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1. Introduction

The analysis of spectrum of a given function is im-
portant in the understanding of function behavior.
Spectral analysis decomposes a function into a

superposition of components, each with a special
spatial and/or temporal frequency. Such a decom-
position often reveals a certain pattern of the
frequency distribution. For example, the so-called
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“noise” is a function or process whose spec-
tral decomposition has prominent, irregularly
distributed high frequency components. Spectral
decomposition is a reversible process since by the
inverse transform or superposition we recover the
original function. Thus, no information is lost from
spectral decomposition. Superposition can be dis-
crete or continuous. When the domain (e.g. an
interval) is finite, the spectrum of a function usu-
ally quantizes and is discrete. The Fourier trans-
form or Fourier series expansion may be the most
basic method which constitutes the foundation of
all other spectral decomposition methods.

What kind of Fourier-spectral properties can
we expect to have for a chaotic phenomenon? This
is the topic we wish to address in this article. Here
we are talking about deterministic chaos, which is
an asymptotic time series represented by the iter-
ates of a so-called chaotic interval map accord-
ing to the definitions given in [Banks et al., 1992;
Block & Coppel, 1992; Devaney, 1989]. This topic
is of obvious interest to many researchers. For
instance, conducting a Google search by inputting
“Fourier series of chaos,” we obtain well over 1000
items. However, the greatest majority of such items
study “Fourier series” and “chaos” disjointly. The
rest of them are mostly on numerical simulation in
nature. Very few analytical results concerning the
Fourier spectrum of chaotic time series exist so far,
to the best of our knowledge.

Interval maps as mentioned in [Block & Cop-
pel, 1992; Devaney, 1989] above are advantageous
for doing a mathematical analysis as chaos gener-
ated by them is comparatively simple and is quite
well understood. There are various ways to char-
acterize this type of chaos: positivity of Lyapunov
exponents or that of topological entropy, existence
of homoclinic orbits or periodic points of specific
order, etc. Here, our main tool is the total varia-
tion of a function. It is known [Misiurewicz, 2004]
that the topological entropy of a given interval map
is positive (and, thus, the map is chaotic) if and
only if the total variations of iterates of the map
grow exponentially. This, together with certain fun-
damental properties of Fourier series related to the
total variation of a function, enables us to obtain
the desired interconnection between Fourier spec-
trum and chaos phenomena. Other properties ensue
from the usual Lp properties and the topological
conjugacy. Basically, this paper may be viewed as a
study of chaos for interval maps from an integration
point of view, versus, say the Lyapunov exponent

approach which is a differentiation approach. Nev-
ertheless, we must clarify that we are not trying to
determine the onset of chaos from the Fourier spec-
trum of the map f , which may constitute a futile
attempt as the occurrence of chaos is very sensitive
with respect to the profile of f and, therefore, will
also be very sensitive with respect to the Fourier
coefficients of f alone.

To be more precise and provide more heuris-
tics, let I = [0, 1] be the unit interval and f : I →
I be continuous (called an interval map). Denote
f©n = f ◦ f ◦ f ◦ · · · ◦ f : the nth iterative com-
position (or nth iterate) of f with itself. Then the
series f, f 2�, f 3�, . . . , f©n , . . . , constitutes the time
series we referred to in the above. Let us look at
the profiles of two different cases, the first of which
is nonchaotic and the second chaotic, as displayed
in Figs. 1 and 2.

Our main question in this paper is: Can we ana-
lytically capture the highly oscillatory behavior of
f©n for a chaotic map f through the Fourier series
of f©n when n grows very large?

The organization of this paper is as follows.
In Sec. 2, we provide a recap of prerequisite facts
regarding interval maps and Fourier series. In Sec. 3,
we offer three main theorems concerning Fourier
series and chaos. Miscellaneous examples as applica-
tions are given in Sec. 4. A brief summary concludes
the paper as in Sec. 5.

This paper is Part I of a series. In Part II,
we will discuss wavelet analysis of chaotic interval
maps.
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Fig. 1. The profile f
©100
µ on I , where fµ(x) = µx(1−x) is the

quadratic map (cf. Example 3.2), here with µ = 3.2, a case
known to be nonchaotic. Note the nearly piecewise constant
feature of the graph.
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Fig. 2. The profile of f
©100
µ on I , where fµ is again the

quadratic map, here with µ = 3.6, a case known to be chaotic.
Note that there are many oscillations in the graph, causing

the total variations of f©n
µ to grow exponentially with respect

to n and, thus, we call it the occurrence of chaotic oscillations
(or rapid fluctuations [Huang et al., 2006]).

2. Recapitulation of Facts About
Interval Maps and Fourier Series

This section recalls a brief summary of results
needed for subsequent sections. For interval maps
and chaos, we refer to the books by Devaney [1989]
and Robinson [1999]. For Fourier series, cf. Edwards
[1979].

The concept of topological entropy, introduced
first by Ader et al. [1965] and studied by Bowen
[1973, 1970, 1971] is a useful indicator for the com-
plexity of system behavior. Let X be a metric space
with metric d. For S ⊂ X, define

dn,f (x, y) = sup
0≤j<n

d(f j�(x), f j�(y)); x, y ∈ S.

We say that S is (n, ε)-separated for f if dn,f (x, y) >
ε for all x, y ∈ S, x �= y. We use r(n, ε, f) to denote
the largest cardinality of any (n, ε)-separated subset
S of X.

Definition 2.1. Let (X, d) be a metric space and
f : X → X be continuous. For any ε, the entropy
of f for a given ε is defined by

h(ε, f) = lim
n→∞

1
n

ln(r(n, ε, f)).

The topological entropy of f on X is defined by

h(f) = lim
ε↓0

h(ε, f).

Let X be a metric space and f : X → X be
continuous. The nonwandering set of f (see, e.g.

[Zhou, 1997, p. 6]) Ω(f) is an invariant subset of X.
We have the following.

Theorem 1 (Proposition 8, [Zhou, 1997]). Let f :
X → X be a continuous map on a compact metric
space X. Let Ω ⊂ X be the nonwandering set of f .
Then the topological entropy of f equals the entropy
of f restricted to Ω, h(f) = h(f |Ω).

Theorem 2. Let f : I → I be an interval map.
Then the following conditions are equivalent :

(1) f has a periodic point of period not being a
power of 2.

(2) f is strictly turbulent, i.e. there exist two com-
pact subintervals J and K of I with J ∩K = φ
and a positive integer k such that

f k�(J) ∩ f k�(K) ⊃ J ∪ K.

(3) f has positive topological entropy.
(4) f has a homoclinic point.
(5) f is chaotic in the sense of Li–Yorke on the

nonwandering set Ω(f) of f . i.e. there exists
an uncountable set S contained in Ω(f) such
that
(a) lim supn→∞ d(f©n (x), f©n (y)) > 0 ∀x, y,

x �= y,∈ S.
(b) lim infn→∞ d(f©n (x), f©n (y)) = 0 ∀x,

y,∈ S.

Let f : I → I be a chaotic interval map.
Then for many examples, the graphs of the iter-
ates f©n = f ◦ f ◦ · · · ◦ f (n times), n = 1, 2, 3, . . . ,
exhibit very oscillatory behavior. The more so when
n grows. A useful way to quantify the oscillatory
behavior is through the use of total variations (cf.
[Chen et al., 2004, p. 2164]). For any function f
defined on I, we let VI(f) denote the total varia-
tion of f on I. If VI(f) is finite, we say that f is a
function of bounded variation.

We define the following function spaces:

BV (I, I): the set of all functions of bounded varia-
tion mapping from I to I;

W k,p(I) =


f ∈ D′(I) | ‖f‖k,p

=


 k∑

j=0

∫
I
|f (j)(x)|pdx




1/p

< ∞


,

for k = 0, 1, 2, . . . , 1 ≤ p ≤ ∞, where D′(I) is the
space of distributions on I and f (k) is the kth order
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distributional derivative of f . The case p = ∞ is
interpreted in the sense of supremum a.e.
F1: the set of all functions f ∈ C0(I, I) such that
f©n ∈ BV (I, I) for n ∈ N

F2: the set of all functions f ∈ C0(I, I) such that
f has finitely many extremal points.

It is clear that F2 ⊂ F1 and W 1,∞(I, I) ⊂ F1.

Theorem 3 [Misiurewicz & Szlenk, 1980]. Let f ∈
F1. If f satisfies any conditions in (1)–(5) in The-
orem 2, then

lim
n→∞

1
n

ln(VI(f©n )) > 0, (1)

i.e. VI(f©n ) grows exponentially with respect to n.
The converse is also true provided that f ∈ F2.
Indeed, for f ∈ F2, we have

h(f) = lim
n→∞

1
n

ln(VI(f©n )).

The above is an outstanding theorem giving
the connections between chaos, topological entropy
and the exponential growth of total variations of
iterates.

Let f ∈ C0(I, I). The map f is called topolog-
ically mixing if, for every pair of nonempty open
sets U and V of I, there exists a positive inte-
ger N such that f©n (U) ∩ V �= φ for all n > N .
And f is said to have sensitive dependence on ini-
tial condition on a subinterval J ⊂ I if there exists
a δ > 0, called a sensitive constant, such that for
every x ∈ J and every open set U containing x,
there exist a point y ∈ U and a positive integer n
such that |f©n (x) − f©n (y)| > δ.

Theorem 4 [Chen et al., 2004; Huang et al., 2005].
Assume that f ∈ F1. Then

(1) If f is topologically mixing, then VJ(f©n ) grows
exponentially as n → ∞ for any subinterval
J ⊂ I;

(2) If f has sensitive dependence on initial data,
then VJ(f©n ) grows unbounded as n → ∞ for
any subinterval J ⊂ I. The converse is also
true provided that f ∈ F2.

(3) If f ∈ F2 and has sensitive dependence on ini-
tial data, then VI(f©n ) grows exponentially as
n → ∞;

(4) If f has a periodic point of period four, then
VI(f©n ) grows unbounded as n → ∞.

From Theorems 3 and 4, we know that the
growth rates of the total variation of f©n is strongly

related to the dynamical complexity of f . The faster
the total variations VI(f©n ) grow, the more fluctu-
ations the graphs of f©n have. This motivates us to
define the following.

Definition 2.2. Let f ∈ F1. The map f is said
to have chaotic oscillations (or rapid fluctuation
[Huang et al., 2006]) if VI(f©n ) grows exponentially
with respect to n, i.e. (1) holds.

Obviously, if f ∈ F2 has chaotic oscillations,
then from Theorem 3 it follows that h(f) > 0.
Thus f is chaos in the sense of both Li–Yorke
and Devaney [Li, 1993] and so f satisfies the def-
inition of chaos given in [Block & Coppel, 1992;
Devaney, 1989].

Next, we recall some results about Fourier
series. Let f ∈ L1(I). Denote

ck =
∫ 1

0
e−2πikxf(x)dx, k ∈ Z. (2)

The Fourier series of f is defined to be

S(f)(ξ) =
∞∑

k=−∞
cke

2πikξ, ξ ∈ R. (3)

The following is known to be true.

Theorem 5. Let f ∈ L1(I) and let ck be defined by
(2). Then

(1) lim|k|→∞ ck = 0, (the Riemann–Lebesgue
Lemma).

(2) If f is differentiable at ξ0, then S(f)(ξ0) =
f(ξ0) in the sense that

lim
M,N→∞

N∑
k=−M

cke
2πikξ0 = f(ξ0),

(Dirichlet’s Theorem).

(3) If f ∈ F1, then

2π|kck| ≤ 1 + VI(f), k ∈ Z.

Proof. Here we only need to prove (3).
If k = 0, (3) holds obviously. Assume k �= 0,

then by (2), we have

ck =
∫ 1

0
f(t)d

[
e−i2πkt

−i2πk

]
.

Set

g(t) =
e−i2πkt

−i2πk
.
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From the definition of an integral, for any given
ε > 0, there exists a sufficiently fine partition 0 =
t0 < t1 < · · · < tm = 1 of the interval [0, 1], such
that ∣∣∣∣∣ck −

m∑
k=1

f(tk)[g(tk) − g(tk−1)]

∣∣∣∣∣ < ε.

Denoting by
∑

the sum appearing within the abso-
lute value signs above, and applying partial sum-
mation, we obtain∑

= f(1)g(1) − f(t1)g(0)

−
m−1∑
k=1

[f(tk+1) − f(tk)]g(tk).

Thus,

ck < ε + |f(1) − f(t1)||g(0)|

+
m−1∑
k=1

|f(tk+1) − f(tk)||g(tk)|

≤ ε +
1

2π|k| +
1
2π

V (f)
1
|k| ,

since f(x) ∈ [0, 1], ∀x ∈ [0, 1], g(1) = g(0) =
1/(−i2πk) and |g(t)| ≤ 1/(2π|k|). Letting ε → 0,
we have obtained the desired result. �

3. Main Theorems on the Fourier
Spectrum of Chaotic Time Series

Let f ∈ F1 and f©n be the nth iterates of f . Denote

cn
k (f) =

∫ 1

0
e−2πikxf©n (x)dx. (4)

These numbers cn
k(f) contain the complex magni-

tude and phase information of the Fourier spectrum
of the time series f©n , n = 1, 2, 3, . . . . Extensive
numerical simulations by using the fast Fourier
transforms were performed by Roque-Sol [2006];
see the good collection of graphics therein. Those
graphics manifest a basic pattern that when f is
a chaotic interval map, |cn

k (f)| have spikes when n
and k are somehow related, as n and k both grow
large.

Nevertheless, those numerical simulations do
not offer concrete analytical results, as aliasing
effect significantly degrades numerical accuracy
when the frequency (k in (4)) is high, in any Fourier
transforms. Also, Fourier components can only be

computed up to, say k = O(106), on a laptop, with
uncertain accuracies.

Therefore, mathematical analysis is impera-
tive in order to determine the spectral relation cn

k
between n and k.

Definition 3.1. Let φ : N ∪ {0} → N ∪ {0}. We say
that φ grows exponentially if

lim
n→∞

1
n

ln |φ(n)| ≥ α > 0, for some α.

Main Theorem 1. Let f ∈ F1, and φ : N ∪ {0} →
N ∪ {0} be an integer-valued function growing
exponentially, such that

lim
n→∞

1
n

ln[|φ(n)cn
±φ(n)(f)|] > 0.

Then

lim
n→∞

1
n

ln[VI(f©n )] ≥ α′ > 0, for some α′ > 0.

Consequently, f has chaotic oscillations.

Proof. Since f ∈ F1, f©n has bounded variation for
any positive integer n. Applying Theorem 5(3) to
f©n , we have

2π|kcn
k (f)| ≤ |f©n (1) − f©n (0)| + VI(f©n ),

∀ k = ±1,±2, . . . .

Now, let |k| = φ(n). Then, noting that |f©n (1) −
f©n (0)| ≤ 2, we have

2 + VI(f©n ) ≥ 2π|φ(n)cn
φ(n)(f)|,

implying

lim
n→∞

1
n

ln[VI(f©n )] ≥ lim
n→∞

1
n

ln[|φ(n)cn
φ(n)(f)|]

= α′ > 0, for some α′.

(Here, without loss of generality, we assume that f
is onto. Thus {VI(f©n )} is increasing and the limit of
(1/n) ln[VI(f©n ) exists as n tends to infinite.) There-
fore the proof is complete. �

Remark 3.1

(1) If f ∈ F2 satisfies the assumptions in Main
Theorem 1, then f has positive entropy by
Theorem 3.

(2) The assumptions in Main Theorem 1 are not
necessary conditions for f to have chaotic
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oscillations. For instance, consider the map

f(x) =




3x if 0 ≤ x <
1
3
,

1 if
1
3
≤ x <

2
3
,

−3(x − 1) if
2
3
≤ x ≤ 1.

Then f ∈ F1. A simple computation shows that

V[0,1](f
©n ) = 2n.

So f has chaotic oscillations. But the corre-
sponding Fourier coefficient cn

k (f) satisfies

|cn
k (f)| ≤

∫
I
|f©n (x)|dx ≤

(
2
3

)n−1

→ 0,

as n → ∞.

As an application of Main Theorem 1, we con-
sider the tent map Tm(x) defined by

Tm(x) =




mx, 0 ≤ x <
1
m

,

m

1 − m
(x − 1),

1
m

≤ x ≤ 1.

(5)

Here, choose m = 2 so we have a full tent map
T2(x), symmetric with respect to x = 1/2. We have
the following.

Theorem 6. For the (full) tent map T2(x) (with
m = 2 in (5)), we have the Fourier coefficients
cn
k(T2) given by

cn
k(T2) =



− 1

π2s2
, if k = s2n−1, s = 1, 3, 5 . . . ,

0, otherwise.

Proof. See Appendix A. �

Example 3.1. For the full tent map T2(x), if we
choose

|k| = |s|2n−1 ≡ φ(n), s = 1, 3, 5 . . . ,

then by Theorem 6, we have

lim
n→∞

1
n

ln[|φ(n)cn
±φ(n)(T2)|] = lim

n→∞
1
n

ln
[
s2n−1 1

π2s2

]

= lim
n→∞

1
n

ln(2n−1)

= ln(2) > 0.

Thus, Main Theorem 1 applies, and T2(x) has
chaotic oscillations.

Remark 3.2. From the proof of our Main Theorem 1,
we have

lim
n→∞

1
n

ln[V1(f©n )] ≥ lim
n→∞

1
n

ln[|φ(n)cn
φ(n)(f)|].

(6)

On the other hand, for the full tent map T2(x), we
have from Example 3.1

lim
n→∞

1
n

ln[VI(T
©n
2 )]

= lim
n→∞

1
n

ln[|φ(n)cn
φ(n)(T2)|] = ln 2.

Thus inequality (6) is quite tight.

The following corollary follows easily from Main
Theorem 1.

Corollary 3.1. Under the assumption that f ∈ F1

and that φ : N∪{0} → N∪{0} grows exponentially,
and

|cn
±φ(n)(f)| ≥ β > 0 for n sufficiently large,

we have

lim
n→∞

1
n

ln[VI(f©n )] ≥ α′ > 0 for some α′.

Corollary 3.2. Let f ∈ F1. If VI(f©n ) remains
bounded with respect to n, then

lim
k→∞

|cn
k(f)| = 0, (7)

uniformly for n.

Proof. It follows from (3) in Theorem 5. �

We know from (2) in Theorem 4 that f is not
chaotic in the sense of Devaney if f ∈ F2 and
VI(f©n ) remains bounded with respect to n.

Nevertheless, (7) is weaker than the condition

lim
(n,k)→∞

|cn
k (f)| = 0. (8)

In fact, the boundedness of VI(f©n ) with respect to
n does not imply (8) in general. For instance, f(x) =
x, x ∈ [0, 1] = I, then f©n = f and VI(f©n ) = 1 for
any n ∈ N, but cn

k(f) = c1
k(f) �= 0, so (8) is violated.

Example 3.2. For the quadratic map fµ ≡ µx(1 −
x), x ∈ I, when 1 ≤ µ ≤ 3, we can prove by
the similar approach in the proof of Lemma 2.3 in
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[Huang, 2003] that VI(f
©n
µ ) remains bounded for all

n ∈ N. Thus, Corollary 3.2 applies.

A somewhat generalized version of Main
Theorem 1 may be given as follows.

Theorem 7. Let f ∈ F1 and there exists a function
φ : N → N such that

lim
n→∞

1
n

ln[φ(n)] ≡ α > 0.

If

lim
n→∞

1
n

ln

[
(φ(n))

∑
k∈Z

|cn
k(f)|2 sin2

(
kπ

2φ(n)

)]
> 0,

(9)

then

lim
n→∞

1
n

ln[VI(f©n )] = α′ > 0 for some α′. (10)

In particular, if∑
k∈Z

|cn
k(f)|2 sin2

(
kπ

2φ(n)

)
> 1,

then (9) holds and so does (10).

The proof of this theorem can be obtained
from the following lemma by setting r = φ(n) and
g = f©n therein.

Lemma 1 (Exercise 8.13, [Edwards, 1979]). Sup-
pose g ∈ L2(I). Then

8r
∑
k∈Z

|c1
k(g)|2 sin2

(
kπ

2r

)
≤ Ω∞g

(π

r

)
VI(g),

for any positive number r, where

Ω∞g(a) = sup
0≤δ≤a

‖Tδ(g)−g‖C0 , (Tδg)(x) ≡ g(x−δ),

and g is extended outside I by periodic extension.

In most cases, it is quite impossible to calcu-
late the Fourier coefficients explicitly for f©n for a
general interval map f . In the following, we derive
a sufficient condition so that we do not need to
compute the Fourier coefficients directly. Instead,
we need some conditions on the derivative of
the map.

Main Theorem 2. Let f ∈ W 1,∞(I, I) satisfy

|f ′|L∞(I) = γ > 0.

If

lim
n→∞

1
n

ln

[∑
k∈Z

|kcn
k (f)|2

]
− ln γ > 0, (11)

then f has chaotic oscillations. Furthermore, if
f ∈ F2, then f has positive topological entropy and
consequently, f is chaotic in the sense of Li–Yorke.

Proof. We have

2π

(∑
k∈Z

|kcn
k (f)|2

)1/2

=
[∫

I
|f©n ′

(x)|2dx

]1/2

,

where “prime” denotes the weak derivative of a
given function. If |f ′|L∞(I) = γ, then we have

f©n ′
(x) = f ′(fn−1(x))f ′(fn−2(x)) · · · f ′(f(x))f ′(x)

a.e. on I, and thus

|f©n ′
(x)| ≤ γn a.e. on I.

We combine the above and now obtain

2π

(∑
k∈Z

|kcn
k (f)|2

)1/2

=
[∫

I
|f©n ′

(x)||f©n ′
(x)|dx

]1/2

≤
[∫

I
γn|f©n ′

(x)|dx

]1/2

≤ γn/2

[∫
I
|f©n ′

(x)|dx

]1/2

≤ γn/2[VI(f©n )]1/2.

Then

1
n

ln

[∑
k∈Z

|kcn
k (f)|2

]
≤ 1

n
ln

[(
1
2π

)2

γnVI(f©n )

]

≤ ln(γ) +
1
n

ln[VI(f©n )]

− 2
n

ln(2π),

where the last term vanishes as n → ∞. By assump-
tion, we obtain

lim
n→∞

1
n

ln[VI(f©n )] ≥ lim
n→∞

1
n

ln

[∑
k∈Z

|kcn
k (f)|2

]

− ln(γ) > 0.

Therefore f has chaotic oscillations.
The second part of the theorem follows from

Theorem 3. �
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Example 3.3. It follows from the proof of Main
Theorem 2 that condition (11) is equivalent to

lim
n→∞

1
n

ln
[∫

I
|f©n ′

(x)|2dx

]
− ln(γ) > 0.

We consider the tent map Tm(x) as given in (5)
with 1 < m ≤ 2. It is easy to see that VI(T

©n
m ) = 2n

for any m ∈ (1, 2]. Now we prove that the tent map
Tm(x) satisfies the assumptions in Main Theorem 2.
We have ∫

I
|T©n ′

m (x)|2dx =
(

m2

m − 1

)n

. (12)

(See Appendix B for the proof.)
For γ, we have

γ = |T ′|L∞(I) = max
(

m,
m

m − 1

)
=

m

m − 1
,

since 1 < m ≤ 2. Therefore

lim
n→∞

1
n

ln

[∑
k∈Z

|kc1
k(Tm)|2

]
− ln(γ)

= lim
n→∞

1
n

ln
∫ 1

0
|T©n ′

m (x)|2dx − ln(γ)

= [2 ln(m) − ln(m − 1)] − [ln(m) − ln(m − 1)]

= ln(m) > 0, ∀ 1 < m ≤ 2.

Example 3.4. Another example is to consider the
triangular map Hq(x) defined by

Hq(x) =




qx if 0 ≤ x <
1
2
,

q(1 − x) if
1
2
≤ x ≤ 1,

where 0 < q ≤ 2. Figure 3 shows the graph of Hq(x)
with 1 < q ≤ 2.

In this case, coefficients cn
k(Hq) are extremely

hard to evaluate. But since γ = |H ′
q|L∞ = q, we

have

1
n

ln

[∑
k∈Z

|kcn
k (f)|2

]
− ln(γ)

=
1
n

ln

[∑
k∈Z

|kcn
k (f)|2

]
− ln(q)

=
1
n

ln
[∫

I
|T©n ′

(x)|2dx

]
− ln(q)

Fig. 3. The graph of the triangular map Hq(x).

=
1
n

ln(q2n) − ln(q)

= 2 ln(q) − ln(q) = ln(q) > 0.

Thus the Triangular map Hq(x) has positive
entropy when 1 < q ≤ 2 by applying Main
Theorem 2.

What we have given so far in this section are
sufficient conditions for chaos. But for a given
function f ∈ W 1,∞(I, I), there are some relations
between VI(f) and ‖f‖W 1,∞(I,I), which will allow us
to state some necessary conditions.

Proposition 1. Let f ∈ W 1,∞(I, I). Then

VI(f©n ) ≤ 2π

[∑
k∈Z

|kcn
k (f)|2

] 1
2

.

Proof. Let f ∈ W 1,∞(I, I) with the following
Fourier series expansion

f(x) =
∑
k∈Z

c1
k(f)ei2πkx, x ∈ I = [0, 1].

Then

VI(f) =
∫ 1

0
|f ′(x)|dx

≤
(∫ 1

0
dx

)1/2(∫ 1

0
|f ′(x)|2dx

)1/2
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=
(∫ 1

0
dx

)1/2

×
(∫ 1

0
|2iπ

∑
k∈Z

kc1
k(f)ei2πkx|2dx

)1/2

≤ 2π

(∑
k∈Z

|kc1
k(f)ei2πkx|2

)1/2

= 2π

(∑
k∈Z

|kc1
k(f)|2

)1/2

.

Consequently, for the case of the nth iterates f©n of
f , it follows that

VI(f©n ) ≤ 2π

(∑
k∈Z

|kcn
k (f)|2

)1/2

. �

Now, let us see how the Fourier coefficients of
f©n and f©n ′

behave when f has chaotic oscillations.

Main Theorem 3

(1) If f ∈ W 1,∞(I, I) and f has chaotic
oscillations, then

lim
n→∞

1
n

ln

[∑
k∈Z

|kcn
k (f)|2

]
> 0.

(2) If f ∈ F2 ∩ W 1,∞(I) and has positive entropy,
then

lim
n→∞

1
n

ln

[∑
k∈Z

|kcn
k (f)|2

]
> 0.

Proof. For (1), since f ∈ W 1,∞(I, I) and
W 1,∞(I, I) ⊂ F1, for any positive n, f©n has
bounded total variation. Assume that f has chaotic
oscillations. Then

1
n

ln[VI(f©n )] ≥ α > 0,

for some α. By Proposition 1, we have

2π

(∑
k∈Z

|kcn
k (f)|2

)1/2

≥ VI(f©n ).

Thus

lim
n→∞

1
n

ln

[∑
k∈Z

|kcn
k(f)|2

]

= 2 lim
n→∞

1
n

ln


2π

(∑
k∈Z

|kcn
k (f)|2

)1/2



≥ 2 lim
n→∞

1
n

ln[VI(f©n )]

= 2α > 0.

(2) follows from (1) and Theorem 3. �

We now consider the effects of topological con-
jugacy. Let f : I → I, g : J → J be continuous
maps on compact intervals. We say f is topolog-
ically conjugate to g if there exists a homeomor-
phism h : I → J such that

hf = gh. (13)

Furthermore, if there exists a bi-Lipschitz h : I → J
such that (13) holds, then we say f is Lipschitz con-
jugate to g. Without loss of generality, we assume
J = I.

Recall that h : I → J is said to be bi-Lipschitz
if both h and its inverse h−1 are Lipschitz maps.
Thus f is topologically conjugate to g if they are
Lipschitz conjugate to each other.

Since topological entropy is an invariant of
topological conjugacy, we have the following.

Theorem 8. Let f : I → I and g : I → I belong to
F2. If f is topologically conjugate to g, then

lim
n→∞

1
n

ln[VI(f©n )] = lim
n→∞

1
n

ln[VI(g©n )],

in particular, f has chaotic oscillations iff g does.

Proof. It follows from Theorem 3. �

Theorem 9. Let f : I → I and g : I → I belong to
F1. If f is Lipschitz conjugate to g, then

lim
n→∞

1
n

ln[VI(f©n )] = lim
n→∞

1
n

ln[VI(g©n )],

in particular, f has chaotic oscillations iff g does.

Proof. The bi-Lipschitz property of h implies that
h is strictly monotone. Assume that h is strictly
increasing. (If it is strictly decreasing, the proof is
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the same.) Thus, for any partition x1 < x2 < · · · <
xn on I, h(x1) < h(x2) < · · · < h(xn) is also a
partition on I. So, we have

n−1∑
i=0

|f(xi+1) − f(xi)|

=
n−1∑
i=0

|h−1(g(h(xi+1))) − h−1(g(h(xi)))|

≤ |h−1|Lip

n−1∑
i=0

|g(h(xi+1)) − g(h(xi))|

≤ |h−1|LipVI(g),

where |h−1|Lip is a Lipschitz constant of h−1.
Therefore,

VI(f) ≤ |h−1|LipVI(g).

By the same reasoning, we get

VI(f©n ) ≤ |h−1|LipVI(g©n ),

for any positive integer n. Thus

lim
n→∞

1
n

ln[VI(f©n )] ≤ lim
n→∞

1
n

ln[VI(g©n )].

Since g©n is also Lipschitz conjugate to f©n for any
positive integer n, by the same argument, we have

lim
n→∞

1
n

ln[VI(g©n )] ≤ lim
n→∞

1
n

ln[VI(f©n )].

The proof is complete. �

Example 3.5. The quadratic map f4(x) = 4x(1 −
x), where we choose µ = 4 in fµ (cf. Example 3.2)
is known to be topologically conjugate to the full
tent map T2 (cf. Theorem 6):

f4 = h ◦ T2 ◦ h−1,

where

h(x) = sin2
(πx

2

)
,

h−1(y) =
2
π

sin−1 √y; x, y ∈ [0, 1].

We have

h′(x) = π sin
πx

2
cos

πx

2
=

π

2
sin(πx) ∈ L∞(I),

(h−1)′(y) =
1
π

1√
y

1√
1 − y

∈ L2−δ(I),

for any δ > 0.

Because (h−1)′ is not in L∞(I), we see that f4 and
T2 are not Lipschitz conjugate to each other. There-
fore, Theorem 9 is not applicable. Nevertheless, we
have f4, T2 ∈ F2, so Theorem 8 is applicable, and
we obtain

lim
n→∞

1
n

ln VI(f
©n
4 ) = lim

n→∞ ln VI(T
©n
2 ).

Since

VI(T
©n
2 ) = 2n,

we have

lim
n→∞

1
n

VI(f
©n
4 ) = lim

n→∞
1
n

VI(T
©n
2 ) = ln 2 > 0.

Example 3.6. The preceding Example 3.5 gives
support to the importance of the assumption that
f, g ∈ F2 in order for Theorem 8 to hold. Here we
give an example that if f /∈ F2, then it is possible
to find a continuous function g : I → I such that f
and g are topologically conjugate: h ◦ f ◦ h−1 = g,
and

lim
n→∞

1
n

ln[VI(f©n )] > 0, but lim
n→∞ ln[VI(g©n )] = 0.

We define f to be a piecewise linear, continuous
function on I satisfying


f

(
1

22k

)
=

1
22k

, k = 0, 1, 2, . . .

f

(
1

22k+1

)
= 0, k = 0, 1, 2, . . . , f(0) = 0.

(14)

For this F , it is straightforward to verify the follow-
ing properties:

(i) f

(
1
4
x

)
=

1
4
f(x), for all x ∈ [0, 1]; (15)

(ii) f©n
(

1
4
x

)
=

1
4
f©n (x), for n = 1, 2, . . . ,

for all x ∈ [0, 1];
(16)

(iii) for any k = 1, 2, . . . ,

V[0, 1

4k ](f
©n ) =

1
4
V[0, 1

4k−1 ](f
©n )

= · · · =
1
4k

V[0,1](f
©n ). (17)
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Indeed, (ii) follows from (i) and (iii) follows from
(ii). Thus, we have

V[0,1](f
©n ) =

∞∑
k=0

V[ 1

2k+1 , 1

2k ](f
©n )

= VI(f©n−1
) + 2

∞∑
k=1

V[0, 1

4k ](f
©n−1

)

= VI(f©n−1
) + 2

∞∑
k=1

1
4k

VI(f©n−1
)

=

[
1 + 2

∞∑
k=1

1
4k

]
VI(f©n−1

)

=
5
3
VI(f©n−1

).

Therefore VI(f©n ) = (5/3)n, and

lim
n→∞

1
n

ln VI(f©n ) = ln
(

5
3

)
> 0.

We next set out to construct a strictly increas-
ing map h ∈ C∞(I, I) satisfying

h(0) = 0, h(1) = 1, and
1
n

ln VI(h ◦ f©n ) = 0.

We need to determine the number of the local max-
ima of f©n . For j = 1, 2, . . ., define

aj,n = the number of points at which f©n takes

the local maximal value
1

22j
=

1
4j

.

Then we have

a1,n = n;

a2,n = a1,n + 2(a1,1 + a1,2 + · · · + a1,n−1); (18)

= n + 2[1 + 2 + · · · + (n − 1)] = n2.

By induction, for j > 1, we have

aj+1,n = aj,n + 2
n−1∑
k=1

aj,k.

Thus,

VI(f©n ) = 1 + 2
(a1,n

4
+

a2,n

42
+ · · · + aj,n

4j
+ · · ·

)
.

We now show that

aj,n ≤ nj .

This is true for j = 1 by (18). Assume that

aj,k ≤ kj for j = 1, 2, . . . , n.

Then

aj+1,n = aj,n + 2
n−1∑
k=1

aj,k

≤ ni + 2[1 + 2j + · · · + (n − 1)j ]

≤ nj+1.

So induction is complete.
We define h : I → I by

h(0) = 0, h

(
1
4 j

)
=

1
4 j2+j

, j = 0, 1, 2, . . . ,

and require that h be C∞ and strictly increasing.
Thus, we have

VI(h ◦ f©n ) = 1 + 2
(

a1,n

41+1
+

a2,n

422+2

+ · · · +
aj,n

4 j2+j
+ · · ·

)

≤ 1 + 2
∞∑

j=1

( n

4 j

)
· 1
4 j

≤ 1 + 2
[ ln n
ln 4 ]+1∑
j=1

( n

4 j

)j
+ 2

∞∑
j=1

1
4 j

≤ 3 + 2
[ ln n
ln 4 ]+1∑
j=1

(
n

4

)j

= 1 + 2


1 −

(n

4

)[ ln n
ln 4 ]+1

1 −
(

n

4

)



≤ 3 ·
(

n

4

)[ ln n
ln 4 ]+1

, for large n.

Hence

1
n

ln VI(h ◦ f©n ) ≤
ln 3 +

([
ln n

ln 4

]
+ 1
)

ln
(

n

4

)
n

→ 0

(19)

as n → ∞.
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We define

g =h ◦ f ◦h−1, i.e. g is topologically conjugate to f.

Since h−1 is strictly increasing, we have

VI(g©n ) = VI(h ◦ f©n ◦ h−1) = VI(h ◦ f©n ).

By (19), we have

lim
n→∞

1
n

lnVI(g©n ) = lim
h→∞

1
n

VI(h ◦ f©n ) = 0.

4. Miscellaneous Consequences

We offer some examples as additional applications
of the theory in Sec. 3.

Example 4.1 (Application to PDEs). Here, we
show an application to the case of chaotic oscil-
lations of the wave equation with a van der Pol
nonlinear boundary conditions, as studied by Chen
et al. [1998b], Huang [2003] and Huang et al. [2005].
Consider the wave equation

wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > 0, (20)

with a nonlinear self-excitation (i.e. van der Pol)
boundary condition at the right end x = 1:

wx(1, t) = αwt(1, t)−βw3
t (1, t), 0 ≤ α ≤ 1, β > 0,

and a linear boundary condition at the left end
x = 0:

wt(0, t) = −ηwx(0, t), η > 0, η �= 1, t > 0.

The remaining two conditions we require are the
initial conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ [0, 1].

Then using Riemann invariants

u =
1
2
(wx + wt),

v =
1
2
(wx − wt),

the above becomes a first order hyperbolic system

∂

∂t

(
u(x, t)
v(x, t)

)
=
(

1 0
0 −1

)
∂

∂x

(
u(x, t)
v(x, t)

)
,

where at the boundary x = 0 and x = 1, the reflec-
tion relations take place

v(0, t) =
1 + η

1 − η
u(0, t) ≡ G(u(0, t)),

u(1, t) = F (v(1, t)),

where F (x) ≡ x + g(x) and g(x) is the unique solu-
tion to the cubic equation

βg3(x) + (1 − α)g(x) + 2x = 0, x ∈ R.

Solutions wx(x, t), wt(x, t) of the wave equation dis-
play chaotic oscillatory behavior if G ◦F or equiva-
lently F ◦G is a chaotic interval map, when α, β, η
lie in a certain region. We therefore deduce the fol-
lowing. Assume that for given α, β, η : 0 < α ≤
1, β > 0 and η > 0, η �= 1, the map G ◦ F is chaotic
and that the initial conditions w0(·) and w1(·) sat-
isfy w0, w1 ∈ F2, and

w0 ∈ C2([0, 1]), w1 ∈ C2([0, 1]),

and that compatibility conditions

w1(0) = −ηw′
0(0),

w′
0(1) = αw1(1)βw3

1(1),

w′′
0(0) = −ηw′

1(0),

w′
1(0) = [α − 3βw2

1(1)]w
′′
0 (1),

are satisfied. Then there exist A1 > 0, A2 > 0 such
that if

|w′
0|C0(I), |w1|C0(I) ≤ A1 w′

0 �= 0 or w1 �= 0,

then

|wx|C0(I), |wt|C0(I) ≤ A2.

In addition, we require that u(x, 0) and v(x, 0)
take values in the “strange attractors” of G ◦ F .
Since G ◦ F and F ◦ G are chaotic, VI(u(·, t))
and VI(v(·, t)) grow exponentially with respect to
t. Therefore, VI(wx(·, t)) and VI(wt(·, t)) also grow
exponentially with respect to t. Since

∫ 1

0
|wxx(x, t)|dx = VI(wx(·, t)),

∫ 1

0
|wxt(x, t)|dx = VI(wt(·, t)),

and

[∫ 1

0
|wxx(x, t)|2dx

]1/2

≥
∫ 1

0
|wxx(x, t)|dx,

[∫ 1

0
|wxt(x, t)|2dx

]1/2

≥
∫ 1

0
|wxt(x, t)|dx,
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we obtain the following exponential growth results
(stated in logarithmic form)

lim
n→∞

1
n

ln
[∫ 1

0
(|wxx(x, n + t0)|

+ |wxt(x, n + t0)|)dx

]
> 0,

lim
n→∞

1
n

ln
[∫ 1

0
(|wxx(x, n + t0)|2

+ |wxt(x, n + t0)|2)dx

]
> 0,

for any t0 > 0.
The above exponential growth results for a large

class of initial states are in strong contrast to the
traditional “well-posedness” results where uniform
exponential boundedness in time (with reference to
initial conditions) are established. Note that these
estimates have not been obtainable by any other
methods (such as the energy multiplier method).

The chaotic behavior of the wave equation (20)
with other boundary conditions have been also con-
sidered by Chen et al. [1998a, 1998c].

Example 4.2 (Entropy and Hausdorff dimension).
Let X be a nonempty compact metric space and
f : X → X a Lipschitz continuous map with Lips-
chitz constant L, that is, ∀x, y ∈ X, f satisfies

d(f(x), f(y))

≤ Ld(x, y), where d is the metric of X.

The topological entropy h(f, Y ) of f on an arbitrary
subset Y ⊂ X, given by Bowen [1973], is much like
the Hausdorff dimension, with the “size” of a set
reflecting how f acts on it. Let A be a finite open
cover of X. For a set B ⊂ X we write B ≺ A if B
is contained in some element of A.

Let nf,A(B) be the largest non-negative integer
such that f k�(B) ≺ A for k = 0, 1, 2, . . . , nf,A − 1.
If B ⊀ A then nf,A(B) = 0, and if fk(B) ≺ A for
all k then nf,A(B) = ∞. Now, we define

diamA(B) = exp(−nf,A(B)),

and

DA(B, λ) =
∞∑
i=1

(diamA(Bi))λ

for any family B = {Bi}∞1 of subsets of X and any
λ ∈ R+. Define a measure µA,λ(Y ) by

µA,λ(Y ) = lim
ε→0

inf
B
{DA(B, λ) : B = {Bi}∞1 ,

∪Bi ⊇ Y,diamA(Bi) < ε},
which has similar properties as the classical Haus-
dorff measure:

Hλ(Y ) = lim
ε→0

inf

{∑
i

(diam(Bi))λ : ∪iBi ⊇ Y

and sup
i
{|Bi|} < ε

}
,

i.e. there exists h(f, Y,A) such that

µA,λ(Y ) = ∞ for λ < h(f, Y,A),

µA,λ(Y ) = 0 for λ > h(f, Y,A).

Finally, we define

h(f, Y ) = sup{h(f, Y,A) : A
is a finite open cover of Y }.

This number h(f, Y ) is the topological entropy of
f on the set Y . If Y = X, then by [Bowen, 1973,
Proposition 1] we get

h(f,X) = h(f),

the topological entropy of f .

From Misiurewicz [2004], we have the following.

Theorem 10 [Misiurewicz, 2004]. For any Y ⊂ X,
the Hausdorff dimension Hd(Y ) of Y, for a Lip-
schitz continuous map f with Lipschitz constant
L > 1, satisfies the inequality

Hd(Y ) ≥ h(f, Y )
ln(L)

.

Corollary 4.1. Under the same assumptions as in
Theorem 10, the Hausdorff dimension of X satisfies

Hd(X) ≥ h(f,X)
ln(L)

=
h(f)
ln(L)

, L > 1.

Remark 4.1. More recently, Dai and Jiang [2006]
generalized Theorem 10 to the case that the phase
space X is a metric space satisfying the second
countability (but not necessarily compact).

Now, let us consider the case of an interval map
f : I → I and let L the set defined by

L = {all Lipschitz continuous functions f : I → I,

with Lipschitz constant greater than 1}.
(21)
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Theorem 11. Let f ∈ W 1,∞(I)∩F2 ∩L. Let cn
k be

the kth Fourier coefficient of f©n . If Ω(f) denotes
the set of nonwandering points of f, then

Hd(Ω(f)) ≥ 1
ln(L)

lim
n→∞ ln |kcn

k |, k = ±1,±2, . . .

Proof. Apply Theorem 10 to Y = Ω(f), which is
an invariant, closed and therefore compact set, and
obtain

Hd(Ω(f)) ≥ h(f,Ω(f))
ln(L)

=
h(Ω(f))
ln(L)

=
h(f |Ω)
ln(L)

=
h(f)
ln(L)

.

But we already know from (3) in Theorem 5 that

2 + VI(f©n ) ≥ 2π|kcn
k |.

Therefore

h(f) = lim
n→∞

1
n

ln[VI(f©n )] ≥ lim
n→∞

1
n

ln |kcn
k |,

implying

Hd(Ω(f)) ≥ 1
ln(L)

lim
n→∞

1
n

ln |kcn
k |. �

Corollary 4.2. Let f be a function satisfying the
hypotheses of Theorem 11, and let φ : N → N grow
exponentially (satisfying Definition 3.1), and

lim
n→∞ |cn

±φ(n)| > 0.

Then the Hausdorff dimension of the nonwandering
set Ω(f) is positive, i.e.

Hd(Ω(f)) > 0.

Proof. Since φ : N → N grows exponentially, there
are α1 > 0, α2 > 0 such that

φ(n) ≥ α1e
α2n.

By setting k = ±φ(n), we have

lim
n→∞

1
n

ln |kcn
k | = lim

n→∞
1
n

ln|φ(n)cn
±φ(n)|

≥ lim
n→∞

1
n

ln|α1e
α2ncn

±φ(n)|

= α2 + lim
n→∞

ln(α1)
n

+ lim
n→∞

ln|cn
±φ(n)|
n

= α2 > 0.

Hence

Hd(Ω(f)) ≥ 1
ln(L)

lim
n→∞

1
n

ln |kcn
k | ≥

α2

ln(L)
> 0.

�

In the case of the full tent map T2(x), the
Lipschitz constant of T2(x) is obviously 2, i.e. L = 2.

Also, from Theorem 6 and Example 3.1, by
choosing

φ(n) = s2n−1, s = 1, 3, 5, . . . , (22)

we obtain

Hd(Ω(T )) ≥ ln(2)
ln L

= 1.

Therefore

Hd(Ω(T )) = 1.

Finally, we show an application of the Sturm–
Hurwitz Theorem [Katriel, 2003], an important the-
orem in the oscillation theory of Fourier series, to
the theory that we are developing here. Let X be
a closed subset of the interval I = [0, 1] and f :
X → X a continuous mapping. Let Y ⊂ X. Denote
J the set of all possible subintervals of I, and for
J |Y the family of all subintervals of I = [0, 1], each
restricted to Y .

Definition 4.1. Let Y ⊂ X. A subset A of J |Y is
called a cover of Y if A has finitely many elements
and

Y ⊂ ∪A∈AA.

A cover A of Y is called f -mono on Y if for any
A ∈ A the map f |A is monotone.

Using the above definition we can see piece-
wise monotone functions in a slightly different way,
namely, the following.

Definition 4.2. A map f is called piecewise mono-
tone (p.m.), if there exists an f -mono cover of X.

Definition 4.3. Let f be a p.m. continuous map-
ping from an interval I into itself. Denote

ln = min{Card A : A is an f©n -mono cover},
(Card means cardinality).

From [Misiurewicz & Szlenk, 1980], we have the
following.

Lemma 2. If f : I → I is a p.m. continuous map,
then

htop(f) = lim
n→∞

1
n

ln(ln).
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The Sturm–Hurwitz Theorem states that if
g : R → R is a continuous 2π-periodic function and
dk is the kth Fourier coefficient of g, i.e.

dk =
∫ 2π

0
g(x)e−ikxdx, k = 0,±1,±2, . . . ,

and if dk0 is the first nonzero Fourier coefficients of
g, i.e.

dk =

{
0 if |k| < k0,

�= 0 if |k| = k0,

then the function g has at least 2k0 distinct zeros
in the interval [0, 2π].

Theorem 12. Let f ∈ C0(I, I) be a p.m. mapping
with f(0) = f(1). If there exists a map φ : N → N

satisfying

ln[φ(n)] ≥ α1 + α2n, for some α1 ∈ R, α2 > 0,

such that the kth Fourier coefficient of f©n satisfies

cn
k =

{
0 if |k| < φ(n),

�= 0 for some |k| = φ(n),

then

htop(f) > 0.

Proof. For a given n ∈ N define

gn(x) = f©n
( x

2π

)
, x ∈ [0, 2π],

then gn(0) = gn(2π), so we can extend gn to the
whole line R continuously with period 2π. Applying
the Sturm–Hurwitz Theorem, we have that gn(x)
has at least 2φ(n) zeros in the interval [0, 2π]. This
implies that f©n has at least 2φ(n) distinct zeros in
[0, 1]. Therefore

ln ≥ 2φ(n).

It follows from Lemma 2 that

htop(f) = lim
n→∞

1
n

ln[ln]

≥ lim
n→∞

1
n

[ln[2] + ln[φ(n)]]

≥ lim
n→∞

1
n

[ln[2] + α1 + α2n]

= α2 > 0. �

Example 4.3. Consider T2(x), the full tent map.
We can apply Theorem 12 by using Theorem 6

and (22). The proof of Theorem 12 gives

htop(T2) ≥ ln 2.

Actually, htop(T2) = ln 2.

5. Conclusions

Chaotic interval maps generate time series (consti-
tuted by their iterates) manifesting progressively
oscillatory behavior. Such oscillations must be
reflected in the high order Fourier coefficients of the
time series but no quantitative, analytical results
were known previously. Our work here was first
motivated by numerical simulation in [Roque-Sol,
2006]. Later, we recognized some fundamental rela-
tion between coefficients of the Fourier series and
the total variation of a given function (Theorem 5
(3)). Further, a concrete example (Theorem 6 and
Example 3.1) was constructed. These have lead to a
host of other related results and applications, yield-
ing a form of “integration theory” for chaotic inter-
val maps.

In Part II, we will continue the investigation by
using wavelet transforms.
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Appendices

A. Evaluation of the Fourier
Coefficients of T ©n

2 (x) for the Tent
Map T2(x)

Here we present the proof of Theorem 6.
The nth iterate of the Triangular map T2(x) is

given by

T©n
2 (x)

=




2nx − 2(l − 1), if
2(l − 1)

2n
≤ x ≤ 2l − 1

2n
,

−2nx + 2l, if
2l − 1

2n
≤ x ≤ 2l

2n
,

for l = 1, 2, . . . , 2n−1. Now,

cn
k(T2) =

1
2

∫ 1

0
T©n

2 (x)e−2πikxdx

=
1
2




2n−1∑
l=1

∫ 2l−1
2n

2(l−1)
2n

[2nx − 2(l − 1)]e−2πikxdx

+
2n−1∑
l=1

∫ 2l
2n

2l−1
2n

[−2nx + 2l]e−2πkxdx




=
1
2




2n−1∑
l=1

∫ 2l−1
2n

2(l−1)
2n

[2nx − 2(l − 1)]e−2πikxdx




+
1
2




2n−1∑
l=1

∫ 2l
2n

2l−1
2n

[−2nx + 2l]e−2πikxdx




≡ I1 + I2,
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where

I1 =
1
2




2n−1∑
l=1

∫ 2l−1
2n

2(l−1)
2n

[2nx − 2(l − 1)]e−2πikxdx




=
1
2




2n−1∑
l=1

∫ 1
2

0
2te−2πik t+(l−1)

2n−1
dt

2n−1


 ;

(2t = 2nx − 2(l − 1), dt = 2n−1dx)

=
1
2




2n−1∑
l=1

1
2n−2

∫ 1
2

0
t[e−

iπkt
2n−2 e−

iπk(l−1)

2n−2 ]dt




=
1
2


 1

2n−2

∫ 1
2

0
te−

iπkt
2n−2

2n−1∑
l=1

e−
iπk(l−1)

2n−2 dt




=
1
2

{
1

2n−2

∫ 1
2

0
te−

iπkt
2n−2 dt

}
2n−1∑
l=1

e−
iπk(l−1)

2n−2

=
1

2n−1

{∫ 1
2

0
te−

iπkt
2n−2 dt

}
2n−1∑
l=1

e−
iπk(l−1)

2n−2

=
{

2−2

−iπk
e−

iπk
2n−1 +

2n−3

π2k2
(e−

iπk
2n−1 − 1)

}

2n−1∑
l=1

e−
iπk(l−1)

2n−2

and

I2 =
1
2




2n−1∑
l=1

∫ 2l
2n

2l−1
2n

[−2nx + 2l]e−2πikxdx




=
1
2




2n−1∑
l=1

∫ 1
2

0
2te−2πik l−t

2n−1
dt

2n−1


;

(2t = −2nx + 2l, dt = −2n−1dx)

=
1
2




2n−1∑
l=1

1
2n−2

∫ 1
2

0
t[e

iπkt
2n−2 e−

iπkl
2n−2 ]dt




=
1
2


 1

2n−2

∫ 1
2

0
te

iπkt
2n−2

2n−1∑
l=1

e−
iπkl
2n−1 dt




=
1
2

{
1

2n−2

∫ 1
2

0
te

iπkt
2n−2 dt

}
2n−1∑
l=1

e−
iπkl
2n−2

=
1

2n−1

{∫ 1
2

0
te

iπkt
2n−2 dt

}
2n−1∑
l=1

e−
iπkl
2n−2

=
{

2−2

iπk
e

iπk
2n−1 +

2n−3

π2k2
(e

iπk
2n−1 − 1)

}

×
2n−1∑
l=1

e−
iπkl
2n−2 .

Finally

cn
k(T2) =

1
2

∫ 1

0
T©n

2 (x)e−2πikxdx

= I1 + I2

= −2n−3

π2k2
(e

iπk
2n−2 )(1 − e−

iπk
2n−1 )2

2n−1∑
l=1

e−
iπkl
2n−2 .

Now, if k �= s2n−1, s = 1, 2, . . ., then

cn
k(T2) =

1
2

∫ 1

0
T©n

2 (x)e−2πikxdx = I1 + I2

= −2n−3

π2k2
(e

iπk
2n−2 )(1 − e−

iπk
2n−1 )2

2n−1∑
l=1

e−
iπkl
2n−2

= −2n−3

π2k2
(1 − e−i2πk)

{
1 − e−

iπk
2n−1

1 + e−
−iπk
2n−1

}

= 0.

On the other hand, if k = s2n−1, s = 1, 3, 5, . . .,
then

cn
k(T2) =

1
2

∫ 1

0
T©n

2 (x)e−2πikxdx = I1 + I2

= −2n−3

π2k2
(e

iπk
2n−2 )(1 − e−

iπk
2n−1 )2

2n−1∑
l=1

e−
iπkl
2n−2

= − 1
π2s2

.

B. Some Calculations for T ©n
m(x)

Needed for Example 3.3

Here we present the proof of (12).
Consider the tent map given by (5), i.e.

Tm(x) =




mx, 0 ≤ x <
1
m

,

m

1 − m
(x − 1),

1
m

≤ x ≤ 1,

for 1 < m ≤ 2.
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Fig. 4. The graph of the tent map Tm.

Tm has an extremal point x = a1
2 = 1/m, as

displayed in Fig. 4.
After iterating Tm twice, T 2�

m has three
extremal points:

a2
2 = a1

1 +
1
m

(a1
2 − a1

1) =
1

m2
,

a2
3 = a1

2,

a2
4 = a1

3 +
1
m

(a1
2 − a1

3) = 1 +
1
m

(
1
m

− 1
)

.

See Fig. 5.
After n iterates, if we denote by an

l , l =
2, 3, . . . , 2n, the extremal points of T©n

m and let an
1 =

0, an
2n+1 = 1, be the two boundary points, then we

have

an
2l−1 = an−1

l , l = 1, 2, . . . , 2n−1 + 1,

Fig. 5. The graph of the tent map T 2
m.

an
2l =




an−1
l +

1
m

(an−1
l+1 − an−1

l ), if l is odd,

an−1
l+1 +

1
m

(an−1
l − an−1

l+1 ), if l is even,

for l = 1, 2, . . . , 2n−1.
Thus

an
2l − an

2l−1 = λλbl(1 − λ)(n−1)−bl , (B.1)

an
2l+1 − an

2l = (1 − λ)λbl(1 − λ)(n−1)−bl , (B.2)

where

λ =
1
m

, 1 < m ≤ 2,

l − 1 = cn−22n−2 + cn−32n−3 + · · · + c121 + c0,

the binary expansion of l − 1, with
cj = 0 or 1,

bl = number of zeroes in the binary coefficients

{cn−2, cn−3, . . . , c1, c0}.
On the other hand, we know that

T©n ′
m =

1
an

2l − an
2l−1

, on (an
2l−1, a

n
2l),

T©n ′
m = − 1

an
2l+1 − an

2l

, on (an
2l, a

n
2l+1).

It follows from (B.1) and (B.2) that∫ 1

0
|T (n′)

m |2dx =
2n−1∑
l=1

[∫ an
2l

an
2l−1

1
(an

2l − an
2l−1)

2
dx

+
∫ an

2l+1

an
2l

1
(an

2l+1 − an
2l)

2
dx

]

=
2n−1∑
l=1

[
1

an
2l − an

2l−1

+
1

an
2l+1 − an

2l

]

=
2n−1∑
l=1

1
λbl+1(1 − λ)n−bl

=
n−1∑
b=0

(
n − 1

b

)
1

λb+1(1 − λ)n−b

=
[

1
λ(1 − λ)

]n

=
(

m2

m − 1

)n

.

Thus (12) holds.
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