
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL WITH
HASSELL-VARLEY TYPE FUNCTIONAL RESPONSE

Sze-Bi Hsu

Department of Mathematics,
National Tsing Hua University,

Hsinchu, Taiwan, R.O.C.

Tzy-Wei Hwang

Department of Mathematics,
National Chung Cheng University,
Min-Hsiung, Chia-Yi 621, Taiwan

Yang Kuang

Department of Mathematics,
Arizona state University,

Tempe, AZ 85287-1804, U.S.A.

(Communicated by Hal Smith)

Abstract. Predator-prey models with Hassell-Varley type functional response
are appropriate for interactions where predators form groups and have appli-
cations in biological control. Here we present a systematic global qualitative
analysis to a general predator-prey model with Hassell-Varley type functional
response. We show that the predator free equilibrium is a global attractor only
when the predator death rate is greater than its growth ability. The positive
equilibrium exists if the above relation reverses. In cases of practical interest,
we show that the local stability of the positive steady state implies its global
stability with respect to positive solutions. For terrestrial predators that form
a fixed number of tight groups, we show that the existence of an unstable pos-
itive equilibrium in the predator-prey model implies the existence of an unique
nontrivial positive limit cycle.

1. Introduction. Predator-prey models are arguably the most fundamental build-
ing blocks of the any bio- and ecosystems as all biomasses are grown out of their
resource masses. Species compete, evolve and disperse often simply for the pur-
pose of seeking resources to sustain their struggle for their very existence. Their
extinctions are often the results of their failure in obtaining the minimum level
of resources needed for their subsistence. Depending on their specific settings of
applications, predator-prey models can take the forms of resource-consumer, plant-
herbivore, parasite-host, tumor cells (virus)-immune system, susceptible-infectious
interactions, etc. They deal with the general loss-win interactions and hence may
have applications outside of ecosystems. When seemingly competitive interactions
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are carefully examined, they are often in fact some forms of predator-prey interac-
tion in disguise.

The most popular predator-prey model is the one with Michaelis-Menten type
(or Holling type II) functional response (Freedman 1980):





x′(t) = ax(1− x/K)− cxy/(m + x)
y′(t) = y(fx/(m + x)−D)
x(0) > 0, y(0) > 0

(1)

where x, y stand for prey and predator density, respectively. The constants a,
K, c, m, f , D are positive that stand for prey intrinsic growth rate, carrying
capacity, capturing rate, half saturation constant, maximal predator growth rate,
predator death rate, respectively. This model exhibits the well-known but highly
controversial “paradox of enrichment” observed by Hairston et al (1960) and by
Rosenzweig (1969) which is rarely reported in nature. To address this problem
and respond to the need of a simple deterministic model that producing the often
observed extinction of prey species in island ecosystems (Ebert 2000, Fan et al.
2005), Arditi and Ginzburg (1989) proposed the following predator-prey model with
ratio-dependent type functional response:





x′(t) = ax(1− x/K)− cxy/(my + x)
y′(t) = y(fx/(my + x)−D)
x(0) > 0, y(0) > 0.

(2)

It is well known (Kuang and Beretta (1998), Jost et al. (1999), Hsu et al. (2001),
Xiao and Ruan (2001), Berezovskaya et al. (2001)) that the system (1.2) can display
richer and more plausible dynamics than that of system (1).

It was known that the functional response can depend on predator density in
other ways. One of the more widely known one is due to Hassell and Varley (1969).
A general predator-prey model with Hassell-Varley type functional response may
take the following form





x′(t) = ax(1− x/K)− cxy/(myγ + x) ≡ F (x, y),
y′(t) = y(−D + fx/(myγ + x)) ≡ G(x, y), γ ∈ (0, 1),
x(0) = x0 > 0, y(0) = y0 > 0.

(3)

In the following, we will call γ the Hassell-Varley constant. A unified mechanistic
approach was provided by Cosner et al. (1999) where the functional response in sys-
tem (3) was derived. In a typical predator-prey interaction where predators do not
form groups, one can assume that γ = 1, producing the so-called ratio-dependent
predator-prey dynamics. For terrestrial predators that form a fixed number of tight
groups, it is often reasonable to assume that γ = 1/2. For aquatic predators that
form a fixed number of tight groups, γ = 1/3 maybe more appropriate. Since most
predators do not form a fixed number of tight groups, it can be argued that for most
realistic predator-prey interactions, γ ∈ [1/2, 1). Our main results are applicable to
these realistic cases.

Mathematically, systems (1) or (2) can be viewed as limiting cases of systems (3)
if one chooses γ = 0 or 1 in system (3).

2. Preliminary analysis. The main objective of this paper is to gain a detailed
global understanding of the dynamics of system (3) . In this section, we present
the basic results on the boundedness of positive solutions and the local stabilities



HASSELL-VARLEY PREDATOR-PREY MODEL 3

of nonnegative equilibria in (3). To this end, we nondimensionalize the system (3)
with the following scaling

t→at, x→x/K, y→αy

then the system (3) takes the form



x′(t) = x(1− x)− sxy/(x + yγ) ≡ F (x, y),
y′(t) = δy(−d + x/(x + yγ)) ≡ G(x, y),
x(0) = x0 > 0, y(0) = y0 > 0,

(4)

where
α = (

m

K
)

1
γ , s =

c

a

1
K

(
K

m
)

1
γ , δ =

f

a
, d =

D

f
. (5)

Observe that lim(x,y)→(0,0) F (x, y) = lim(x,y)→(0,0) G(x, y) = 0. We thus define that
F (0, 0) = G(0, 0) = 0. Clearly, with this assumption, both F and G are continuous
on the closure of R2

+ where R2
+ = {(x, y)| x > 0, y > 0}.

The variational matrix of the system (4) is given by

A(x, y) =




1− x− sy

x + yγ
+ x(−1 +

sy

(x + yγ)2
), − sx

(x + yγ)2
(x + (1− γ)yγ)

δy1+γ

(x + yγ)2
, δ(

x

x + yγ
− γxyγ

(x + yγ)2
− d)


 .

(6)
The following proposition shows that system (4) is dissipative.

Proposition 1. Let (x(t), y(t)) be any solution of (4) with (x(0), y(0)) ∈ R2
+, then

lim sup
t→∞

(x(t) + sy(t)/δ) 6 (1 + dδ)2

4dδ
.

Proof. It follows immediately from the existence and uniqueness of solutions for
ordinary differential equations with initial conditions that the solution is positive
on its domain of definition. Let V (t) = x(t) + s

δ y(t) and differentiating V once
yields

V ′(t) = x(t)(1 + dδ − x(t))− dδV (t) 6 (1 + dδ)2/4− dδV (t).

Hence, we have 0 < V (t) 6 (1 + dδ)2/4dδ + (V (0)− (1 + dδ)2/4dδ)e−dδt. This gives
the desired result.

Notice that if d ≥ 1 then (x(t), y(t))→(1, 0) as t→∞ for all (x(0), y(0)) ∈ R2
+. In

the following, we assume that d ∈ (0, 1).
For d ∈ (0, 1), system (4) has three equilibria. They are E0 = (0, 0), E1 = (1, 0)

and E∗ = (x∗, y∗), where x∗ > 0, y∗ > 0 and




1− x∗ − sy∗
x∗ + yγ

∗
= 0,

x∗
x∗ + yγ

∗
= d.

(7)

Since the vector field (F,G) is not C1 at E0, the standard local stability analysis
method can not be applied to E0.

At E1, we have

A(1, 0) =
[ −1, −s

0, δ(1− d)

]
. (8)
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This shows that E1 is a saddle point.
At E∗, we have

A(x∗, y∗) =




x∗(−1 +
sy∗

(x∗ + yγ
∗ )2

), − sx∗
(x∗ + yγ

∗ )2
(x∗ + (1− γ)yγ

∗ )

δy1+γ
∗

(x∗ + yγ
∗ )2

, −δ
γx∗y

γ
∗

(x∗ + yγ
∗ )2


 . (9)

A straightforward calculation shows that

detA(x∗, y∗) = δγ
x2
∗y

γ
∗

(x∗ + yγ
∗ )2

+ s(1− γ)δ
x∗y

1+2γ
∗

(x∗ + yγ
∗ )4

+ sδ(1− γ)
x2
∗y

1+γ
∗

(x∗ + yγ
∗ )4

> 0

and

trA(x∗, y∗) = x∗

(
sy∗

(x∗ + yγ
∗ )2

− 1− δγyγ
∗

(x∗ + yγ
∗ )2

)
.

Hence, the stability of E∗ is determined by the sign of tr A(x∗, y∗). This gives that
E∗ is locally asymptotically stable (or unstable) if tr A(x∗, y∗) < (or >) 0.

Summarizing these discussion, we arrive at the following proposition.

Proposition 2. For system (4), the following statements hold.
a. E1 is a saddle point.
b. E∗ is locally asymptotically stable if trA(x∗, y∗) < 0.
c. E∗ is unstable if trA(x∗, y∗) > 0.

3. Uniform persistence. The objective of this section is to present conditions
ensuring the system (4) is uniformly persistent. To this end, we make the change
of variables (x, y) → (u, z) in system (4), where u = x/yγ , z = yσ and σ will be
chosen later. This reduces it to the following system

u′(t) = g(u)− ϕ1(u)zσ1 − ϕ2(u)zσ2 ≡ f1(u, z),
z′(t) = ψ(u)z ≡ f2(u, z),
u(0) > 0, z(0) > 0

(10)

with
g(u) = u[1 + γδd + (1 + γδd− γδ)u]/(1 + u),
ϕ1(u) = u2,
ϕ2(u) = su/(1 + u),
ψ(u) = σδ(u/(1 + u)− d)

(11)

where σ1 = γ/σ and σ2 = (1 − γ)/σ. Now let σ = γ if γ ∈ (0, 1
2 ) and σ = 1 − γ if

γ ∈ [ 12 , 1) then

σ1 =
{

1 if γ ∈ (0, 1
2 ),

γ/(1− γ) if γ ∈ [ 12 , 1)

and

σ2 =
{

(1− γ)/γ if γ ∈ (0, 1
2 ),

1 if γ ∈ [ 12 , 1).

Hence, σi ≥ 1, i = 1, 2 and the vector field (f1, f2) is C1 smooth on the closure of
R2

+. Observe that the numbers of nontrivial positive equilibria and periodic orbits
(if any) of systems (4) and (10) are the same.

Since 0 < d < 1, we have ψ(u∗) = 0 where u∗ = d/(1− d) > 0 and

ψ(u) = σδ(1− d)(u− u∗)/(1 + u).
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Moreover, g(u) > 0 on R+ if γδ 6 1
1−d and g(u) has exactly one positive zero

u0 = (1 + dγδ)/[(1− d)γδ − 1] if γδ > 1
1−d . In last case, we have g(u)(u− u0) < 0

for u 6= u0.
From system (10), we see that the prey isocline, z = h(u), is implicitly defined

by f1(u, z) = 0. Since f1(u, 0) = g(u), limz→∞ f1(u, z) = −∞ and ∂f1
∂z (u, z) < 0 it

follows from the implicit function theorem that z = h(u) is a C1 function defined
on [0,∞) if γδ 6 1

1−d or on [0, u0] if γδ > 1
1−d . Moreover, h(0) = ( 1+γδd

s )
1

σ2 and

h′(u) = −
∂f1
∂u (u, h(u))
∂f1
∂z (u, h(u))

=
( g(u)

ϕ2(u) )
′ − (ϕ1(u)

ϕ2(u) )
′[h(u)]σ1

ϕ1(u)
ϕ2(u)σ1[h(u)]σ1−1 + σ2[h(u)]σ2−1

. (12)

The qualitative behavior of z = h(u) is given in the following lemma (see Fig.1
(a)-(d) and Fig.2 (a)-(d)).

Lemma 3.1.
(a) If γδ ∈ ( 1

1−d ,∞) then h(u) > 0 > h′(u) for all u ∈ [0, u0].
(b) If γδ ∈ (0, 1

1−d ] and ( 1+γδd
s )σ1 > (1 + γδd− γδ)σ2 then h(u) > 0 > h′(u) for all

u ∈ (0,∞).
(c) If γδ ∈ (0, 1

1−d ] and ( 1+γδd
s )σ1 < (1+γδd−γδ)σ2 then h(u) > 0 for all u ∈ [0,∞)

and
h′(u) has exactly one positive zero u1. Moreover, h′(u)(u − u1) < 0 for all

u 6= u1.

Proof. From (12), we have h′(u) < 0 as long as

hσ1(u) > (
g(u)
ϕ2(u)

)′/(
ϕ1(u)
ϕ2(u)

)′ =
1 + γδd− γδ

1 + 2u
.

Since 1 + γδd− γδ < 0 < h(u) for u ∈ [0, u0), so we have

hσ1(u) > 0 >
1 + γδd− γδ

1 + 2u
for all u ∈ [0, u0).

Hence, the assertion (a) follows immediately.
Now let 1+γδd−γδ > 0. It is sufficient to show that h′ has at most one positive

zero in (0, ∞). To see this, notice that if u > 0 and h′(u) = 0 then

h′′(u) = −2hσ1(u)/
(

ϕ1(u)
ϕ2(u)

σ1[h(u)]σ1−1 + σ2[h(u)]σ2−1

)2

< 0.

This implies that h′(u) < (>) 0 if u > (<) u and near u. Hence, h′(u) < 0 for
u > u. For otherwise, there is û > u such that h′(u) < 0 on (u, û) and h′(û) = 0.

This implies that 0 6 h′′(û) = −2hσ1(û)/
(

ϕ1(û)
ϕ2(û)σ1[h(û)]σ1−1 + σ2[h(û)]σ2−1

)2

< 0,

a contradiction.
Since h′(0) 6 0 if hσ1(0) = ( 1+γδd

s )
σ1
σ2 > 1 + γδd − γδ. Hence, assertion (b)

follows.
For part (c), we have h′(0) > 0. Hence, h′(u) > 0 as u close to 0. Since h is

increasing as long as hσ1 is bounded by a decreasing function 1+γδd−γδ
1+2u . There must

exist u1 > 0 such that h′(u1) = 0. Thus, h′(u) < 0 for u > u1. This proves the
assertion (c).
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Remark 1. According to the Implicit Function Theorem, the function h is also
dependent on s. The partial derivative of h with respect to s is given by
∂h

∂s
(s, u) = −(

u

1 + u
hσ2(s, u))/(σ1ϕ1(u)hσ1−1(s, u) + σ2ϕ2(u)hσ2−1(s, u)) < 0.

Remark 2. As a consequence of Remark 1, the positive zero u1, is also a function
of s, whenever it is defined. So, for (1+γδd

s )σ1 < (1 + γδd − γδ)σ2 or equivalently,

s > (1 + γδd)/(1 + γδd− γδ)
σ2
σ1 , we have hσ1(s, u1(s)) = 1+γδd−γδ

1+2u1(s)
. Differentiating

with respect to s yields

2(1 + γδd− γδ)
1

σ1 u′1(s) = −σ1(1 + 2u1(s))
1

σ1
+1 ∂h

∂s
(s, u1(s)).

Now from Remark 1, we obtain u′1(s) > 0. Moreover, u1 is unbounded. Because
if it is not the case, then there are suitable positive constants c1, c2, c3 such that
u′1(s) > c1

c2+c3s , which leads to a contradiction.

Notice that ϕ1(u∗)[h(u∗)]σ1 + ϕ2(u∗)[h(u∗)]σ2 = g(u∗) = u∗ > 0. The system
(10) always has the trivial equilibrium e0 = (0, 0) and the positive equilibrium
e∗ = (u∗, z∗) where z∗ = h(u∗). Since g(u0) = 0, the system (10) has a boundary
equilibrium e1 = (u0, 0) if and only if γδ(1− d) > 1. The variational matrix of the
system (10) is given by

J(u, z) =
[

g′(u)− ϕ′1(u)zσ1 − ϕ′2(u)zσ2 −σ1ϕ1(u)zσ1−1 − σ2ϕ2(u)zσ2−1

σδz/(1 + u)2 σδ(u/(u + 1)− d)

]
.

(13)
The stability of equilibria e0, e1 and e∗ is determined by the eigenvalues of the

matrices J(e0), J(e1), J(e∗) respectively and is given in the following lemma.

Lemma 3.2. For the system (10), the following statements are true.
(a) e0 is a saddle point with stable manifold {(0, z)|z > 0}.
(b) If γδ ∈ ( 1

1−d ,∞) then e1 is a saddle point with stable manifold {(u, 0)|u > 0};
and e∗

is locally asymptotically stable.
(c) If tr(J(e∗)) < 0 then e∗ is locally asymptotically stable.
(d) If tr(J(e∗)) > 0 then e∗ is an unstable focus or node.

Proof. The variational matrix of the system (10) at e0 is

J(e0) =
[

1 + γδd 0
0 −σdδ

]
.

Obviously, the assertion (a) hold.
For part (b), the variational matrix at e1 is

J(e1) =
[

g′(u0) ∂f1
∂z (e1)

0 σ/γ

]
.

Since g′(u0) = (1 + γδd− γδ)u0/(1 + u0) < 0, so e1 is a saddle point.
To discuss the stability of e∗, observe that the variational matrix at e∗ is

J(e∗) =
[

∂f1
∂u (e∗) ∂f1

∂z (e∗)
σδz∗/(1 + u∗)2 0

]
.

Since ∂f1
∂z (e∗) < 0 so the determinant of J(e∗) is positive and the stability of e∗ is

determined by the sign of the trace of J(e∗). Thus e∗ is an unstable focus or node
if tr(J(e∗)) > 0 and e∗ is locally asymptotically stable, if tr(J(e∗)) < 0. Moreover,
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if γδ ∈ ( 1
1−d ,∞), then from (12) and Lemma 3.1 (a), one obtains tr(J(e∗)) =

∂f1
∂u (e∗) < 0. This proves the assertions (b), (c) and (d).

Remark 3. Notice that, under the change of variables, the boundary equilibrium
E1 is transformed to (∞, 0) and E0 splits into two equilibria e0 and e1.

Remark 4. Since (x∗, y∗) = (u∗z
γ
σ∗ , z

1
σ∗ ), we have

trA(x∗, y∗) =
sx∗y∗

(x∗ + yγ
∗ )2

−x∗− δγx∗y
γ
∗

(x∗ + yγ
∗ )2

= u∗(
−γδ

(1 + u∗)2
−zσ1∗ +

s

(1 + u∗)2
zσ2∗ ) = tr J(e∗).

So, the local stability of E∗ and e∗ are the same.

From the Proposition 1, we can prove (see below) the system (10) is uniformly
persistent and dissipative.

Lemma 3.3. The system (10) is uniformly persistent in R2
+.

Proof. Let (u(t), z(t)) be the solution starting at A = (u∗,M∗ + 1) where M∗ =
[ (1+dδ)2

4sd ]σ and Γ be its orbit. Then since (x(t), y(t)) = (u(t)z
γ
σ (t), z

1
σ (t)) is a so-

lution of system (4) and Proposition 1, we have lim supt→∞ z(t) 6 M∗. Hence,
Γ ⊆ R+ × (0,M∗ + 1). The flow analysis gives that Γ must intersect the prey iso-
cline {(u, h(u)) | 0 < u < u∗}, let B be the first point that they intersect. Since e0

is a saddle point, there are two possibilities for Γ.

Case 1. Γ ∩ {(u∗, z) | z ∈ (0, h(u∗))} 6= ∅.
Let C = (u∗, z1) be the first point of Γ ∩ {(u∗, z) | z ∈ (0, h(u∗))}, D = (u, z1) be
the intersection of {(u, z1) | u > u∗} and z = h(u). Consider the bounded region Ω,
enclosed by Γ, CD, DE and EA where E = (u, M∗ + 1). Clearly, every trajectory
will enter and stay in Ω for all t sufficiently large.

Case 2. Γ ∩ {(u∗, z) | z ∈ (0, h(u∗))} = ∅.
This implies limt→∞(u(t), z(t)) = e∗. Let Ω be the bounded region enclosed by Γ
and e∗A. Since e1 (if exists) is a saddle point, thus every trajectory will either enter
Ω or tend to e∗ as t goes to ∞.

Hence, from the above discussion, we show that the system (10) is permanent.

Since every solution of system (4) takes the form (u(t)z
γ
σ (t), z

1
σ (t)), where (u(t), z(t))

is some solution of system (10). Thus, as a consequence of Lemma 3.3, we have the
following theorem for system (4).

Theorem 3.4. The system (4) is uniformly persistent in R2
+.

Remark 5. From Proposition 2, Theorem 3.4 and the Poincaré-Bendixson Theo-
rem, the system (4) has at least one limit cycle in R2

+, provided tr A(x∗, y∗) > 0.

4. Global stability results. As we have mentioned at the end of section 1, the
most biologically interesting cases for the system (4) are when γ = 1/2 or 2/3. We
thus will focus on the cases when γ ≥ 1/2 in this and next sections.

To study the global behavior of solutions for system (4), we need following lemma.
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Lemma 4.1. Let γ ∈ [ 12 , 1) and Γ(t) = (u(t), z(t)) be any periodic solution of sys-
tem (10) with period T > 0. Then

∫ T

0

tr(J(Γ(t)))dt = tr(J(e∗))T −
∫ ∫

Ω

P (u, z)dudz

where Ω is the bounded region enclosed by Γ. The function P is given as follow

P (u, z) =
(u∗q(z) + 2s)zσ1−1

σδ(u∗q(z) + s(1− d))
+

sd(1 + d)q′(z)
u(u∗q(z) + s(1− d))2

where q(z) =

{
zσ1 − zσ1∗

z − z∗ if z 6= z∗
σ1z

σ1−1
∗ if z = z∗

Proof: First, let us consider the following function:

q(z, θ) =

{
zθ − z∗θ
z − z∗ if z 6= z∗

θ(z∗)θ−1 if z = z∗

where θ > 0. Clearly, q(·, θ) is a positive, C1 function on [0,∞) and q(z, 1) = 1 for
z > 0. Moreover, q′(z, θ) > (<) 0 for z > 0 if θ > (<) 1.

Since γ ∈ [ 12 , 1), we have σ1 = γ
1−γ > σ2 = 1. Hence, q′(z) ≡ q′(z, σ1) > 0 for

z > 0. Let A = 1 + γδ(d− 1) and B = 1 + dγδ. From (10), we have

z′(t)
z(t)

= σδ(1− d)
u(t)− u∗
1 + u(t)

,

and
u′(t)
u(t)

=
Au(t) + B

1 + u(t)
− u(t)zσ1(t)− s

1 + u(t)
z(t)

=
Au(t) + B

1 + u(t)
− u(t)zσ1(t)− s

1 + u(t)
z(t)−

(
Au∗ + B

1 + u∗
− u∗zσ1∗ − s

1 + u∗
z∗

)

=
(B −A)(u∗ − u(t))
(1 + u∗)(1 + u(t))

− (u(t)− u∗)zσ1(t)− s(u∗ − u(t))
(1 + u∗)(1 + u(t))

z(t)

−(u∗(zσ1(t)− zσ1∗ ) + s(1− d)(z(t)− z∗))

=
(

σ1

z
− 1 + u

σδ(1− d)
zσ1−1 +

s

σδ

)
z′(t)− (z − z∗)(u∗q(z) + s(1− d)).

This gives

u(t)− u∗ =
1 + u(t)

σδ(1− d)
z′(t)
z(t)

(14)

and

z(t)− z∗ =
−1

u∗q(z) + s(1− d)
u′(t)
u(t)

+
σδσ1(1− d) + s(1− d)z − (1 + u)zσ1

σδ(1− d)(u∗q(z) + s(1− d))
z′(t)
z(t)

.

(15)
Observe that

tr(J(Γ(t))) =
ϕ′2(u)
ϕ2(u)

u′(t) + ϕ2(u)

((
g(u)
ϕ2(u)

)′
−

(
ϕ1(u)
ϕ2(u)

)′
zσ1

)

Γ(t)

+
z′(t)
z(t)
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and
∫ T

0

ϕ′2(u(t))
ϕ2(u(t))

u′(t)dt = 0,

∫ T

0

z′(t)
z(t)

dt = 0.

So, from (11), we have

∫ T

0

tr(J(Γ(t)))dt =
∫ T

0

ϕ2(u)

((
g(u)
ϕ2(u)

)′
−

(
ϕ1(u)
ϕ2(u)

)′
zσ1

)
dt (16)

=
∫ T

0

(
Au(t)

1 + u(t)
− u(t)(1 + 2u(t))

1 + u(t)
zσ1(t)

)
dt. (17)

Using the fact that d = u∗/(1 + u∗), we have

∫ T

0

tr(J(Γ(t)))dt− tr(J(e∗))T

=
∫ T

0

(
Au(t)

1 + u(t)
− u(t)(1 + 2u(t))

1 + u(t)
zσ1(t)

)
dt−

∫ T

0

(
Au∗

1 + u∗
− u∗(1 + 2u∗)

1 + u∗
zσ1∗

)
dt

=
∫ T

0

(
A

σδ

z′(t)
z(t)

− (1 + d + 2u(t))(u(t)− u∗)
1 + u(t)

zσ1(t)− (1 + d)u∗q(z(t))(z(t)− z∗)
)

dt.

Now from (10), (14) ∼ (17), we obtain

∫ T

0

tr(J(Γ(t)))dt− tr(J(e∗))T

= −
∫ T

0

1 + d + 2u(t)
σδ(1− d)

zσ1−1(t)z′(t)dt +
∫ T

0

(1 + d)u∗
q(z)

u∗q(z) + s(1− d)
u′(t)
u(t)

dt

−
∫ T

0

(1 + d)u∗
q(z)(σδσ1(1− d) + s(1− d)z − (1 + u)zσ1)

σδ(1− d)(u∗q(z) + s(1− d))
z′(t)
z(t)

dt

=
∫ T

0

(1 + d)u∗q(z)
u∗q(z) + s(1− d)

u′(t)
u(t)

dt

−
∫ T

0

(
1 + d + 2u

σδ(1− d)
zσ1 + (1 + d)u∗

q(z)(σδσ1(1− d) + s(1− d)z − (1 + u)zσ1)
σδ(1− d)(u∗q(z) + s(1− d))

)
z′(t)
z(t)

dt

≡
∮

Γ

M(u, z)du + N(u, z)dz,

where

M(u, z) =
(1 + d)u∗q(z)

u(u∗q(z) + s(1− d))

and

N(u, z) = −
(

1 + d + 2u

σδ(1− d)
zσ1 + (1 + d)u∗

q(z)(σδσ1(1− d) + s(1− d)z − (1 + u)zσ1)
σδ(1− d)(u∗q(z) + s(1− d))

)
1
z
.
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The Green’s Theorem implies that
∫ T

0

tr(J(Γ(t)))dt− tr(J(e∗))T =
∫ ∫

Ω

(
∂N

∂u
− ∂M

∂z

)
dudz

= −
∫ ∫

Ω

sd(1 + d)q′(z)
u(u∗q(z) + s(1− d))2

dudz

−
∫ ∫

Ω

(
2

σδ(1− d)
zσ1 − (1 + d)u∗q(z)zσ1

σδ(1− d)(u∗q(z) + s(1− d))

)
1
z
dudz

= −
∫ ∫

Ω

(
sd(1 + d)q′(z)

u(u∗q(z) + s(1− d))2
+

(u∗q(z) + 2s)zσ1−1

σδ(u∗q(z) + s(1− d))

)
dudz

= −
∫ ∫

Ω

P (u, z)dudz,

where Ω is the bounded region enclosed by Γ. This proves the lemma.

Lemma 4.2. Let γ ∈ [ 12 , 1). If e∗ is locally asymptotically stable, then the system
(10) has no nontrivial periodic orbit in R2

+.

Proof. Let Γ(t) = (x(t), y(t)) be any one nontrivial periodic orbit of system (10)
with period T > 0. It is sufficient to show that

∫ T

0

tr(J(x(t), y(t)))dt < 0. (18)

But (4.4) follows immediately form Lemma 4.1. Hence, the lemma holds.

Since the systems (4) and (10) have same numbers of periodic solutions in R2
+,

so we have the following theorem for system (4).

Theorem 4.3. For system (4), the local and global asymptotic stability of e∗ coin-
cide, provided γ ∈ [ 12 , 1).

Notice that the function q′(z, θ) < 0 if θ ∈ (0, 1). So, the Lemma 4.1 can not be
applied to the case γ ∈ (0, 1

2 ). In such case, we may construct a Lyapunov function
for system (10), if 1 + γδd − γδ 6 0. A global stability result for system (10) and
its consequence are given as follows.

Lemma 4.4. Let 1+γδd−γδ 6 0. Then the equilibrium e∗ is globally asymptotically
stable for system (10) in R2

+.

Proof. To show that e∗ is globally asymptotically stable in R2
+. Consider the fol-

lowing Lyapunov function

V (u, z) = z
− g(u∗)

ϕ2(u∗) exp
(

ϕ1(u∗)
ϕ2(u∗)

zσ1

σ1
+

zσ2

σ2
+ e

∫ u
u∗

ψ(ξ)
ϕ2(ξ) dξ

)

for (u, z) ∈ R2
+. The derivative of V along the solution of system (10) is

V̇ (u, z)
V (u, z)

=
(

g(u)
ϕ2(u)

− g(u∗)
ϕ2(u∗)

)
ψ(u)−

(
ϕ1(u)
ϕ2(u)

− ϕ1(u∗)
ϕ2(u∗)

)
ψ(u)zσ1

=
1
s
ψ(u)(u− u∗)(1 + γδd− γδ − (1 + u∗ + u)zσ1).

Clearly, 1 + γδd − γδ 6 0 implies V̇ (u, z) 6 0 for (u, z) ∈ R2
+. Hence, the lemma

follows from Lyapunov-LaSalle’s invariance principle (Hale (1980)).
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Theorem 4.5. Let 1 + γδd − γδ 6 0. Then the equilibrium E∗ is globally asymp-
totically stable for system (4) in R2

+.

5. Uniqueness of limit cycle for the case γ = 1/2.. The most interesting case
for system (4) is when γ = 1/2, which corresponds to the scenario of a terrestrial
predator-prey interaction where predators form groups (Cosner et al. 1999). In this
case, σ = γ = 1

2 , σ1 = σ2 = 1 and the system (10) is equivalent to the following
Gause type predator-prey system:

u′(t) = g(u)− (ϕ1(u) + ϕ2(u))z ≡ g(u)− ϕ(u)z,
z′(t) = ψ(u)z,
u(0) = u0 > 0, z(0) = z0 > 0

(19)

and

h(u) = g(u)
ϕ(u) = Au + B

u2 + u + s
, (20)

where A = 1 + γδ(d− 1), B = 1 + γδd. A straightforward computation yields

(u2 + u + s)2h′(u) = −Au2 − 2Bu + As−B ≡ l(u). (21)

Lemma 5.1. Let A 6= 0. Then

ϕ(u)h′(u) = −1 + γδ(1− d)
σδ(1− d)2A

ψ(u)h(u) +
l(u∗)u

(1 + u)(s + u + u2)

+
u− u∗
1 + u

C −Au−Au2

s + u + u2
.

where C = (1 + γδ(1− d))B
(1− d)A .

Proof. From (19), (20) and (21) we have

ϕ(u)h′(u) =
ul(u)

(1 + u)(s + u + u2)
,

ψ(u)h(u) = σδ(1− d)
u− u∗
1 + u

Au + B

s + u + u2
.

Since ul(u) = ul(u∗) + u(l(u)− l(u∗)) and

u(l(u)− l(u∗)) = u(u∗ − u)(A(u∗ + u) + 2B))
= (u∗ − u)(Au2 + (Au∗ + 2B)u)

= (u∗ − u)(Au2 + (1 + γδd +
1

1− d
)u)

= (u∗ − u)(Au2 + Au− (
1

1− d
+ γδ)

B

A
)

+(u∗ − u)(
1

1− d
+ γδ)(u +

B

A
).

The lemma follows immediately.

Lemma 5.2. If h′(u∗) > 0 then system (19) has at most one limit cycle in R2
+.

Moreover, if it exists, then it is a stable limit cycle.
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Proof. As a consequence of h′(u∗) > 0 and Lemma 3.1, we have A > 0 and C > 0.

Now, it is sufficient to show d
du (ϕ(u)h′(u)

ψ(u)h(u) ) < 0 for u ∈ R+−{u∗}. From Lemma 5.1,
we obtain
ϕ(u)h′(u)
ψ(u)h(u)

=
1

σδ(1− d)

(
−1 + γδ(1− d)

σδ(1− d)2A
+

u

u− u∗

l(u∗)
Au + B

+
C −A(u + u2)

Au + B

)

≡ 1
σδ(1− d)

(
−1 + γδ(1− d)

σδ(1− d)2A
+ l(u∗)q1(u) + q2(u)

)
.

Since l(u∗) > 0,

(u− u∗)2(Au + B)2q′1(u)
= (u− u∗)(Au + B)− u(Au + B + A(u− u∗))
= −Au2 − u∗B < 0,

and

(Au + B)2q′2(u)
= −A(1 + 2u)(Au + B)− (AC −A2(u + u2))
= −A2u2 − 2ABu−AB −AC < 0,

thus we have d
du (ϕ(u)h′(u)

ψ(u)h(u) ) < 0 for u ∈ R+ − {u∗}. Now according to Theorem 2.2
in Hwang (1999), the system (19) has at most one limit cycle and if it exists then
it is stable.

A parallel result for system (4) can be obtained easily from the fact that both
systems (10) and (4) has the same number of periodic solutions in R2. This is given
in the following theorem.

Theorem 5.3. Let γ = 1
2 . The system (4) has at most one limit cycle in R2,

provided trA(x∗, y∗) > 0. Moreover, if a limit cycle exists, then it is orbitally
asymptotically stable.

6. Discussion. To facilitate the discussion section, we summarize our findings into
the following table (Table 6.1).

Conditions Results
1. d > 1, γ ∈ (0, 1) E1 = (1, 0) is G. A. S.
2. d < 1, γ ∈ (0, 1), tr(A(x∗, y∗)) > 0 At least one limit cycle.
3. d < 1, γ ∈ [ 12 , 1), tr(A(x∗, y∗)) 6 0 E∗ = (x∗, y∗) is G. A. S.
4. d < 1, γ ∈ (0, 1), tr(A(x∗, y∗)) 6 0, E∗ = (x∗, y∗) is G. A. S.

1 + δd− δ 6 0
5. d < 1, γ = 1

2 , tr(A(x∗, y∗)) > 0 There is an unique limit cycle.

Table 1. Qualitative Behavior of Solutions of System (4). The
”G. A. S.” stands for ”globally asymptotically stable”.

Recall that s = c
a

1
K (K

m )
1
γ , δ = f

a , d = D
f . Since d > 1 is equivalent to D > f,

and from the first assertion in Table 6.1, we conclude that, if the growth ability of
predator (f) is no larger than its death rate (D), then the predators are doomed.
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Figure 1. Typical isoclines and dynamics of system (3) for d = 1
2

and γ = 1
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Figure 2. Typical isoclines and dynamics of system (3) for d = 1
2

and γ = 2
3 . In Figures 1 and 2, panels (a)-(c) show that the local

and global stability for the positive equilibrium of (3) coincide.
When the positive equilibrium of (3) is unstable, then a unique
limit cycle is observed (Figures 1(d), 2(d)).

In the following, we assume that D < f, i.e. 0 < d < 1. From Theorem
3.4, the system (4) or equivalently (3), is uniformly persistent. This means neither
predator nor prey can die out. Moreover, there is only one positive equilibrium and
the existence of limit cycles is guaranteed by Poincaré-Bendixson Theorem when
the system (3) possesses an unstable positive equilibrium. From (12), Lemmas
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3.1, 3.2, and Remark 4, we have, if u1 < (>) d
1−d = D

f−D then E∗ is locally
asymptotically stable (unstable). Since Remark 2 shows that u1 is an increasing,
unbounded function with respect to s (or equivalently, K). So, the stability of E∗
changes from stable to unstable as K increases. Notice that the equilibrium density
of both species are increasing if K increases.

The above discussion strongly supports that phenomena exhibited by systems
(1) and (3) are similar, although the smoothness of their vector fields are different.
(The vector field of (3) is not smooth at (0, 0).) It is quite nature to make the
following conjectures:

1. The local and global stability of the positive equilibrium of (3) coincide.

2. There is a unique limit cycle if the positive equilibrium of (3) is unstable.
Our findings (assertions 2 ∼ 5 in Table 6.1,) partially answer these conjectures.

However, significant improvements appear to be difficult.
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