Exercises:

1. (Cubic map) Consider the map 
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a) Find all the fixed points and classify their stability.
b) Draw a cobweb starting at 
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c) Draw a cobweb starting at 
[image: image3.wmf]1

.

2

0

=

x

.
d) Try to explain the dramatic difference between the orbits found in parts (b) and (c). For instance, can you prove that the orbit in (b) will remain bounded for all 
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2. (Newton's method) Suppose you want to find the roots of an equation 
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. Then Newton's method says you should consider the map 
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a) To calibrate the method, write down the "Newton map" 
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 for the equation 
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b) Show that the Newton map has fixed points at 
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c) Show that these fixed points are supers/able.
d) Iterate the map numerically, starting from 
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3. Compute the orbit diagram for the logistic map. 
Plot the orbit diagram for each of the following maps. Be sure to use a large enough range for both 
[image: image13.wmf]r

 and 
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 to include the main features of interest. Also, try different initial conditions, just in case it matters.

4. 
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 (Standard period-doubling route to chaos) 
5. 
[image: image16.wmf]n

rx

n

e

x

-

+

=

1

 (One period-doubling bifurcation and the show is over)
6. 
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 (Period-doubling and chaos galore) 
7. 
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 (Nasty mess)
8. 
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 (Attractors sometimes come in symmetric pairs)
9. Analyze the long-term behavior of the map 
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. Find and classify all fixed points as a function of 
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. Can there be periodic so​lutions? Chaos?
10. (Quadratic map) Consider the quadratic map 
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a) Find and classify all the fixed points as a function of 
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.
b) Find the values of 
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 at which the fixed points bifurcate, and classify those bi​furcations.
c) For which values of 
[image: image26.wmf]c

 is there a stable 2-cycle? When is it superstable?
d) Plot a partial bifurcation diagram for the map. Indicate the fixed points, the 2-cycles, and their stability.
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