§2.3 Logistic Map: Analysis

The numerical results of the last section raise many tantalizing questions. Let's try to answer a few of the more straightforward ones.
EXAMPLE 3.1:

Consider the logistic map 
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. Find all the fixed points and determine their stability.

Solution: The fixed points satisfy 
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Stability depends on the multiplier 
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. It is unstable for 
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The results of Example 3.1 are clarified by a graphical analysis (Figure 2.3.1). For 
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 the parabola lies below the diagonal, and the origin is the only fixed point. As 
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 increases, the parabola gets taller, becoming tangent to the diag​onal at 
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 the parabola intersects the diagonal in a second fixed point 
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, while the origin loses stability. Thus we see that 
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 bifurcates from the origin in a transcritical bifurcation at 
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 (borrowing a term used earlier for dif​ferential equations).
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Figure 2.3.1
Figure 2.3.1 also suggests how 
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 itself loses stability. As 
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 gets increasingly steep. Example 3.1 shows that the critical slope 
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. The resulting bifurcation is called a flip bifurcation.
Flip bifurcations are often associated with period-doubling. In the logistic map, the flip bifurcation at 
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 does indeed spawn a 2-cycle, as shown in the next ex​ample.

EXAMPLE 3.2:

Show that the logistic map has a 2-cycle for all 
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Solution: A 2-cycle exists if and only if there are two points 
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 is a fixed point of the second-iterate map 
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 is a quadratic polynomial, 
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 is a quartic polyno​mial. Its graph for 
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 is shown in Figure 2.3.2.
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Figure 2.3.2

To find 
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 and 
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, we need to solve for the points where the graph intersects the diagonal, i.e., we need to solve the fourth-degree equation 
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 automatically.) After factoring out the fixed points, the problem reduces to solving a quadratic equation.

We outline the algebra involved in the rest of the solution. Expansion of the equation 
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 by long division, and solving the resulting quadratic equation, we obtain a pair of roots
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Which are real for 
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. Thus a 2-cycle exists for all 
[image: image62.wmf]3

>

r

, as claimed. At 
[image: image63.wmf]3

=

r

, the roots coincide and equal 
[image: image64.wmf]3

2

1

*

1

=

-

=

r

x

, which shows that the 2-cycle bifurcates continuously from 
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 the roots are complex, which means that a 2-cy​cle doesn't exist. (
A cobweb diagram reveals how flip bifurcations can give rise to period-doubling. Consider any map 
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, and look at the local picture near a fixed point where 
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 (Figure 2.3.3).
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Figure 2.3.3

If the graph of 
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 is concave down near 
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, the cobweb tends to produce a small, stable 2-cycle close to the fixed point. But like pitchfork bifurcations, flip bifurca​tions can also be subcritical, in which case the 2-cycle exists below the bifurcation and is unstable (Exercise).
The next example shows how to determine the stability of a 2-cycle.
EXAMPLE 3.3:

Show that the 2-cycle of Example 3.2 is stable for 
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Solution: Our analysis follows a strategy that is worth remembering: To ana​lyze the stability of a cycle, reduce the problem to a question about the stability of a fixed point, as follows. Both 
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 are fixed points of the second-iterate map 
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Now we're on familiar ground. To determine whether 
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 is a stable fixed point of 
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(Note that the same 
[image: image85.wmf]l

 is obtained at 
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 branches bifurcate, they must do so simultane​ously. We noticed such a simultaneous splitting in our numerical observations of Section 2.)
After carrying out the differentiations and substituting for 
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Therefore the 2-cycle is linearly stable for 
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Figure 2.3.4 shows a partial bifurcation diagram for the logistic map, based on our results so far. Bifurcation diagrams are different from orbit diagrams in that unstable objects are shown as well; orbit diagrams show only the attractors.
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Figure 2.3.4

Our analytical methods are becoming unwieldy. A few more exact results can be obtained (see the exercises), but such results are hard to come by. To elucidate the behavior in the interesting region where 
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, we are going to rely mainly on graphical and numerical arguments.
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