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Abstract. It is known that some predator-prey system can possess a unique
limit cycle which is globally asymptotically stable. For a prototypical predator-
prey system, we show that the solution curve of the limit cycle exhibits tem-
poral patterns of a relaxation oscillator, or a Heaviside function, when certain
parameter is small.

1. Introduction. For a class of conventional predator-prey interaction models, it
is known that a stable limit cycle exists for a range of parameters [19]. A typical
model is

dU

ds
= γU

(

1 −
U

K

)

− Cφ(U)V,
dV

ds
= −DV + φ(U)V, (1)

where the prey U satisfies a logistic growth pattern; γ > 0 represents the intrinsic
growth rate of the prey; K > 0 is the carrying capacity of the prey; D > 0 is
the death rate of the predator; C > 0 measures the relative loss of the prey; the
function φ(U) is the functional response of the predator, which corresponds to
saturation of their appetites and reproductive capacity, and like effects [7, 19]. A
functional response (of Type II [7]) usually satisfies φ(0) = 0, φ(U) is increasing
and concave, and φ(U) → M > 0 for some M > 0 as U → ∞. Examples include
φ(U) = MU/(A + U) (Holling) and φ(U) = 1 − e−AU (Ivlev).

In this paper, we consider the Holling type II functional response. The system
considered is

dU

ds
= γU

(

1 −
U

K

)

−
CMUV

A + U
,

dV

ds
= −DV +

MUV

A + U
. (2)
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We introduce a change of variables:

t = γs, u =
U

K
, and v =

C

K
V, (3)

then we obtain a dimensionless equation:

du

dt
= u (1 − u) −

muv

a + u
,

dv

dt
= −dv +

muv

a + u
, (4)

where

m =
M

γ
, d =

D

γ
, and a =

A

K
. (5)

Here a, m, d > 0 are dimensionless parameters. Phase portrait analysis can show
for certain parameters, a prey-only or coexistence equilibrium is globally stable (see
Section 2 or [8]); and for other parameters, a periodic solution exists. It has been
shown that for a class of systems including (4), the periodic solution is unique thus
a globally stable limit cycle. The first such uniqueness result was proved by Cheng
[2], and more general uniqueness results for limit cycle in predator-prey systems
have been proved later in [13, 14, 16, 27, 30, 31]. A main idea of later result is to
transform (4) or a more general predator-prey system into a Liénard equation.

Our interest in this article is on the asymptotic behavior of the limit cycle of (4)
when the predator death rate d tends to zero. A bifurcation point of view could ease
the understanding of our result. If we fix other parameters in the system (4) so that
0 < a < 1, and take d as a bifurcation parameter, then the behavior of the system

changes as the v-isocline
mu

a + u
= d slides when d changes. It is more convenient

to solve this v-isocline as u = λ ≡
ad

m − d
. When λ ≥ 1, the semi-trivial steady

state (1, 0) is globally stable; when (1 − a)/2 < λ < 1 (u = λ intersects with the
falling part of u-isocline), then the coexistence steady state is globally stable; and
when 0 < λ < (1 − a)/2 (u = λ intersects with the rising part of u-isocline), then
the limit cycle is globally stable. Notice that λ = (1 − a)/2 is the Hopf bifurcation
point, where a subcritical Hopf bifurcation occurs, and a small amplitude periodic
solutions emerges for λ < (1 − a)/2.

Our main result in the article is on the limiting behavior of the unique limit
cycle Σλ when the death rate of predator d tends to zero (or equivalently λ tends
to zero). When d is not very small, the periodic functions u(t) and v(t) are still
sinusoidal-like (see Figure 1). Some sharp patterns emerge as d → 0 (or λ → 0).
For small λ, we show that the period of Σλ is in an order of O(λ−1); the prey
population u(t) is low in order of O(λ) for a time scale of O(λ−1), then it has a
spike to reach the maximum but only for a time scale of O(| ln λ|), hence the graph
of u(t) is a periodic pulse; the predator population v(t) reaches the maximum value
from the minimum value in a time scale of O(| ln λ|), then it slowly decays to the
minimum value in a time scale of O(λ−1) and the decay is exponentially slow (see
Figure 2). See Theorem 3.5 for a more mathematical description.

The phenomenon which we describe above makes the limit cycle of predator-prey
system (4) behave similar to a nonlinear relaxation oscillator. Well-known examples
of nonlinear relaxation oscillators are Van der Pol oscillator in electrical circuits em-
ploying vacuum tubes, Fitzhugh-Nagumo oscillator in action potentials of neurons
(see [6, 10, 26, 28, 29].) The existence of relaxation dynamics in predator-prey model
(4) seems to be first discovered in this article. For a two competing predators and
one prey model considered in [11, 12], it is known that stable relaxation oscillations
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exist for some parameter ranges by using singular perturbation methods [18, 21]. In
these work, it is assumed that the prey population has fast dynamics, i.e. the prey
population grows much faster than those of the predators. In the current article, we
assume that the predator has small death rate, and our method is totally different.
Notice that from (5), fast prey growth rate (large γ) implies small m and d, and
we only assume small d and fix m. Yet another example of singular perturbation
in predator-prey system can be found in Deng et. al. [4].

In comparison we also consider the case as the parameter a tends to zero (λ also
tends to zero in this case). The total period of the limit cycle also tends to infinity as
a → 0+. But the asymptotic profile of the limit cycle is quite different. In this limit,
the predator population v(t) shows a spiky pulse shape, and the temporal length
of the pulse is in a scale of O(| ln λ|); on the other hand, the prey population u(t)
shows a profile of Heaviside function, with slow time scales O(λ−1) when u(t) ≈ 0 or
u(t) ≈ 1 (the carrying capacity), connected by fast time scales of O(| ln λ|) between
them (see Figure 3). See Theorem 4.2 for a more mathematical description.

The latter result provides further answer to an old question in ecological studies.
In [24], Rosenzweig argues that enrichment of the environment (larger carrying
capacity K in (2)) leads to destabilizing of the coexistence equilibrium, which is so-
called paradox of enrichment. From (5), when other parameters are fixed, increasing
K is necessarily equivalent to decreasing a. Our result shows that the time interval
when the prey is population near zero is extremely long when the carrying capacity
K is extremely large. That could make the prey population even more vulnerable
to catastrophe perturbation with long time with very low population density.

Our result is rigorously proved by using basic differential and integral calculus, a
Lyapunov function, and phase plane analysis. It is noteworthy that the orbit of the
limit cycle in (4) does not follow the slow manifold as other nonlinear relaxation
oscillators. It is well known that (4) can be converted to a generalized Liénard
equation with a nontrivial transformation (see [16]), but the relaxation oscillation
found here does not follow from known results for Liénard equations or Van der Pol
equations. In fact, by using the change of variables:

u =
ad

m − d
x, v =

m − d

m
y, t =

a + u

ad
τ,

we can convert (4) to

dx

dτ
= x

(

a1 + a2x − a3x
2
)

− xy,
dy

dτ
= −y + xy, (6)

where ai (i = 1, 2, 3) are positive constants defined by

a1 =
1

d
, a2 =

1 − a

m − d
, a3 =

ad

(m − d)2
.

The system (6) has a unique coexistence equilibrium point (x, y) = (1, y0 ≡ a1 +
a2 − a3) and

y0 =
1

d
+

1 − a

m − d
−

ad

(m − d)2
.

A further change of variables

x = eu, y = y0e
v/y0 , (7)

transform (6) into a generalized Liénard equation:

du

dτ
= −[φ(v) + F (u)],

dv

dτ
= h(u), (8)
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where φ(v) = y0(e
v/y0 − 1), F (u) = a2 − a3 − a2e

u + a3e
2u, and h(u) = y0(e

u − 1).
Using this form and a uniqueness result of limit cycle of Liénard equation by Zhang
[31], one can prove the uniqueness of limit cycle of (4) (see [16]). But when d → 0,
we have y0 → ∞ and the profile of the limit cycle does not follow from any existing
results. We point out that the relaxation oscillation property of Van der Pol system

ε
dx

dt
= y − F (x),

dy

dt
= h(x),

when ε → 0 has been studied by Liénard [17], Ponzo and Wax [22, 23], Grasman
[6]. More delicate limiting behavior of the limit cycle of the special system

dx

dt
= y −

x2

2
−

x3

3
,

dy

dt
= ε(a − x),

has been recently obtained by Dumortier and Roussarie [5], Krupa and Szmolyan
[15] and others.

We recall some well-known results regarding the dynamics of system (4) in Section
2, and we prove our main results in Section 3 and 4 for the case d → 0 and a → 0
respectively. We will use δi and Ci, (i ∈ N), to denote various positive constants.
These constants are independent of d in Section 3, and are independent of a in
Section 4.

2. Known results. In this section we summarize known results about the predator-
prey system (4). More detailed analysis can be found in [8, 10, 11]. The predator-
prey system (4) has three steady state solutions: (0, 0), (1, 0), (λ, vλ)

≡ (λ,
(1 − λ)(a + λ)

m
), where λ =

ad

m − d
. The coexistence equilibrium (λ, vλ) is

in the first quadrant if and and if d <
m

a + 1
(or 0 < λ < 1). When d ≥

m

a + 1
(or

λ ≥ 1), (1, 0) is globally stable. Hence we always assume that 0 < d <
m

a + 1
in the

following.
Global stability of (λ, vλ) can be established through a Lyapunov function (see

[8, 9, 10]):

W (u, v) =

∫ u

λ

p(ξ) − d

p(ξ)
dξ +

∫ v

vλ

η − vλ

η
dη, (9)

where p(u) =
mu

a + u
. From straightforward calculation,

Ẇ (u(t), v(t)) = [p(u) − p(λ)] · [v0(u) − v0(λ)], (10)

where

v0(u) =
u(1 − u)

p(u)
=

(a + u)(1 − u)

m
. (11)

When a ≥ 1, v′0(u) < 0 for any u > 0. Hence when a ≥ 1, Ẇ < 0 along an orbit

(u(t), v(t)) of (4) and Ẇ = 0 only if (u(t), v(t)) = (λ, vλ). Thus (λ, vλ) is globally
asymptotically stable when a ≥ 1. On the other hand, if 0 < a < 1, but vλ ≤ a/m
(which is equivalent to v0(λ) ≤ v0(0)), then [p(u) − p(λ)] · [v0(u) − v0(λ)] ≤ 0 for
any u > 0, and in this case (λ, vλ) is also globally asymptotically stable. We notice
that vλ ≤ a/m is equivalent to

λ ≥ 1 − a. (12)

That leaves the case: for any a, m > 0,

a < 1, and 0 < d < m(1 − a) (or equivalently 0 < λ < 1 − a). (13)
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Figure 1. Plot of limit cycle. (left) phase portrait; (right) solu-
tion curves. Parameters: a = 0.5, m = 1, d = 0.1, λ = 1/18 ≈
0.056, period T ≈ 37.
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Figure 2. Plot of limit cycle with small d. (left) phase portrait;
(right) solution curves. Parameters: a = 0.5, m = 1, d = 0.01,
λ = 1/198 ≈ 0.005, period T ≈ 336.
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Figure 3. Plot of limit cycle. (left) phase portrait; (right) solu-
tion curves. Parameters: a = 0.14, m = 2, d = 1, λ = 0.14, period
T ≈ 23.
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The dynamics of (4) under (13) is completely understood. The local stability of
(λ, vλ) can be determined from the linearization at the equilibrium. We use λ as
the bifurcation parameter. The Jacobian at (λ, vλ) is

J =







λ(1 − a − 2λ)

a + λ
−

mλ

a + λ
a(1 − λ)

a + λ
0






≡

(

A(λ) B(λ)
C(λ) 0

)

. (14)

Then λ∗ =
1 − a

2
is a Hopf bifurcation point. When

1 − a

2
< λ < 1, (λ, vλ) is locally

asymptotically stable. Indeed the local stability indeed implies the global asymp-
totical stability of (λ, vλ) from the Poincaré-Bendixon theory and Dulac Theorem
[11], and the global stability of (λ, vλ) can also be proved through a mixed type

Lyapunov function (see [1, 3, 9]). Finally when 0 < λ <
1 − a

2
, (λ, vλ) is locally

unstable, and (4) possesses a unique limit cycle which is globally asymptotically
orbital stable (see [2, 16]).

3. Asymptotic behavior of the limit cycle for d small. In the equation, we
define

f(u, v) = uf1(u, v) = u

(

1 − u −
mv

a + u

)

g(u, v) = vg1(u, v) = v

(

−d +
mu

a + u

)

.

(15)

In the first part we construct an invariant region where the limit cycle is located.
For this part, we always assume that m, d > 0, 0 < a < 1, and λ = ad/(m − d)
satisfies 0 < λ < (1 − a)/2.

We first give an estimate of the unstable manifold U = {(u1(t), v1(t)) : t ∈ R}
at the saddle point (1, 0). From the phase portrait, it satisfies 0 < u1(t) < 1 for all

t ∈ R; U is above the isocline v0(u) =
(1 − u)(a + u)

m
when λ < u < k. Since it is

monotone for λ < u < 1, we denote this portion by {(u, v1(u)) : λ ≤ u ≤ 1} with
v1(1) = 0. We define

v2(u) =

(

1 +
a + 1

m

)

(1 − u),

v3(u) =
m − d

m
(1 − u) +

da

m
lnu.

(16)

Lemma 3.1. The unstable manifold satisfies

v2(u) ≥ v1(u) ≥ v3(u), λ ≤ u ≤ 1. (17)

Proof. From the equation (4), we have

dv

du
=

v

−mv + (1 − u)(a + u)
·
(m − d)u − da

u
.

Since the unstable manifold satisfies 0 < u1(t) < 1 for all t ∈ R, then along U , we
have

dv

du
≤

v

−mv
·
(m − d)u − da

u
= −

(m − d)u − da

mu
.



RELAXATION OSCILLATION IN PREDATOR-PREY SYSTEM 901

Integrating along the portion of U from u = 1 to some u < λ, we obtain

v ≥
m − d

m
(1 − u) +

da

m
lnu = v3(u),

if (u, v) ∈ U and λ ≤ u ≤ 1.
For the upper bound, we notice that the tangent line of the unstable manifold is

v =

(

1 +
(a + 1)(1 − d)

m

)

(1 − u), which is below v = v2(u). Hence we only need

to show that the vector field (f(u, v), g(u, v)) points towards the region below the
line v = v2(u) when (u, v) = (u, v2(u)) and λ < u < 1. That is equivalent to

∣

∣

∣

∣

dv

du

∣

∣

∣

∣

≤ 1 +
a + 1

m
.

Let l = 1 +
a + 1

m
. Indeed on (u, v) = (u, v2(u)),

∣

∣

∣

∣

dv

du

∣

∣

∣

∣

=
l(1 − u)[(m − d)u − da]

|u[(1 − u)(a + u) − ml(1 − u)]|
≤

l(m − d)

ml − a − u
≤

ml

ml − a − 1
= l.

That proves the upper bound v1(u) ≤ v2(u).

From Lemma 3.1, the unstable manifold reaches its maximum v-value when u =
λ, and the maximum value v∗ can be estimated as

m − d

m
(1 − λ) +

da

m
lnλ ≤ v∗ ≤

(

1 +
a + 1

m

)

(1 − λ). (18)

From the phase portrait of the system, the limit cycle is below the unstable
manifold U , then we also have the following upper bound for the location of limit
cycle.

Lemma 3.2. Define

v4(u) =

{

v2(u), λ ≤ u ≤ 1,

v2(λ), 0 ≤ u ≤ λ.
(19)

Then the orbit of the limit cycle Σ = {(u(t), v(t)) : 0 ≤ t ≤ T } satisfies

Σ ⊂ {(u, v) : 0 < u < 1, 0 < v < v4(u)} ≡ R1.

In constructing a more precise region R2 ⊂ R1 containing Σ, we prove that for a
sub-region R3 containing (λ, vλ), Σ ∩ R3 = ∅. Define

R3 = {(u, v) ∈ R2
+ : W (u, v) ≤ W (1 − a − λ, vλ)}, (20)

where W (u, v) is the function defined in (9). We notice that (1 − a − λ, vλ) is the
reflection of (λ, vλ) with respect to the line u = (1−a)/2. Such reflection technique
is a key in proving the uniqueness of the limit cycle of (4) ([2]).

Lemma 3.3. Let R3 be defined as in (20). Then R3 is a bounded convex subset of
R2

+ containing (λ, vλ), and Σ ∩ R3 = ∅. In particular Σ ⊂ R2 ≡ R1\R3.

Proof. From the definition in (9), W (u, v) = W1(u) + W2(v), where W1(u) =
∫ u

λ

p(ξ) − d

p(ξ)
dξ and W2(v) =

∫ v

vλ

η − vλ

η
dη. It is easy to see that W1(u) is strictly

decreasing in [0, λ) and is strictly increasing in (λ,∞); and W2(v) is strictly de-
creasing in [0, vλ) and is strictly increasing in (vλ,∞). Hence W achieves the global
minimum at the unique critical point (λ, vλ), and every level curve of W (u, v) is a
bounded closed curve. The level curves have convex boundary since W1 and W2



902 SZE-BI HSU AND JUNPING SHI

u

v

λ 1 − a − λ(1 − a)/2 1

O1

O2 O3

O4

v4(u)

v6(u)

v5(u)

v0(u)

a/m O5

Figure 4. Illustration of the phase portrait (not up to scale) and the

limit cycle in the proof. The isoclines are the thin solid curves: u =

0, v = 0, u = λ and the parabola v = v0(u); the limit cycle is the

thick solid curve O1O2O3O4; the boundary of the invariant region R3:

v = v4(u) is the outer boundary (together with u = 0 and v = 0;

v = v5(u) and v = v6(u) are the upper and lower portions of inner

boundary respectively; the line u = 1 − a − λ is the reflection of u = λ

with respect to u = (1 − a)/2.

are both convex one-variable functions. For R3 defined in (20), (1 − a − λ, vλ) is
the right-most point of R3. Thus for any solution orbit (u(t), v(t)) passing through

(u, v) ∈ R3\{(1 − a − λ, vλ)}, Ẇ (u(t), v(t)) = [p(u) − p(λ)] · [v0(u) − v0(λ)] > 0.
In particular, for (u, v) ∈ ∂R3\{(1 − a − λ, vλ)}, the vector field (f(u, v), g(u, v))
points outwards. Hence from the properties of periodic orbit, Σ ∩ R3 = ∅.

From Lemmas 3.2 and 3.3, we have obtained an invariant region R2 where the
limit cycle is located. Next we give some estimates for the extremal points on the
orbit of limit cycle as d → 0+. The other two parameters 0 < a < 1 and m > 0
are fixed, while λ = ad/(m − d) → 0 as d → 0+. Hence d and λ are two equivalent
parameters which tend to zero. Define

uλ,− = min{u(t) : (u(t), v(t)) ∈ Σ}, uλ,+ = max{u(t) : (u(t), v(t)) ∈ Σ},

vλ,− = min{v(t) : (u(t), v(t)) ∈ Σ}, vλ,+ = max{v(t) : (u(t), v(t)) ∈ Σ}.
(21)

Notice that the both the upper and lower portions of the limit cycle are monotone
functions, thus we define

Σ = {(u, v+(λ, u)) : uλ,− ≤ u ≤ uλ,+}
⋃

{(u, v−(λ, u)) : uλ,− ≤ u ≤ uλ,+}, (22)
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such that v−(λ, u) < v0(u) < v+(λ, u) for uλ,− < u < uλ,+. That is, {(u, v+(λ, u))}
is the upper portion of the limit cycle Σ, and {(u, v−(λ, u))} is the lower portion.
From the equations, it is easy to see that uλ,− and uλ,+ are achieved when Σ inter-
sects with the isocline v = v0(u), and vλ,− and vλ,+ are achieved when Σ intersects
with the line u = λ. Our estimates are mainly based on the inner boundary of the
region R2, i.e. the level curve Σ1 = {(u, v) : W (u, v) = W (1 − a − λ, vλ)}. Hence
we also define

u1,λ = min{u : (u, v) ∈ Σ1}, u2,λ = max{u : (u, v) ∈ Σ1},

v1,λ = min{v : (u, v) ∈ Σ1}, v2,λ = max{v : (u, v) ∈ Σ1},
(23)

and

Σ1 = {(u, v5(u)) : u1,λ ≤ u ≤ u2,λ}
⋃

{(u, v6(u)) : u1,λ ≤ u ≤ u2,λ}, (24)

such that v6(u) < v0(u) < v5(u) for u1,λ < u < u2,λ. Notice that ∇W =

(
p(u) − d

p(u)
,
v − vλ

v
), hence v1,λ and v2,λ are the two intersects of W (u, v) = W (1 −

a−λ, vλ) with the line u = λ. Also u2,λ = 1−a−λ, and u1,λ satisfies W (u1,λ, vλ) =
W (1 − a − λ, vλ) with u1,λ < λ. We notice that

W (u, v) = W1(u) + W2(v) =
a

a + λ
h(u, λ) + h(v, vλ), (25)

where

h(x, b) = x − b − b ln
(x

b

)

. (26)

The function h(x, b) satisfies

∂h

∂x
(x, b) = 1 −

b

x
,

∂h

∂b
(x, b) = − ln

(x

b

)

; (27)

and for fixed b > 0, h(·, b) achieves its global minimum 0 at x = b, and
limx→0+ h(x, b) = limx→∞ h(x, b) = ∞. Thus for any b > 0, h(x, b) = c has exactly
two roots for any c > 0.

Lemma 3.4. Assume that 0 < a < 1 and m > 0 are fixed. For any δ0 > 0, there
exists δ1 > 0 such that for 0 < λ < δ1,

1. 0 < vλ,− < v1 + δ0 and v2 − δ0 < vλ,+ where v1 and v2 are the two roots of
h(v, a/m) = 1 − a such that v1 < a/m < v2;

2.

0 < uλ,− < (1 + δ1) exp

(

−
1 − a

λ

)

. (28)

Proof. From Lemma 3.3, vλ,− < v1,λ and v2,λ < vλ,+. By definition v = vi,λ

(i = 1, 2) satisfy W (λ, v) = W (1 − a − λ, vλ). From the form of W (u, v) in (25),
v = vi,λ (i = 1, 2) satisfy

h(v, vλ) =
a

a + λ
h(1 − a − λ, λ). (29)

Clearly v = vi,λ is continuously differentiable in λ. Differentiating (29) with respect
to λ with v = vi,λ, and from (27), we obtain

(

1 −
vλ

vi,λ

)

∂vi,λ

∂λ
− ln

(

vi,λ

vλ

)

·
1 − a − 2λ

m

= −
a

(a + λ)2

[

1 − a − 2λ

1 − a − λ
+ a ln

(

1 − a − λ

λ

)]

.

(30)
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Since v1,λ < vλ, then (30) implies that
∂v1,λ

∂λ
> 0 for all 0 < λ < (1 − a)/2. In

particular, lim
λ→0+

v1,λ = v1 exists. On the other hand, when λ → 0+, the right hand

side of (30) tends to −∞ while the second term on the left hand side is bounded.

Since v2,λ > vλ, then there exists δ1 > 0 such that when 0 < λ < δ1,
∂v2,λ

∂λ
< 0,

and again lim
λ→0+

v2,λ = v2 exists. Taking the limit of (29) as λ → 0+, we obtain

that v1 and v2 satisfy h(v, a/m) = 1 − a. From the definitions of v1 and v2, it is
clear that v1 < a/m < v2. From the monotone properties of vi,λ, we can assume
that when 0 < λ < δ1, v1,λ < v1 + δ0, and v2,λ > v2 − δ0. Thus when 0 < λ < δ1,
vλ,− < v1,λ < v1 + δ0, and vλ,+ > v2,λ > v2 − δ0.

For part 2, it is clear that uλ,− < λ from the phase portrait. For the more precise
estimate of uλ,−, we observe that uλ,− < u1,λ. So it suffices to give an estimate of
u1,λ. Indeed u1,λ satisfies W (u1,λ, vλ) = W (1 − a− λ, vλ), thus from (25), we have
h(u1,λ, λ) = h(1 − a − λ, λ), which implies that

u1,λ − λ ln(u1,λ) = 1 − a − λ − λ ln(1 − a − λ). (31)

Taking the limit of (31) as λ → 0+, we obtain that

lim
λ→0+

[u1,λ − λ ln(u1,λ)] = 1 − a. (32)

But 0 < u1,λ < λ, hence limλ→0+ [−λ ln(u1,λ)] = 1 − a. This implies that

u1,λ = exp

(

−
1 − a

λ

)

+ higher order terms, (33)

which in turn implies the estimate in part 2.

To obtain the global asymptotical behavior of the limit cycle Σ, we divide the
orbit with four reference points (see Figure 4):

O1 = (λ, vλ,+), O2 = (λ, vλ,−),

O3 =

(

1 − a

2
, v−

(

1 − a

2

))

, O4 =

(

1 − a

2
, v+

(

1 − a

2

))

.
(34)

Let T = T (λ) be the period of Σ. Then T = T1 + T2 + T3 + T4, where Ti is the
time taken from Oi to Oi+1 (with O5 = O1). We also assume that u(0) = λ and
v(0) = vλ,+, i.e. the orbit starts from the highest point of v(t). Our main result in
this section is

Theorem 3.5. Let Σ = {(u(t), v(t) : t ∈ R} be the orbit of the unique periodic
solution of (4) when 0 < λ < (1 − a)/2. Assume that 0 < a < 1 and m > 0 are
fixed, the extremal points of Σ are defined as in (21), and Oi, Ti (i = 1, 2, 3, 4) and
the period T are defined as above. When λ > 0 is sufficiently small (or equivalently
d > 0 is small), then there exist constants C4, C5 > 0 independent of λ, such that
C5λ

−1 ≥ T ≥ C4λ
−1. Moreover, for λ > 0 sufficiently small, there exists some

C6 > 0, such that

C5λ
−1 ≥ T1 ≥ C6λ

−1, T2 = O(| ln λ|), T3 = O(1), and T4 = O(| lnλ|), (35)

as λ → 0+.
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Proof. We prove the theorem in several steps.
Step 1: We show that

T1 ≥ d−1
(

1 −
uλ,−

λ

)

−1

ln

(

vλ,+

vλ,−

)

. (36)

We define uλ,− = λ(1 − δ2) for some 0 < δ2 < 1. Then for 0 < t < T1, λ(1 − δ2) ≤
u(t) < λ, and from the equation of v(t),

v′ = v

(

−d +
mu

a + u

)

≥ v

(

−d +
mλ(1 − δ2)

a + λ(1 − δ2)

)

= −v

(

dδ2(m − d)

m − dδ2

)

≥ −dδ2v.

Hence v(t) ≥ v(0) exp(−dδ2t), which leads to

T1 ≥ δ−1
2 d−1 ln

(

vλ,+

vλ,−

)

= d−1
(

1 −
uλ,−

λ

)

−1

ln

(

vλ,+

vλ,−

)

. (37)

Step 2: We show there exist constants δ3, δ4, C1 > 0 such that when 0 < λ < δ4,

0 < T2 ≤ (δ3m)−1(−a lnλ − λ + C1). (38)

For T1 ≤ t ≤ T1 + T2, we have λ ≤ u(t) ≤ (1 − a)/2. From the equation of u(t),

u′ = p(u)[v0(u) − v] ≥ p(u)[v0(u) − v6(u)], (39)

which follows from Lemma 3.3 that the limit cycle is below the level curve (u, v6(u))
in this portion. Since v0(u) is concave while v6(u) is convex, then the minimum of
v7(u) = v0(u) − v6(u) on the interval [λ, (1 − a)/2] must achieve at either u = λ
or u = (1 − a)/2. From the proof of Lemma 3.4, v6(λ) → v1, the smaller root of
h(v, a/m) = 1− a, and v0(λ) = vλ → a/m as λ → 0+. Thus v7(λ) → a/m− v1 > 0
as λ → 0+. Similarly as λ → 0+, v0((1−a)/2) → (1+a)2/(4m), and v6((1−a)/2) →
the smaller root of h(v, a/m) = (1 − a)/2 as we take the limit of λ → 0+ in

W

(

1 − a

2
, v6

(

1 − a

2

))

=
a

a + λ
h

(

1 − a

2
, λ

)

+ h

(

v6

(

1 − a

2

)

, vλ

)

=
a

a + λ
h(1 − a − λ, λ).

Thus there exist δ3, δ4 > 0 such that when 0 < λ < δ4, then

v0(u) − v6(u) ≥ min

{

v0(λ) − v6(λ), v0

(

1 − a

2

)

− v6

(

1 − a

2

)}

≥ δ3 > 0. (40)

Now from (39) and (40), we have

a + u

u

du

dt
≥ δ3m, and a ln

(

1 − a

2λ

)

+
1 − a

2
− λ ≥ δ3mT2, (41)

which implies (38) with C1 = a ln((1 − a)/2) + (1 − a)/2.
Step 3: We show that

0 < T3 ≤

(

m(1 − a)

1 + a
− d

)

−1

ln

(

v+((1 − a)/2)

v−((1 − a)/2)

)

. (42)

For this portion, u(t) ≥ (1 − a)/2. From the equation of v, we have

v′ = v(−d + p(u)) ≥ v(−d + p((1 − a)/2)) = v

(

m(1 − a)

1 + a
− d

)

.
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Hence v(t) ≥ v(T1 + T2) exp

((

m(1 − a)

1 + a
− d

)

t

)

, and in particular

v+

(

1 − a

2

)

≥ v−

(

1 − a

2

)

exp

((

m(1 − a)

1 + a
− d

)

T3

)

,

which implies (42).
Step 4: We show there exist constants δ5, δ6, C2 > 0 such that when 0 < λ < δ6,

0 < T4 ≤ (δ5m)−1(−a lnλ − λ + C2). (43)

This is similar to Step 2. Now we have

u′ = p(u)[v0(u) − v] ≤ p(u)[v0(u) − v5(u)] ≤ p(u)

[

v0

(

1 − a

2

)

− v5

(

1 − a

2

)]

.

(44)
Here the first inequality is from Lemma 3.4, and the second inequality is from
that fact that v0(u) is increasing while v5(u) is decreasing in [λ, (1 − a)/2), and
v0(u) < v5(u). Similar to Step 2, we obtain that when 0 < λ < δ6,

|u′| ≥ δ5p(u).

The remaining part is same as Step 2.
Step 5: We show that for any 0 < δ7 < 1, when λ > 0 is sufficiently small, there
exists constant C3 > 0 such that

T1 ≤
1

δ7
d−1 ln

(

vλ,+

vλ,−

)

+ C3. (45)

We reconsider the portion of Σ in (0, T1) again. From Lemma 3.4 part 2, when
λ > 0 is small enough, the orbit does reach u = λ(1 − δ7). We write T1 = T11 +
T12 + T13 so that u(T11) = λ(1 − δ7), and u(T12) = λ(1 − δ7). That is, T11 and
T11 + T12 are the times that Σ reaches u = λ(1 − δ7). We also define v11 = v(T11)
and v12 = v(T11 + T12).

For t ∈ (T11, T11 + T12), when λ > 0 is sufficiently small, similar to Step 1,

v′ = v

(

−d +
mu

a + u

)

≤ v

(

−d +
mλ(1 − δ7)

a + λ(1 − δ7)

)

= −v

(

dδ7(m − d)

m − dδ7

)

≤ −
dδ7

1 + ε
v,

for any small ε > 0 if d is small enough. Since we can choose δ7 arbitrarily, without
loss of generality we can take ε = 0. Hence we obtain v12 ≤ v11 exp (−dδ7T12), and

T12 ≤
1

dδ7
ln

(

v11

v12

)

≤
1

dδ7
ln

(

vλ,+

vλ,−

)

(46)

Next we estimate T11. Similar to Step 4, for λ > 0 small, |u′| ≥ δ8p(u) for some
δ8 > 0, if 0 < λ < δ9. Here the estimate of v0(u)− v5(u) can be obtained using the
same proof of Lemma 3.4 part 1. Indeed we can replace (29) by

a

a + λ
h((1 − δ)λ, λ) + h(v5((1 − δ)λ), vλ) =

a

a + λ
h(1 − a − λ, λ), (47)

for 0 < δ ≤ δ7. Then the same arguments yields |u′| ≥ δ8p(u). Integration gives

a ln

(

λ

(1 − δ7)λ

)

+ δ7λ ≥ δ8mT11.

Hence T11 is bounded by a constant independent of λ. Similarly we can prove T13

is bounded.
Step 6: We show that there exist constants v3, v4 > 0 such that vλ,+ < v3 and
v4 < vλ,− for all small λ > 0.
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From Lemma 3.1 and (18), we obtain the estimate of upper bound of vλ,+ by
letting v3 = (m + a + 1)/m. For the estimate of v4, we notice that any solution
orbit satisfies

du

dv
=

p(u)

p(u) − d
·
v0(u) − v

v
. (48)

Recall that O1 = (λ, vλ,+) and O2 = (λ, vλ,−) are the highest and lowest points on
the orbit of the limit cycle Σ. Let the leftmost point on Σ be O5 = (uλ,−, v∗). Then
from (48), we obtain that

∫ v∗

vλ,−

v0(u2(v)) − v

v
dv =

∫ uλ,−

λ

p(u) − d

p(u)
du =

∫ v∗

vλ,+

v0(u1(v)) − v

v
dv, (49)

where (u1(v), v), v∗ ≤ v ≤ vλ,+, represents the orbit O1O5, and (u2(v), v), vλ,− ≤
v ≤ v∗, represents the orbit O5O2. For the last integral in (49),

∫ v∗

vλ,+

v0(u) − v

v
dv =

∫ vλ,+

v∗

v − v0(u)

v
dv

≤

∫ vλ,+

v∗

v − v∗
v

dv = vλ,+ − v∗ − v∗ ln vλ,+ + v∗ ln v∗.

(50)

Since v2 − δ0 < vλ,+ < v3 for small λ, then the right hand side of (50) is bounded.
On the other hand, for the first integral in (49),

∫ v∗

vλ,−

v0(u) − v

v
dv ≥

∫ v∗

vλ,−

v∗ − v

v
dv = vλ,− − v∗ − v∗ ln vλ,− + v∗ ln v∗. (51)

Thus − ln vλ,− is bounded from above from (49), (50) and (51), and consequently
vλ,− is bounded from below by some v4 > 0 for all small λ > 0.
Step 7: The completion of the proof.

From Lemma 3.4 and Step 6, when λ > 0 is small, v4 < vλ,− < v1 + δ0 and
v2 − δ0 < vλ,+ < v3 where v1 and v2 are the two roots of h(v, a/m) = 1 − a such
that v1 < a/m < v2, and also limλ→0+ λ−1uλ,− = 0. Also from the definition of

λ, d−1 =
a + λ

λm
>

a

m
λ−1, and d−1 <

a

m
(1 + δ10)λ

−1 for any small δ10 > 0 and we

assume λ small. Thus from Step 1 and Step 5, for any 0 < δ11 < 1, as long as λ > 0
is sufficiently small,

(1 + δ10)a

δ7m
λ−1 ln

(

v3

v4

)

+ C3 ≥ T1 ≥ (1 − δ11)
a

m
λ−1 ln

(

v2 − δ0

v1 + δ0

)

. (52)

Hence we obtain the estimate for T1 in the theorem, since all constants except λ are
independent of λ. The estimate for T3 can also be obtained from Step 3 and Step 6
since v+((1−a)/2) < vλ,+ < v3 and v−((1−a)/2) > vλ,− > v4. The estimates of Ti

for i = 2, 4 are clear from Steps 2 and 4, and T =
∑

Ti = O(λ−1). This completes
the proof.

Remark.

1. Our construction of an invariant region in Lemma 3.3 does not require the
smallness of λ—it holds as long as 0 < λ < (1 − a)/2. This gives a direct
proof of the existence of periodic orbit.

2. When defining O3 and O4, the choice of u = (1− a)/2 can be replaced by any
fixed u = β ∈ (0, (1−a)/2], and the results of Theorem 3.5 still hold with this
change.
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4. Asymptotic behavior of the limit cycle for a small. In this section, we
assume that d and m are fixed so that m > d > 0, and a > 0 is small (thus a < 1).
We will use a lot of estimates established in Section 3, and we will also use the same
notations in Section 3 as well.

Lemma 4.1. Assume that m > d > 0 are fixed. There exist constants δ0, δ1, δ2, δ3,
δ4,v5, v6 > 0 such that for 0 < λ < δ0,

1. δ1 < −a ln vλ,− < δ2 and v5 < vλ,+ < v6,
2. δ4 < −a lnuλ,− < δ3.

Proof. We use the notations in the proof of Lemma 3.4. Recall that vλ,− < v1,λ

and v2,λ < vλ,+, and v = vi,λ satisfy (29), which can be rewritten into

v − vλ − vλ ln

(

v

vλ

)

=
m − d

m
(1 − a − 2λ − λ ln(1 − a − λ) + λ lnλ). (53)

Then when λ → 0 (and a → 0), one can see that v2,λ → (m − d)/m, v1,λ → 0
and limλ→0(−vλ ln v1,λ) = (m − d)/m. On the other hand, from (18), vλ,+ <
(m + a + 1)/m. Thus v5 < vλ,+ < v6 for some constants v5, v6 > 0 independent
of λ. From the estimate of v1,λ, we have obtained that −a ln(vλ,−) ≥ δ1 > 0. For
the upper bound of ln vλ,−, we use the equation (48). From (49), (50) and (51), we
obtain that

vλ,+ − v∗ ln vλ,+ ≥ vλ,− − v∗ ln vλ,−. (54)

Since vλ > v∗ > a/m, v∗, vλ,− → 0 as a → 0 and vλ,+ is bounded, then −a ln(vλ,−) ≤
δ2 for some δ2 > 0. On the other hand, for the second integral in (49), we have

∫ uλ,−

λ

p(u) − d

p(u)
du =

m − d

m
(uλ,− − λ) −

da

m
ln

(uλ,−

λ

)

. (55)

From (50), (51) and (55), we obtain that

vλ,− − v∗ − v∗ ln vλ,− + v∗ ln v∗ ≤
m − d

m
(uλ,− − λ) −

da

m
ln

(uλ,−

λ

)

≤vλ,+ − v∗ − v∗ ln vλ,+ + v∗ ln v∗.
(56)

Then the estimates for −a lnuλ,− follow from those of vλ,− and vλ,+.

Theorem 4.2. Let Σ = {(u(t), v(t) : t ∈ R} be the orbit of the unique periodic
solution of (4) when 0 < λ < (1 − a)/2. Assume that m > d > 0 are fixed, the
extremal points of Σ are defined as in (21), and Oi, Ti (i = 1, 2, 3, 4) and the period
T are defined as in Section 3. When λ > 0 (or equivalently a > 0 is small) is
sufficiently small, then there exist constants C8, C9 > 0 independent of λ, such that
C8λ

−1 ≥ T ≥ C9λ
−1. Moreover, for λ > 0 sufficiently small, there exists some

C6 > 0, such that

C2λ
−1 ≥ T1 ≥ C7λ

−1, T2 = O(| ln λ|), C5λ
−1 ≥ T3 ≥ C6λ

−1, and T4 = O(1),
(57)

as λ → 0+.

Proof. The proof follows and modifies the one for Theorem 3.5, and we still use
the notations in the proof of Theorem 3.5 unless specified otherwise. Step 1 still
holds here. Indeed we define T14 to be the time spent from O1 = (λ, vλ,+) to
O5 = (uλ,−, v∗), and T15 to be the time spent from O5 to O2 = (λ, vλ,−). Then the
same proof in Step 1 gives

T14 ≥ d−1
(

1 −
uλ,−

λ

)

−1

ln

(

vλ,+

v∗

)

, T15 ≥ d−1
(

1 −
uλ,−

λ

)

−1

ln

(

v∗
vλ,−

)

. (58)
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Then from Lemma 4.1, as λ → 0+,

T14 ≥ C1| lnλ|, and T15 ≥ C2λ
−1. (59)

For Step 2, from the equation of u(t), we obtain

u′ = p(u)[v0(u) − v] ≤ u(1 − u). (60)

then an integration of (60) gives

ln
1 − a

1 + a
− ln

λ

1 − λ
≤ T2, (61)

hence T2 ≥ − lnλ. On the other hand, from the same argument in Step 2 and
Lemma 4.1, we can show that δ5 < −a ln v6((1−a)/2) < δ6 for some δ5, δ6 > 0. For
any small δ7 > 0, we choose λ (or a) small enough so that

m exp(−δ6/a)

a + λ
=

(m − d) exp(−δ6/a)

a
< δ7, (62)

then

u′ = p(u)[v0(u) − v] ≥ p(u)

[

(a + u)(1 − u)

m
− v−

(

1 − a

2

)]

≥ p(u)

[

(a + u)(1 − u)

m
− v6

(

1 − a

2

)]

≥ p(u)

[

(a + u)(1 − u)

m
− exp(−δ6/a)

]

≥ p(u)
(a + u)(1 − δ7 − u)

m
= u(1 − δ7 − u).

(63)

Then the integration of (63) yields

1

1 − δ7

[

ln
1 − a

1 + a − 2δ7
− ln

λ

1 − λ − δ7

]

≥ T2, (64)

Therefore if a and δ7 are small, then T2 ≤ −(1 − δ7)
−1 lnλ. We have proved

C3| lnλ| ≤ T2 ≤ C4| lnλ|. (65)

For Step 4, the proof is similar to that in Theorem 3.5 since both v0((1 − a)/2)
and v5((1−a)/2) are bounded and tend to limits when a → 0+, and lima→0[v0((1−
a)/2) − v5((1 − a)/2)] < 0. Hence we still obtain that T4 = O(1).

For Step 3, the estimate (42) still holds, which gives T3 ≤ C5| ln v−((1−a)/2)| ≤
C5| ln vλ,−| ≤ C5λ

−1. On the other hand, from the equation of v, when u > λ, we
have

v′ = v(−d + p(u)) ≤ v(−d + p(1)) = v

(

m

1 + a
− d

)

. (66)

We integrate the equation (66) from t = T1 (when (u(T1), v(T1)) = O2 to t = T =
∑4

i=1 Ti (when (u(T ), v(T )) = O1, that is, the right half of the orbit), then

T2 + T3 + T4 ≥

(

m

1 + a
− d

)

−1

ln

(

vλ,+

vλ,−

)

≥ C6λ
−1. (67)

However T2 = O(| ln λ|) and T4 = O(1), then

C6λ
−1 < T3 ≤ C5λ

−1. (68)

Finally the arguments in Step 5 are also valid, then T1 ≤ C7λ
−1.
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Remark.

1. Theorem 4.2 can be interpreted as that the orbit is very slow when it is near
the two saddle equilibrium points (0, 0) and (1, 0). From our proof, the orbit
is exponentially close to (0, 0) and (1, 0), and from numerical simulation, the
orbit is also fairly close to the unstable manifolds at (0, 0) and (1, 0).

2. From the proof of Theorem 4.2, we can also see that the time when v(t) < O(a)
is in order of O(λ−1), and the time when v(t) > O(a) is in order of O(| ln λ|).
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