lit,. 
(iii) There are positive periodic solutions for all m2 > p*.  
(iv) There exist fi, and a continuum of positive periodic solutions of (3.1) which 

connect ( 4 , ,  0) with m, = p* to some periodic solution in the x,-axis with 
m,= m,. 

Note that case (b) of Lemma 3.5 cannot occur since the eigenvalue p* is unique. 

We may exclude the possibilities (i), (ii) and (iii) as follows: 

If m, = 0, the second equation in (3.1) is x; = -D(t)x2, which has only the zero 


solution as a periodic solution. Hence there is no positive solution of (3.1) for m, = 0 
and (i) is impossible. It also follows that to rule out (ii), we only have to consider 
m, 2 0. Near to the bifurcation point, positive periodic solutions of (3.1) will satisfy 
max (x l ( t )  + x2(t))< 1. Since I: is a continuum, if (ii) occurs there exists fi2 > 0 such 
that with m, = fi,, (3.1) has a positive periodic solution with max (x,(t)  + x,(t)) = I, 
i.e. there exists to such that 
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But (3.1) gives x',(to)+x;(to) = -D(to) <O. This contradiction shows that (ii) cannot 
occur. 

If m, is sufficiently large, we shall have A, <A ,  and m2> m,, in which case Lemma 
2.4 applies with the roles of x, and x2 interchanged, and x,( t )  +0 as t +a .  Hence 
(3.1) has no positive periodic solution. It follows that (iii) cannot occur. 

Therefore, the only alternative that can occur is (iv). Note that the continuum of 
positive periodic solutions cannot connect with the solution (0,O) of (3.1) since (0,O) 
is a repeller (uniformly on compact sets of m2-values) for (3.1). Hence the continuum 
must connect (+, ,  0) with (0, 4,). Note also that we cannot rule out the possibility 
that rii, = p *  and that there is a whole tube of periodic solutions connecting (4 , ,  0) 
with (0, 4,) when m, = p*. Finally we must show that S= 1 -x,  -x2 is a positive 
function. The first equation in (2.1) shows that S f ( t )  >0 whenever S( t )  =0. It follows 
(since S is periodic) that S ( t )  is either positive for all t or is negative for all t. Suppose 
that S( t )  were negative for all t. If S( t )  + -a, as t + T, then S1(t) -,oo as t + T. It follows 
that S( t )  + a, is of one sign for all t. If we had S ( t )  +ai<0 for all t, this together with 
the negativity of S( t ) ,  implies that x:(t) 2 xi(t)(mi-D( t ) )  for all t, which would yield 
xi(t)+aas t +a ,  since mi = (D)= mi - 1>0. This contradiction shows that S( t )  +a, > 
0 for all t, for i = 1,2. But this, together with S( t )  < O  for all t, implies that x:(t) < O  
for all t, which contradicts the periodicity of xi(t) ,  i = 1,2. So we finally conclude that 
S( t )>0 for all t, and the proof of the theorem is complete. 

4. Stable coexistence. By obtaining a Lyapunov-Schmidt expansion near the 
bifurcation point, one may give stability criteria for the positive periodic solutions 
given by Theorem 3.1. We follow the exposition due to Cushing [3], [ 5 ] ,  and refer to 
these papers for the details for the following development. Assuming that f, and f2 

are twice continuously differentiable with respect to x, ,  x,, we may write 

Using the notation of Theorem 3.1, except that we write f, =f,(t, x,, x2, p )  to indicate 
its dependence on the bifurcation parameter p ,  we define 

Since f i l<O, Y(w) = exp 5: ~ I ( s ) f l I ( ~ ,r$,(s), 0) ds < 1; and so if G(t, s )  is defined by 

then G(t, s )  >0. G(t, s )  is just the Green's function associated with (3.4). 
The first order terms in e in (4.1) are the solutions of a linear system, which may 

be solved explicitly as 

~ I l ( l ) =r YG(t, s)41(s)f12(s, O) ds, 

Since G is positive and f,, negative, we see that x l I ( t ) < 0 < x 2 , ( t )  for all t. An 
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orthogonality condition reveals that 

and the stability of the bifurcating periodic solutions depends on the direction of 
bifurcation; they are stable if p,>0, unstable if p, <O (see [5, Thm. 81). Evaluating 
the partial derivatives, this leads to the condition that the bifurcating periodic solutions 
(near to the bifurcation value) are 

stable, if 

unstable, if 

(4.4) is not immediately helpful: first of all, because it requires knowledge of 4 , ( t )  
before x,,, x,, and the mean values can be determined; secondly, because one cannot 
obtain any clue as to the direction of bifurcation when D( t )  is nearly constant (small 
amplitude about its mean value). For in the case of constant D, the bifurcation is 
nongeneric with a line of (constant) periodic solutions occurring when m, = p*. 

We have numerical evidence that at least in some instances, there is bifurcation 
to stable periodic solutions, and intend to pursue this question of stability in a future 
paper. 

5. Discussion. We have seen that all solutions of (2.1) with positive initial condi- 
tions asymptotically approach the invariant triangle A as t +a.In the case that the 
solution (S, x,, x,) of (2.1) restricted to A is locally (globally) exponentially asymptoti- 
cally stable with respect to A, than it will be locally (globally) exponentially asymptoti- 
cally stable for the full system (2.1). Such results were given in § 2 and § 3. Although 
we were unable to satisfactorily resolve the stability of the bifurcating periodic solutions 
obtained in § 3-this is a very hard problem for competitive systems even in the simplest 
cases [3]-we are able to utilize results of Hirsch [8] and Hale and Somolinos [8] to 
yield information about the possible asymptotic nature of solutions of (2.1). 

Restricting (2.1) to A and eliminating S from the equation leads to the 2- 
dimensional dissipative competition equations (3.1). (Dissipative means that all sol- 
utions are asymptotically uniformly bounded.) As Hirsch has shown in the autonomous 
case of such systems, the dynamics are essentially trivial, in the sense that solutions 
approach equilibrium as t +a.Extending this to periodic systems, Hale and Somolinos 
show that all solutions approach an w-periodic solution as t +a.They also show that 
when the system is analytic, as it is in the present case, there are a finite number of 
periodic solutions, except in the case that one of the periodic solutions in the boundary 
of A (i.e. x, = +,, x, = 0 or x, =0, x2= 4,) has a zero Floquet multiplier. 

From the results of Hale and Somolinos it follows that (2.1) will possess an 
asymptotically stable periodic orbit provided that neither of the solutions (4 , ,  0) and 
(0, 4,) has a zero Floquet multiplier. We anticipate, but cannot prove, that this is the 
case for almost all sets of parameter values. 

There will be an asymptotically stable positive periodic orbit if I, . I,> 0, where 
I,=(m,(l-4,)/(l+a,-4,))-1, j = 1 , 2 ;  see[7, p. 441. 
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