§3.10 Two dimensional phase portraits, Fixed points and linearization

The general form of a nonlinear two dimensional vector filed on the phase plane is
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where 
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 given functions. This system can be written more compactly in vector notation as
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where 
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 represents a point in the phase plane, and 
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 is the velocity vector at that point. By flowing along the vector field, a phase point traces out a solution 
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, corresponding to a trajectory winding through the phase plane (Figure 3.10.1).
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Furthermore, the entire phase plane is filled with trajectories, since each point can play the role of an initial condition.

For nonlinear systems, there’s typically no hope of finding the trajectories analytically. Even when explicit formulas are available, they are often too complicated to provide much insight. Instead we will try to determine the qualitative behavior of the solutions. Our goal is to find the system’s phase portrait directly from the properties of 
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. An enormous variety of phase portraits is possible; one example is shown in Figure 3.10.2.
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Figure 3.10.2

Some of the most salient features of any phase portrait are:

1. The fixed points, like 
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, and 
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 in Figure 3.10.2. Fixed points satisfy 
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, and correspond to steady states or equilibria of the system.

2. The closed orbits, like 
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 in Figure 3.10.2. These correspond to periodic solutions, i.e., solutions for which 
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3. The arrangement of trajectories near the fixed points and closed orbits. For example, the flow pattern near 
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 and 
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 is similar, and different from that near 
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4. The stability or instability of the fixed points and closed orbits. Here, the fixed points 
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, and 
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 are unstable, because nearby trajectories tend to move away from them, whereas the closed orbit is stable 
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In this section we extend the linearization technique developed earlier for one-dimensional systems. The hope is that we can approximate the phase portrait near a fixed point by that of a corresponding linear system.

Linearized System


Consider the system
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and suppose that 
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 is an equilibrium, i.e.,
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Let
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denote the components of a small disturbance from the fixed point. To see whether the disturbance grows or decays, we need to derive differential equations for 
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 and 
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. Let’s do the 
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(since 
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 is a constant)


[image: image40.wmf])

,

(

*

*

v

y

u

x

f

+

+

=






(by substitution)
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(Taylor series expansion)
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(since 
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To simplify the notation, we have written 
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 are small, these quadratic terms are extremely small.


Similarly we find
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Hence the disturbance 
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Quadratic terms.
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The matrix
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is called Jacobian matrix at the fixed point 
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Now since the quadratic terms in 
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 are tiny, it’s tempting to neglect them altogether. If we do that, we obtain the linearized system
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whose dynamics can be analyzed by the methods of Section 3.9.

The Effect of Small Nonlinear Terms


Is it really safe to neglect the quadratic terms in 
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? In other words, does the linearized system give a qualitatively correct picture of the phase portrait near 
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? The answer is yes, if the linearized system predicts a saddle, node, or a spiral, then the fixed point really is a saddle, node, or spiral for the original nonlinear system. The equilibrium 
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Remark: Consider the map
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 denote the components of a small disturbance from the fixed point. Then
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Similary
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Then the deviations 
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We obtain the linearized system
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Figure 3.10.1
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