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Abstract. The morbidostat is a bacteria culture device that progressively

increases antibiotic drug concentration and maintains a constant challenge for
study of evolutionary pathway. The operation of a morbidostat under serial

transfer has been analyzed previously. In this work, the global dynamics for the

operation of a morbidostat under continuous dilution is analyzed. The device
switches between drug on and drug off modes according to a simple threshold

algorithm. We prove the extinction and uniform persistence of all species with

both forward and backward mutations. Numerical simulations for the case of
logistic growth and the Hill function for drug inhibition are also presented.

1. Introduction. Antibiotic drug resistance is a global health problem [15]. To-
day, clinically important bacteria are characterized by their resistance to single
or multiple drugs. Historically, penicillin-resistant Staphylococcus aureus was dis-
covered soon after the introduction of penicillin in clinical environments [3] and
still up to now the antibiotic drug resistance is still a subject of intense research
[2, 7, 8, 9, 17, 23]. Although the in vivo evolution of drug resistance has been proven
to be useful [2], these experiments are done retrospectively and control over the en-
vironmental factors is elusive. Recently, a more advanced chemostat [20] known as
a morbidostat has been developed with the goal of imposing well controlled tem-
poral drug profile to study the evolutionary pathway [13, 16, 18, 20]. In short, a
morbidostat is a microbial selection device that progressively increase the antibiotic
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Figure 1. Schematic of a continuous morbidostat. There is no
drug injection when the total microbes are less than threshold U .
There is continuous drug injection once the total microbes reach
the threshold U .

concentration to continuously challenge the microbe. During the course of evolu-
tion, drug resistant mutants prevail because of antibiotic drug resistance. In the
end, daily frozen samples are analyzed retrospectively to reveal the genetic muta-
tion events that lead to antibiotic drug resistance. In one incarnation demonstrated
by Kishony’s group [20], the microbial population is diluted periodically and this
situation has been analyzed mathematically. In another incarnation demonstrated
by Yang’s group [16], the microbial population is diluted continuously and a simple
threshold algorithm is used and this situation is analyzed in this work. Figure 1
shows the schematic of a continuous morbidostat device.

In [3], the cultivation of the microbes is assumed to be under serial transfer, and
a simple threshold algorithm is used as feedback. In this work, we studied the case
with continues dilutions and injections instead of periodical dilutions and injections.
More preciously, there is no drug injection when the total microbes are less than
a threshold U . It implies that without drug injection, the drug P simply decays
exponentially, which is

dP

dt
= −DP.

Thus, the drug P will die out eventually after sufficiently long time without drug
injection. However, we assume that once the total microbes reach the threshold U ,
there is continuous drug injection in the model, which is

dP

dt
= −D(P − P 0).

Hence the drug concentration P will converge to the input drug concentration P 0

under continuous drug injection. The operation of morbidostat can therefore be
thought as switching between these two modes and the feedback threshold algorithm
decide when the switching happens.

2. Description of our models. In the simplest scenario, we could formulate the
transition from a wild type bacteria population to N mutant strains. For the drug
on-drug off model with only forward mutations (see Figure 2) and both forward
and backward mutations (see Figure 3), the growth dynamics with the nutrient
substrate S under the influence of the drug inhibitor P are given by (1) and (2),
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respectively.

dS
dt = D(S0 − S)− 1

γ g0(S)f0(P )u− 1
γ

∑N
i=1 gi(S)fi(P )vi,

du
dt = (g0(S)f0(P )u−Du)−

∑N
k=1 q0ku,

dvi
dt = (gi(S)fi(P )vi −Dvi) +

∑i−1
k=0 qkivk −

∑N
k=i+1 qikvi,

dvN
dt = (gN (S)fN (P )vN −DvN ) +

∑N−1
k=0 qkNvk,

dP
dt =

{
−DP − h0(P )u−

∑N
i=1 hi(P )vi if u+

∑N
j=1 vj < U,

(P 0 − P )D − h0(P )u−
∑N
i=1 hi(P )vi if u+

∑N
j=1 vj ≥ U,

(1)



dS
dt = D(S0 − S)− 1

γ g0(S)f0(P )u− 1
γ

∑N
i=1 gi(S)fi(P )vi,

du
dt = (g0(S)f0(P )u−Du)−

∑N
k=1 q0ku+

∑N
k=1 q̃0kvk,

dvi
dt = (gi(S)fi(P )vi −Dvi) +

∑i−1
k=0 qkivk −

∑N
k=i+1 qikvi

−
∑i−1
k=0 q̃kivi +

∑N
k=i+1 q̃ikvk,

dvN
dt = (gN (S)fN (P )vN −DvN ) +

∑N−1
k=0 qkNvk −

∑N−1
k=0 q̃kNvN ,

dP
dt =

{
−DP − h0(P )u−

∑N
i=1 hi(P )vi if u+

∑N
j=1 vj < U,

(P 0 − P )D − h0(P )u−
∑N
i=1 hi(P )vi if u+

∑N
j=1 vj ≥ U,

(2)

where i = 1, 2, ..., N − 1. v0 = u and vi are the volume densities of the wild-
type and mutant populations, respectively. γ denotes the yield constant, which
reflects the conversion of nutrient to bacteria. In Equations (1) and (2), g0(S)
and gi(S) denote the growth rates of the wild type u and mutants vi, respectively.
Furthermore, the growth rates satisfy g0(0) = 0, g′0(S) > 0, gi(0) = 0, and g′i(S) > 0
for i = 1, 2, · · · , N , which implies the fact that the bacteria do not grow if there
is no nutrient substrate in the bioreactor, and a higher concentration of nutrient
leads to higher growth rates of bacteria. There are two important cases in the
microbiology, namely, gi(S) = mi(S) and gi(S) = miS

ai+S
, i = 0, 1, 2, ..., N. The wild-

type and mutants are assumed to consume drug while drug inhibits the growth of the
bacteria. The consumption rates on drug P by the wild type bacteria u and mutants
vi are denoted by h0(P ) and hi(P ), respectively. The consumption functions h0(P )
and hi(P ) are nonnegative functions and are increasing in P . The drug inhibitions
for the wild-type and mutants are described by f0(P ) and fi(P ), which satisfy the
convention that when P = 0, f0(0) = 1 and fi(0) = 1. Meanwhile, f ′i(P ) < 0 for
i = 1, 2, · · · , N since drug with a higher-concentration leads to a stronger inhibition
to both wild type and mutants. Considering the fact that mutants always have
stronger resistances to the inhibitor than wild-type, and mutant vi always have a
stronger resistance to the inhibitor than mutant vi−1, we have fi−1(P ) ≤ fi(P ) for
i = 1, 2, · · · , N. In other words, we have

f0(P ) ≤ f1(P ) ≤ · · · ≤ fN (P ). (H1)

It has shown [14] that in some cases, mutants remained abundant in the population
or even have greater growth rate despite the absence of inhibitor, while in others
the mutant has smaller growth rate than wild-type bacteria, as expected. In this
work, we study the case that mutant have same or greater growth rate compared
with the growth rate of wild-type bacteria in a drug free environment. Then the
wild type grows more slowly than all the mutants, and mutant vi−1 grows more
slowly than the mutant vi in the inhibitor environment for i = 1, 2, · · · , N , which
is our basic assumption as follows,

g0(S)f0(P ) < g1(S)f1(P ) < · · · < gN (S)fN (P ) for S > 0, P > 0. (H2)
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Figure 2. Forward mutations between species. Mutant vi mutates
to mutant vi+1 with a forward mutation rate qii+1, and there is no
backward mutations. We have v0 = u and i = 0, 1, 2, · · · , N − 1.

Figure 3. Forward-backward mutations between species. Mutant
vi mutates to mutant vi+1 with a forward mutation rate qii+1, while
mutant vi+1 mutates to mutant vi with a backward mutation rate
q̃ii+1. We have v0 = u and i = 0, 1, 2, · · · , N − 1.

qik denotes the forward mutation rate from mutant vi to mutant vk, and q̃ik denotes
the backward mutation rate from mutant vk to mutant vi. We assume that the
mutation rates qik and q̃ki are quite small compared with the difference of growth
rates gi(S)fi(P )−gi−1(S)fi−1(P ) for all i = 1, 2, · · · , N , i.e., qik, q̃ki � gi(S)fi(P )−
gi−1(S)fi−1(P ) for i, k = 1, 2, · · · , N .

3. Preliminary. We first do some simplifications to make models (1) and (2) more
mathematically tractable. By scaling u → u

γ , vi → vi
γ , h0(P ) → γh0(P ) and

hi(P ) → γhi(P ) for i = 1, 2, 3, · · · , N , the following scaled models of models (1)
and (2) are obtained, respectively,



dS
dt = D(S0 − S)− g0(S)f0(P )u−

∑N
i=1 gi(S)fi(P )vi,

du
dt = (g0(S)f0(P )u−Du)−

∑N
k=1 q0ku,

dvi
dt = (gi(S)fi(P )vi −Dvi) +

∑i−1
k=0 qkivk −

∑N
k=i+1 qikvi,

dvN
dt = (gN (S)fN (P )vN −DvN ) +

∑N−1
k=0 qkNvk,

dP
dt =

{
−DP − h0(P )u−

∑N
i=1 hi(P )vi if u+

∑N
j=1 vj < U,

(P 0 − P )D − h0(P )u−
∑N
i=1 hi(P )vi if u+

∑N
j=1 vj ≥ U,

S(0) ≥ 0, u(0) ≥ 0, P (0) ≥ 0, vi(0) ≥ 0, i = 1, 2, ..., N.

(3)
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

dS
dt = D(S0 − S)− g0(S)f0(P )u−

∑N
i=1 gi(S)fi(P )vi,

du
dt = (g0(S)f0(P )u−Du)−

∑N
k=1 q0ku+

∑N
k=1 q̃0kvk,

dvi
dt = (gi(S)fi(P )vi −Dvi) +

∑i−1
k=0 qkivk −

∑N
k=i+1 qikvi

−
∑i−1
k=0 q̃kivi +

∑N
k=i+1 q̃ikvk,

dvN
dt = (gN (S)fN (P )vN −DvN ) +

∑N−1
k=0 qkNvk −

∑N−1
k=0 q̃kNvN ,

dP
dt =

{
−DP − h0(P )u−

∑N
i=1 hi(P )vi if u+

∑N
j=1 vj < U,

(P 0 − P )D − h0(P )u−
∑N
i=1 hi(P )vi if u+

∑N
j=1 vj ≥ U,

S(0) ≥ 0, u(0) ≥ 0, P (0) ≥ 0, vi(0) ≥ 0, i = 1, 2, ..., N.

(4)

For scaled models (3) and (4), we have the following results.

Lemma 3.1. Let (S(t), u(t), v1(t), ..., vN (t), P (t)) be the solution of the I.V.P (3)
and (4). Then the solution exists and is unique for all t ≥ 0. Furthermore,S(t) +

u(t) +
∑N
i=1 vi(t)→ S0 as t→∞.

Proof. We note that although the differential equation for P is discontinuous, the
solution (S(t), u(t), v1(t), ..., vN (t), P (t)) is continuous. We claim that the maximal
interval of existence is [0,∞). If not, then the solution will blow up in finite time.
However, the solution has a priori bound, namely, P (t) ≤ P (0).

S(t) + u(t) +
∑N
i=1 vi(t) ≤ max{S(0), S(0) + u(0) +

∑N
i=1 vi(0)} as long as the

solution exists. By a theorem of global existence [12], the maximal interval of
existence of the solution (S(t), u(t), v1(t), ..., vN (t), P (t)) is [0,∞).

Adding the first N +2 equations of models (3) and (4) together respectively, and
define

C(t) = S(t) + u(t) +

N∑
i=1

vi(t),

then the following single equation is obtained,

C ′(t) = S′(t) + u′(t) +

N∑
i=1

v′i(t) = D(S0 − S)−Du−D
N∑
i=1

vi = S0 −DC(t).

It follows at once that,

C(t) = S0 +O(e−Dt),

which leads to C(t)→ S0 as t→∞. That completes our proof.

Lemma 3.2. Let (H1) and (H2) hold and (S(t), u(t), v1(t), ..., vN (t), P (t)) be the
solution of the I.V.P (3) and (4). Then there exists δ > 0 such that S(t) ≥ δ > 0
for all t ≥ 0.

Proof. For drug on-drug off models (3) and (4), we have

dS

dt
= D(S0 − S)− g0(S)f0(P )u−

N∑
i=1

gi(S)fi(P )vi

≥ D(S0 − S)− gN (S)fN (P )(u+

N∑
i=1

vi)

≥ D(S0 − S)− gN (S)(u+

N∑
i=1

vi).
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From Lemma 3.1, for any ε > 0, there exists large enough t0 = t0(ε) > 0 such that
t ≥ t0 implies that

S0 − S(t)− ε < u(t) +

N∑
i=1

vi(t) < S0 − S(t) + ε. (5)

Therefore, for t ∈ [t0,+∞], we have

dS

dt
> D(S0 − S)− gN (S)(S0 − S(t) + ε). (6)

Let S∗(t) be the solution of the following system,

dS∗

dt
= D(S0 − S∗)− gN (S∗)(S0 − S∗(t) + ε). (7)

Then we have S(t) > S∗(t) for all t ∈ [t0,+∞]. Choose δ > 0 such that δ <
min

0≤t≤+∞
{S∗(t)} and δ < min

0≤t≤t0
{S(t)}, we then have S(t) > δ for all t ≥ 0. That

completes our proof.

4. Dynamics of drug on-drug off model with only forward mutations.
For the forward mutations model (3), we will show that only the last mutant vN
survives in the long-term by the following result.

Lemma 4.1. Let (H1) and (H2) hold. The wild type bacteria u and mutants vi,
where 1 ≤ i ≤ N − 1, go extinction in the long-term. More precisely, u(t) → 0,
vi(t)→ 0 as t→∞ for 1 ≤ i ≤ N − 1.

Proof. From model (3), if letting ω(t) = u(t) + v1(t) + v2(t) + · · · + vN−1(t), it is
easy to check that

dω

dt
= g0(S)f0(P )u+ g1(S)f1(P )v1 + · · ·+ gN−1(S)fN−1(P )vN−1 −Dω −

N−1∑
k=0

q̃kNvk.

Since g0(S)f0(P ) ≤ g1(S)f1(P ) ≤ · · · ≤ gN−1(S)fN−1(P ) for all 0 < S ≤ S0 and
0 ≤ P ≤ P 0, we have

dω

dt
≤ −Dω + gN−1(S)fN−1(P )ω −

N−1∑
k=0

q̃kNvk,

which implies

1

ω

dω

dt
≤ −D + gN−1(S)fN−1(P )−−

N−1∑
k=0

q̃kN
vk
ω
.

Since

dvN
dt

= (gN (S)fN (P )vN −DvN ) +

N−1∑
k=0

q̃kNvk,

we have

1

ω

dω

dt
− 1

vN

dvN
dt

≤ −D + gN−1(S)fN−1(P )−
N−1∑
k=0

q̃kN
vk
ω
− gN (S)fN (P ) +D −

N−1∑
k=0

q̃kN
vk
vN

≤ gN−1(S)fN−1(P )− gN (S)fN (P ) ≤ −η,



THE CONTINUOUS MORBIDOSTAT 7

where η = minδ≤S≤S0,0≤P≤P 0(gN (S)fN (P ) − gN−1(S)fN−1(P )). We have η is
always positive from (H2). Since

1

ω

dω

dt
− 1

vN

dvN
dt

=
d ln ω

vN

dt
,

straightforward calculation shows that ω(t) ≤ ω(0)
vN (0)vN (t)e−ηt. It implies that ω(t)→

0 as t→∞ since vN (t) is bounded. In other words, u(t)→ 0, vi(t)→ 0 as t→∞,
1 ≤ i ≤ N − 1. That completes our proof.

From Lemmas 3.1 and 4.1, the forward mutations model (3) can be reduced to
the following limiting system [19, 11].

dS
dt = D(S0 − S)− gN (S)fN (P )vN ,
dvN
dt = gN (S)fN (P )vN −DvN ,
dP
dt =

{
−DP − hN (P )vN if vN < U,
(P 0 − P )D − hN (P )vN if vN ≥ U.

(8)

We note from [19] Appendix F, [22] Theorem 1.2.2 and [10], it can be shown
that the solution of original systems (3) and (4) has the same asymptotic behabiour
as those in the limiting system provided the acyclic condition is satisfied and the
solution of the corresponding limiting system converges to an equilibrium. We
denote (S(t), vN (t), P (t)) as the solution of the limiting system (8) with the initial
values S(0) > 0, vN (0) > 0, P (0) > 0. The long-term dynamics of the limiting
system is our concern. We will analyse the global dynamics of the limiting system
(8) from the following three cases.

4.1. Case 1: Drug off case of the limiting system. If vN (t) < U for all t > 0,
then drug P follows dP

dt = −DP −hN (P )vN all the time, which is the drug off case.
In this case, the limiting system (8) becomes the following system,

dS
dt = D(S0 − S)− gN (S)fN (P )vN ,
dvN
dt = gN (S)fN (P )vN −DvN ,
dP
dt = −DP − hN (P )vN .

(9)

It is easy to check that P (t)→ 0 in system (9) as t→∞. Then system (9) can be
reduced to the following limiting system since lim

t→∞
fN (P ) = 1,{

dS
dt = D(S0 − S)− gN (S)vN ,
dvN
dt = gN (S)vN −DvN .

(10)

Straightforward calculation shows that model (10) has at most two equilibria, a
boundary equilibrium E1(S0, 0) and a positive equilibrium E∗ = (S∗, v∗N ), where

S∗ = g−1
N (D), v∗N = S0 − S∗.

E∗ is physically meaningful if gN (S0) > D = gN (S∗), which always holds true since
S∗ ∈ (0, S0) and g′N (S) > 0. From [1, 11], the following result is obtained.

Theorem 4.2. Assume S(0) > S∗ = λN and let (S(t), vN (t)) be the solution of the
limiting system (10). The the positive equilibrium E(S∗, v∗N ) is globally asymptoti-
cally stable.

Theorem 4.3. Assume that vN (t) < U for all sufficiently large t for the system
(9), then lim

t→∞
(S(t), vN (t), P (t)) = (S∗, v∗N , 0) for all S(0) ∈ (0, S0), vN (0) ∈ (0, S0)

and P (0) ∈ (0, P 0).
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4.2. Case 2: Drug on case of the limiting system. If vN (t) > U for all t > 0,
then drug P follows dP

dt = (P 0 − P )D − hN (P )vN all the time, which is the drug
on case. In this case, the limiting system (8) could be reduced into the following
limiting system, 

dS
dt = D(S0 − S)− gN (S)fN (P )vN ,
dvN
dt = gN (S)fN (P )vN −DvN ,
dP
dt = (P 0 − P )D − hN (P )vN .

(11)

Since S + vN → S0 as t → ∞ by lemmas 3.1 and 4.1, then system (11) can be
reduced to the following limiting system,{

dvN
dt = gN (S0 − vN )fN (P )vN −DvN ,
dP
dt = (P 0 − P )D − hN (P )vN .

(12)

We will first prove that every periodic solution of the limiting system (12) is orbitally
stable. Let

F (vN , P ) = gN (S0 − vN )fN (P )vN −DvN
and

G(vN , P ) = (P 0 − P )D − hN (P )vN ,

if we assume (vN (t), P (t)) is a periodic solution of model (12) with period T , and
(v̄N , P̄ ) is the equilibrium of the limiting system (12), then we have∫ T

0

∂F

∂vN
+
∂G

∂P
dt

=

∫ T

0

(gN (S0 − vN )fN (P )−D)− vN (fN (P )g′N (S0 − vN )) + (−D − h′N (P )vN )dt

=

∫ T

0

−vN (fN (P )g′N (S0 − vN )) + (−D − h′N (P )vN )dt.

It is easy to check that
∫ T

0
∂F
∂vN

+ ∂G
∂P dt < 0. Since (v̄N , P̄ ) is locally asymptotically

stable and every periodic solution (if it exists) is orbitally stable, then from [4],
there is no periodic solution and thus by Poincare Bendixson Theorem, we have
(vN (t), P (t)) → (v̄N , P̄ ) as t → ∞. Moreover, (v̄N , P̄ ) is the unique equilibrium of
the limiting system (12), which satisfies{

gN (S0 − v̄N )fN (P̄ )−D = 0,
(P 0 − P̄ )D − hN (P̄ )v̄N = 0.

Therefore, for limiting system (11), we have the following result.

Theorem 4.4. Assume that vN (t) > U for all sufficiently large t for the system
(8), then lim

t→∞
(S(t), vN (t), P (t)) = (S0 − v̄N , v̄N , P̄ ) for all S(0) ∈ (0, S0), vN (0) ∈

(0, S0) and P (0) ∈ (0, P 0).

From Theorems 4.3 and 4.4, we know that

v∗N = S0 − S∗ = S0 − g−1
N (D).

And v̄N satisfies

gN (S0 − v̄N )fN (P̄ ) = D,

which implies that v̄N = S0 − g−1
N ( D

fN (P̄ )
) > 0. It can be checked that v∗N > v̄N

since fN (P̄ ) < 1 and g′N (S) > 0.
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4.3. Case 3: oscillation of the limiting systems. If vN (t) oscillates around
U , then the drug P follows the rule dP

dt = −DP − hN (P )vN if vN (t) < U at some

time t, otherwise it follows the rule dP
dt = (P 0 − P )D − hN (P )vN . Therefore, the

inhibitor concentration oscillates in this case as the system is trying to maintain
constant bacteria density vN through feedback. We also demonstrate it by numerical
simulation in Section 6.

Based on the analysis in the above 3 cases, we state our main result about the
drug on-drug off model with only forward mutations in the following theorem.

Theorem 4.5. For the drug on-drug off model with only forward mutations (3),
we have

(i) if U > v∗N , then the equilibrium (S0 − v∗N , 0, 0, · · · , v∗N , 0) attracts all positive
initial data, in other words, lim

t→∞
(S(t), v1(t), v2(t), · · · , vN (t), P (t)) = (S0 −

v∗N , 0, 0, · · · , v∗N , 0). The biological interpretation is that the concentrations of
the nutrient S and mutant vN will stay at S0 − v∗N and v∗N , respectively after
a long-term. While drug P will dilute out when time t is sufficiently large.

(ii) if U < v∗∗N , where v∗∗N = S0 − g−1
N ( D

fN (P 0) ), then the equilibrium (S0 −
v̄N , 0, 0, · · · , v̄N , P̄ ) is globally attracting, in other words, we have
lim
t→∞

(S(t), v1(t), v2(t), · · · , vN (t), P (t)) = (S0− v̄N , 0, 0, · · · , v̄N , P̄ ). It implies

that the wild type u and mutants v1, v2, · · · , vN−1 will die out eventually,
while the concentrations of the nutrient S, mutant vN and drug P will stay at
S0 − v̄N , v̄N and P̄ , respectively.

(iii) If v̄N < U < v∗N , then vN (t) oscillates around U .

It is easy to verify that v∗∗N < v̄N < v∗N .

Proof. (i) It suffices to show vN (t) < U for t large. From the equation of vN and
f(P ) ≤ 1 for P > 0, we have that for ε > 0 small and t large,

dvN
dt

= gN (S)fN (P )−DvN
≤ gN (S)−DvN
≤

(
gN (S(0) − vN + ε)−D

)
vN .

It follows that
vN (t) ≤ v∗N,ε = S0 − λ∗N,ε,

where λ∗N,ε → λ∗N as ε → 0. Therefore, if U > v∗N , then vN (t) ≤ v∗N,ε < U for t
large.
(ii) It suffices to show vN (t) > U for t large. Since 0 < P < P 0 for t large,

dvN
dt

= gN (S)fN (P )−DvN

≥ gN (S)fN (P 0)−DvN
≥

(
gN (S0 − vN − ε)fN (P 0)−D

)
vN .

Then we have

vN (t) ≥ v∗∗N,ε = S0 − ε− g−1
N (

D

fN (P 0)
),

where lim
ε→0

v∗∗N,ε = v∗∗N . Hence, if U < v∗∗N , then vN (t) ≥ v∗∗N,ε > v∗∗N − ε > U for t

large.
(iii) Suppose it is not true, then we have vN (t) < U or vN (t) > U for t large. If
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vN (t) < U, then from Theorem 4.3, we have vN (t) → v∗N as t → ∞. This leads
to v∗N ≤ U, which is a contradiction. Similarly, if vN (t) > U for t large, then
from Theorem 4.4, vN (t) → v̄N as t → ∞. This leads to v̄N ≥ U, which is also a
contradiction. Hence, vN (t) oscillates around U .

Remark 1. We conjecture that if v∗∗N < U < v̄N , the conclusion of (ii) holds. We
will verify this conjecture in Section 6.

5. Dynamics of drug on-drug off model with forward-backward muta-
tions.

Lemma 5.1. For model (4), if vj(t) → 0 as t → ∞ for some j, 0 ≤ j ≤ N, then
vk(t) → 0 as t → ∞ for all k 6= j, and 0 ≤ k ≤ N. This result indicates that wild
type and all the mutants will go extinction if any species of them goes extinction in
the long-term.

Proof. We may assume 0 < j < N, the proofs for the cases with j = 0 or j = N
are the same as that for 0 < j < N. Since vj(t)→ 0 as t→∞, then for any ε > 0,
there exists Nj > 0 such that 0 < vj(t) < ε for t ≥ Nj .

From model (4), we have

dvj
dt

=

(
gj(S)fj(P )−D −

N∑
k=i+1

qjk −
j−1∑
k=0

q̃kj

)
vj +

j−1∑
k=0

qkjvk +

N∑
k=j+1

q̃jkvk. (13)

It follows that

d2vj
dt2

=

(
gj(S)fj(P )−D −

(
N∑

k=i+1

qjk +

j−1∑
k=0

q̃kj

))
v′j

+ (g′j(S)S′fj(P ) + gj(S)f ′j(P )P ′)vj +

i−1∑
k=0

qkiv
′
k +

N∑
k=i+1

q̃ikv
′
k.

From Lemma 3.2, we have S(t) ≥ δ > 0, 0 < P (t) < P 0 for all t > 0.
It is easy to verify that from the equations of (3) and Lemma 3.1, we have

|S′| ≤
(
D + max

δ≤S≤S0,0≤P<P 0
{fN (P )gN (S)}

)
S0,

and |v′j | ≤ CS0, where C is a constant satisfies

C = D + max
δ≤S≤S0,0≤P<P 0

{fN (P )gN (S)}+

N∑
k=i+1

qjk +

j−1∑
k=0

q̃kj +

j−1∑
k=0

qkj +

N∑
k=j+1

q̃jk.

Similarly, |v′k| is bounded for k = 0, 1, 2, ..., N . Since f ′j(P ) < 0, and |gj(S)fj(P )| ≤
maxδ≤S≤S0,0≤P<P 0{fN (P )gN (S)}, we have |d

2vj
dt2 | ≤ Mj for some Mj > 0, which

implies that |v′′j | is also bounded.
Therefore, from [5], we have v′j → 0 as t→∞, since vj → 0 as t→∞, and v′′j is

bounded. It implies
∑j−1
k=0 qkjvk +

∑N
k=j+1 q̃jkvk → 0 as t→∞ from (13).

Therefore, vk → 0 as t→∞ for k 6= j. That completes our proof.

For the drug on drug off model with both forward and backward mutations, we
have the following result.
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Theorem 5.2. Consider the drug on drug off model (4), we have two cases for the
long-term dynamics of the model,

(i) When g0(S0) ≤ D, the wild type bacteria u and mutants vi, i = 1, 2, 3, · · · , N
go extinction, there is no inhibitor P exist in the device. The nutrient S will
persist in a concentration of S0 in the long-term.

(ii) When g0(S0) > D, the wild type bacteria u and mutants vi, i = 1, 2, 3, · · · , N
coexist, and the most resistant microbe vN dominates the rest of the other
species provided the mutation rates q̃i are sufficiently small.

Proof. From Lemma 5.1, either all species go extinction or all species coexist.
(i) If all species go extinction, then the system (4) can be reduced to the following

limiting system, {
dS
dt = D(S0 − S),
dP
dt = −DP. (14)

Hence we have S → S0, and P → 0 as t → ∞. From the second equation in the
drug on and off model (4), it follows that g0(S0) ≤ D. Therefore, for the drug on
drug off model (4), when g0(S0) ≤ D, we have the wild type bacteria u and mutants
vi, i = 1, 2, 3, · · · , N go extinction. Furthermore, there is no inhibitor P exist while
the nutrient S will persist at the concentration of S0 in the long-term.

(ii) When g0(S0) > D, then all species coexist. By continuous dependence on
parameter q̃ij , i = 0, 1, ..., N − 1, j = 1, 2, ..., N and Lemma 4.1, we have the most
resistant microbe dominates the rest of the other species provided the mutation
rates q̃ij , i = 0, 1, ..., N − 1, j = 1, 2, ..., N are sufficiently small.

6. Numerical simulations. In this section, we carry out numerical simulations
with realistic parameters to verify our theoritical results.

For simplicity, we assume that both the wild type and the mutants have equal
uptake function and the growth takes the logistic form, namely,

g0(S) = gi(S) = mS, i = 1, 2, 3, · · · , N.
The consumption functions h0(P ) and hi(P ) are assumed to take the Holling Type
II function,

h0(P ) = hi(P ) =
rP

a+ P
, i = 1, 2, 3, · · · , N.

We assume the functions f0(P ) and fi(P ) take the Hill function form of order L,
which are 

f0(P ) = 1

1+
(

P
K0

)L ,

fi(P ) = 1

1+
(

P
Ki

)L ,
(15)

where i = 1, 2, 3, · · · , N . Note that the order L stems from the allosteric coop-
erativity of the drug inhibition [21]. The drug inhibition effects depend on the
detailed mechanism. For example, they can result from the binding of the antibi-
otic drug to the metabolic enzyme, which synthesizes the key precursor of biomass
production of the bacteria. Taking trimethoprim (TMP) as a specific example, this
antibiotic binds to dihydrofolate reductase (DHFR), an enzyme that controls the
biosynthesis of folic acid. The mutation of the gene encoding DHFR will modify
the binding affinity of TMP [20]. The parameters K0 and Ki in (15) can actually
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be extracted from the experimental values of IC50, defined as the drug inhibitor
concentration at which the growth rate is 50% of the maximal growth rate. The
sample volume in the culture vessel of the morbidostat is 10 ml, and the conflu-
ent density of EColi is typically 109 cell/ml. For simplicity, we assume that the
morbidostat operates at around 10% of the confluent density, which is set by the
threshold population U . We can conveniently set the yield constant γ to be 1, so
that one unit of substrate density will transform to one unit of bacteria. With the
volume units set to 0.1 nl, the input substrate S0 = 10 corresponds to 108 cell/ml.
The constants K0 and Ki in the drug inhibition function are set to 1 and 10i, and
the order in the Hill function L = 1, 2, 3. We first consider the forward mutation
rates q = 10−2hr−1. Typically, the dilution ratio D = 0.9. The growth rate is set by
the constant m to be 0.3hr−1 in the logistic growth function. The initial conditions
are S(0) = 10, u(0) = 0.01, v(0) = 0, and P (0) = 0. We demonstrate our theoretical
results by conducting the following simulations.

6.1. Three mutants with only forward mutations. We first assume that there
is wild type u and three mutants v1, v2 and v3 in the bioreactor and there is no
backward mutation. Then we have the drug on-drug off model in the following
form,

dS
dt = D(S0 − S)− g0(S)f0(P )u−

∑3
i=1 gi(S)fi(P )vi,

du
dt = (g0(S)f0(P )u−Du)− q01u− q02u− q03u,
dv1
dt = (g1(S)f1(P )v1 −Dv1) + q01u− q12v1 − q13v1,
dv2
dt = (g2(S)f2(P )v2 −Dv2) + q02u+ q12v1 − q23v2,
dv3
dt = (g3(S)f3(P )v3 −Dv3) + q03u+ q13v1 + q23v2,

dP
dt =

{
−DP − h0(P )u−

∑3
i=1 hi(P )vi if u+ v1 + v2 + v3 < U,

(P 0 − P )D − h0(P )u−
∑3
i=1 hi(P )vi if u+ v1 + v2 + v3 ≥ U,

(16)

Straightforward calculation shows that v∗3 = 7.000 and v̄3 = 6.327 by the parameters
given above and P 0 = 10, r = 0.5 and a = 0.5. We verified the three cases of our
theoretical analysis in Section 4 using numerical simulations as follows.

(i) If U = 8, then it satisfies U > v∗3 as v∗3 = 7.000, which is Case 1 in Section
4, we have v3(t) → v∗3 = 7.000 and P (t) → 0 as t → ∞. More precisely,
the fixed point (S∗, 0, 0, 0, v∗3 , 0) = (3.000, 0, 0, 0, 7.000, 0) attracts all positive
initial data, which agrees well with the theoretical analysis, please see Figure
4.

(ii) If U = 5, then it satisfies U < v∗∗3 as v∗∗3 = 6.000, which is Case 2 in
Section 4. In this case, we have v3(t) → v̄3 = 6.327 and P (t) → P̄ =
6.728 as t → ∞. More precisely, the unique fixed point (S̄, 0, 0, 0, v̄3, P̄ ) =
(3.673, 0, 0, 0, 6.327, 6.728) is globally attracting in this case, please see Figure
5.

(iii) If U = 6.5, then we have v̄3 < U < v∗3 , which is Case 3 according to Section 4.
From the simulation results, we can see the inhibitor concentration P oscillates
between 0 and P̄ , which is P ∈ (0, 6.728), while the bacteria density v3 will
be maintained at nearly constant around U , please see Figure 6.

Remark 2. If U = 6.1, we have v∗∗3 < U < v̄3, since v∗∗3 = 6.000 v̄3 = 6.327. In
this case, Figure 7 shows that the conclusion of (ii) holds in Section 4, which verifies
our conjecture in Remark1.
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Figure 4. Cell, substrate, and inhibitor densities of system (3)
when U = 8. The wild type u, mutants v1, v2 and inhibitor P
go extinction in the drug on drug off model, while mutant v3 and
substrate S persist at fixed values in the long-term. In this figure,
we take S0 = 10, D = 0.9, P 0 = 10, q01 = q02 = q03 = q12 = q13 =
q23 = 10−4, m = 0.3, r = 0.5, a = 0.5, L = 1, K1 = 1, K2 = 3,
K3 = 10 and K4 = 30.

0 10 20 30 40 50 60 70

Time [hr]

0

1

2

3

4

5

6

7

8

9

10

C
on

ce
nt

ra
tio

ns

Substrate S
Drug P
Wild type u
Mutant v

1

Mutant v
2

Mutant v
3

Figure 5. Cell, substrate, and inhibitor densities of system (3)
when U = 2. The wild type u and mutants v1, v2 go extinction
in the drug on drug off model, while mutant v3, substrate S, and
inhibitor P persist at fixed values in the long-term. In this figure,
we take S0 = 10, D = 0.9, P 0 = 10, q01 = q02 = q03 = q12 = q13 =
q23 = 10−4, m = 0.3, r = 0.5, a = 0.5, L = 1, K1 = 1, K2 = 3,
K3 = 10 and K4 = 30.

6.2. Three mutants with forward-backward mutations. We then assume
there is wild type u and two mutants v1 and v2 in the bioreactor, and assume
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Figure 6. Cell, substrate, and inhibitor densities of system (3)
when U = 6.5. The wild type u and mutants v1, v2 go extinction
in the drug on drug off model, while mutant v3, substrate S, and
inhibitor P oscillate in the long-term. The inset figure shows the
density of mutant v3 (green) and concentration of the Substrate S
(blue) in the long-term. In this figure, we take S0 = 10, D = 0.9,
P 0 = 10, q01 = q02 = q03 = q12 = q13 = q23 = 10−4, m = 0.3,
r = 0.5, a = 0.5, L = 1, K1 = 1, K2 = 3, K3 = 10 and K4 = 30.
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Figure 7. Cell, substrate, and inhibitor densities of system (3)
when U = 6.1. The wild type u and mutants v1, v2 go extinction
in the drug on drug off model, while mutant v3, substrate S, and
inhibitor P persist at fixed values in the long-term. In this figure,
we take S0 = 10, D = 0.9, P 0 = 10, q01 = q02 = q03 = q12 = q13 =
q23 = 10−4, m = 0.3, r = 0.5, a = 0.5, L = 1, K1 = 1, K2 = 3,
K3 = 10 and K4 = 30.
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Figure 8. Extinction of all the microbes of system (4). In this
case, all the cells and inhibitor go to extinction in the drug on drug
off model, while the substrate persists at a fixed level. In this figure,
we take S0 = 10, D = 0.9, P 0 = 10, U = 5, q01 = q02 = q03 =
q12 = q13 = q23 = 10−4, q̃01 = q̃02 = q̃03 = q̃12 = q̃13 = q̃23 = 10−4,
m = 0.08, r = 0.5, a = 0.5, L = 1, K1 = 1, K2 = 3, K3 = 10 and
K4 = 30.

that the mutants are with forward-backward mutations. Then we have the drug on
drug off model in the following form,

dS
dt = D(S0 − S)− g0(S)f0(P )u−

∑3
i=1 gi(S)fi(P )vi,

du
dt = (g0(S)f0(P )u−Du)−

∑3
i=1 q0iu+

∑3
i=1 q̃0ivi,

dv1
dt = (g1(S)f1(P )v1 −Dv1) + q01u− q12v1 − q13v1 + q̃12v2 − q̃01v1 + q̃13v3,
dv2
dt = (g2(S)f2(P )v2 −Dv2) + q02u+ q12v1 − q23v2 − q̃12v2 − q̃02v2 + q̃23v3,
dv3
dt = (g3(S)f3(P )v3 −Dv3) + q03u+ q13v1 + q23v2 − q̃03v3 − q̃13v3 − q̃23v3,

dP
dt =

{
−DP − h0(P )u−

∑3
i=1 hi(P )vi if u+ v1 + v2 + v3 < U,

(P 0 − P )D − h0(P )u−
∑3
i=1 hi(P )vi if u+ v1 + v2 + v3 ≥ U,

(17)

The simulation results of system (17) show that either all the cells go to extinction
(see Figure 8) or persist (see Figure 9 and Figure 10) in the drug on drug off model,
which verifies our theoretical results in Theorem 5.2. In Figure 9, the most resistant
mutant dominates the final population with the coexistence of a small fraction of
other species (wild type u, mutants v1 and v2) due to the assumption of small
mutation rates and big dilution rate D as compared to the growth rates gi(S

0)
(i = 0, 1, 2, 3). In Figure 10, the coexistence of all the species is obvious when
q̃01 = q̃02 = q̃03 = q̃12 = q̃13 = q̃23 = 0.05.
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