§3.11 Predator-Prey models
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. The general model for predator-prey interaction is following
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In 1923 Volterra proposed a simple model to explain the oscillatory levels of a certain fish catches in Adriatic. The model takes the form
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In 
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 we assume the prey grows exponentially in the absence of predation. The prey is consumed by predator with the amount 
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 per unit time and is converted into the new population of predator at the rate 
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 is the death rate of predator. We note that 
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 was also derived by chemist Lotka in 1920 for the auto catalysis of chemical reaction 
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 is called Lotka-Volterra predator-prey model. In 
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 we have following equilibria: 
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If 
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and 
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 is a saddle point with stable manifold 
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and 
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 is a center. The linearization provides no information for nonlinear system 
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Elimination variable 
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, we obtain equation
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In 
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 phase plane. From 
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Integrate 
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Then each solution of 
[image: image57.wmf])

2

.

11

(

 is a periodic solution and we obtain a series of “neutral” stable closed curves in 
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 plane (See Fig 11.1).
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Figure 11.1


If we assume the prey grows logistically with carrying capacity 
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 in the absence of predation, then the predator-prey model takes the form
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Then there are two cases

Case 1: 
[image: image67.wmf]K

c

d

>

=

b


Then there are two euqilibria: 
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Case 2: 
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Then there are three equilibria: 
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Figure 11.2
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Figure 11.3

Remark:


There are five distinct types of biological interactions between two species:

1. Mutualism or symbiosis (++): Each species has a positive effect on the other.

2. Competition (--): Each species has a negative effect on the other.

3. Commensalism (+0): One species benefits from the interaction, whereas the other is unaffected.

4. Amensalism (-0): One species is negatively affected, whereas the other is unaffected.

5. Predation (+0): One species benefits, whereas the other is negatively affected.
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