§1.5 Uniform and nonuniform Oscillator, one-dimensional flow on circle
A point on a circle is often called an angle or a phase. Then the simplest oscillator of all is one in which the phase 
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where 
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 is a constant. The solution is
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which corresponds to uniform motion around the circle at an angular frequency 
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. This solution is periodic, in the sense that 
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, and therefore re​turns to the same point on the circle, after a time 
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. We call 
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 the period of the oscillation.

Notice that we have said nothing about the amplitude of the oscillation. There really is no amplitude variable in our system. If we had an amplitude as well as a phase variable, we'd be in a two-dimensional phase space; this situation is more complicated and will be discussed later.

EXAMPLE 5.1:
Two joggers A and B, are running at a steady pace around a circular track. It takes A 
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 seconds to run once around the track, whereas it takes B 
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 seconds. Of course, A will periodically overtake B; how long does it take for A to lap B once, assuming that they start together?

Solution: Let 
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. This equation says that A runs at a steady pace and completes a circuit every 
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 seconds. Similarly, suppose that 
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Figure 1.5.1

The condition for A to lap B is that the angle be​tween them has increased by 
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. Thus if we define the phase difference 
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, we want to find how long it takes for 
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 to increase by 
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 (Figure 1.5.1). By subtraction we find. Thus 
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Example 5.1 illustrates an effect called the beat phenomenon. Two noninter-acting oscillators with different frequencies will periodically go in and out of phase with each other. You may have heard this effect on a Sunday morning: sometimes the bells of two different churches will ring simultaneously, then slowly drift apart, and then eventually ring together again. If the oscillators inter​act (for example, if the two joggers try to stay together or the bell ringers can hear each other), then we can get more interesting effects, as we will see on the flashing rhythm of fireflies latter in this section.

The equation
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arises in many different branches of science and engineering. Here is a partial list:

Electronics (phase-locked loops)
Biology (oscillating neurons, firefly flashing rhythm, human sleep-wake cycle)

Condensed-matter physics (Josephson junction, charge-density waves) Mechanics (Overdamped pendulum driven by a constant torque)
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Figure 1.5.2

To analyze 
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, we assume that 
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 for convenience; the results for negative 
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 is the mean and 
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Vector Fields
If 
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 reduces to the uniform oscillator. The parameter 
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 introduces a nonuniformity in the flow around the circle: the flow is fastest at 
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 (Figure 1.5.3). This nonuniformity becomes more pronounced as 
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, the oscillation is very jerky: the phase point 
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, after which it zips around the rest of the circle on a much faster time scale. When 
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, the system stops oscillating altogether: a half-stable fixed point has been born in a “saddle-node bifurcation” at 
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 (Figure 1.5.3). Finally, when 
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, the half-stable fixed point splits into a stable and unstable fixed point (Figure 1.5.3). All trajectories are attracted to the stable fixed point as 
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Figure 1.5.3

The same information can be shown by plotting the vector fields on the circle (Fig​ure 1.5.4).
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Figure 1.5.4

EXAMPLE 5.2:

Use linear stability analysis to classify the fixed points of 
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Their linear stability is determined by
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Thus the fixed point with 
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Oscillation Period
For 
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, the period of the oscillation can be found analytically, as follows:
the time required for 
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where we have used 
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The result is
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Figure 1.5.5 shows the graph of 
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 as a function of 
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Figure 1.5.5

When 
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We can estimate the order of the divergence by noting that
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which shows that 
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 blows up like 
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Ghosts and Bottlenecks
The square-root scaling law found above is a very general feature of systems that are close to a “saddle-node bifurcation”. Just after the fixed points collide, there is a saddle-node remnant or ghost that leads to slow passage through a bottleneck.
For example, consider 
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 decreases, the two fixed points approach each other, collide, and dis​appear (this sequence was shown earlier in Figure 1.5.4, except now you have to read from right to left.) For 
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 slightly less than 
[image: image98.wmf]w

, the fixed points near 
[image: image99.wmf]2

/

p
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Figure 1.5.6

A graph of 
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 would have the shape shown in Figure 1.5.7. Notice how the trajectory spends practically all its time getting through the bottleneck.
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Figure 1.5.7

Now we want to derive a general scaling law for the time required to pass through a bottleneck. The only thing that matters is the behavior of 
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 in the imme​diate vicinity of the minimum, since the time spent there dominates all other time scales in the problem. Generically, 
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 looks parabolic near its minimum. Then the problem simplifies tremendously: the dynamics can be reduced to the normal form for a saddle-node bifurcation! By a local rescaling of space, we can rewrite the vector field as
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where 
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 is proportional to the distance from the bifurcation, and 
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 is shown in Figure 1.5.8.
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Figure 1.5.8

To estimate the time spent in the bottleneck, we calculate the time taken for 
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which shows the generality of the square-root scaling law.
EXAMPLE 5.3:

Estimate the period of 
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Solution: The period will be essentially the time required to get through the bottleneck. To estimate this time, we use a Taylor expansion about 
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With the scaling 
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where 
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As 
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which agrees with 
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Fireflies

Fireflies provide one of the most spectacular examples of synchronization in na​ture. In some parts of southeast Asia, thousands of male fireflies gather in trees at night and flash on and off in unison. Meanwhile the female fireflies cruise over​head, looking for males with a handsome light.

To really appreciate this amazing display, you have to see a movie or videotape of it. A good example is shown in David Attenborough's (1992) television series The Trials of Life, in the episode called "Talking to Strangers." See Buck and Buck (1976) [7] for a beautifully written introduction to synchronous fireflies, and Buck (1988) [8] for a more recent review. For mathematical models of synchronous fireflies, see Mirollo and Strogatz (1990) [4] and Ermentrout (1991) [5].

How does the synchrony occur? Certainly the fireflies don't start out synchro​nized; they arrive in the trees at dusk, and the synchrony builds up gradually as the night goes on. The key is that the fireflies influence each other: when one firefly sees the flash of another, it slows down or speeds up so as to flash more nearly in phase on the next cycle.

Hanson (1978) studied this effect experimentally, by periodically flashing a light at a firefly and watching it try to synchronize. For a range of periods close to the firefly's natural period (about 0.9 sec), the firefly was able to match its fre​quency to the periodic stimulus. In this case, one says that the firefly had been en​trained by the stimulus. However, if the stimulus was too fast or too slow, the firefly could not keep up and entrainment was lost—then a kind of beat phenome​non occurred. But in contrast to the simple beat phenomenon of Section 4.2, the phase difference between stimulus and firefly did not increase uniformly. The phase difference increased slowly during part of the beat cycle, as the firefly strug​gled in vain to synchronize, and then it increased rapidly through 
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, after which the firefly tried again on the next beat cycle. This process is called phase walk​through or phase drift.
Model

Ermentrout and Rinzel (1984) [6] proposed a simple model of the firefly's flashing rhythm and its response to stimuli. Suppose that 
[image: image137.wmf])

(

t

q

 is the phase of the firefly's flashing rhythm, where 
[image: image138.wmf]0

=

q

 corresponds to the instant when a flash is emitted. Assume that in the absence of stimuli, the firefly goes through its cycle at a fre​quency 
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Now suppose there's a periodic stimulus whose phase 
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where 
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 corresponds to the flash of the stimulus. We model the firefly's re​sponse to this stimulus as follows: If the stimulus is ahead in the cycle, then we as​sume that the firefly speeds up in an attempt to synchronize. Conversely, the firefly slows down if it's flashing too early. A simple model that incorporates these assumptions is
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where 
[image: image147.wmf]0

>

A

. For example, if 
[image: image148.wmf]Q

 is ahead of 
[image: image149.wmf]q

 (i.e., 
[image: image150.wmf]p

q

<

-

Q

<

0

) the firefly speeds up (
[image: image151.wmf]w

q

>

&

). The resetting strength 
[image: image152.wmf]A

measures the firefly's ability to mod​ify its instantaneous frequency.
Analysis

To see whether entrainment can occur, we look at the dynamics of the phase dif​ference 
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which is a nonuniform oscillator equation for 
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Then
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 is small, the frequencies are relatively close together and we expect that entrainment should be possible. This is confirmed by Figure 1.5.9, where we plot the vector fields for (5.9), for different val​ues of 
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Figure 1.5.9

When 
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, all trajectories flow toward a stable fixed point at 
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 (Figure 1.5.9a). Thus the firefly eventually entrains with zero phase difference in the case 
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. In other words, the firefly and the stimulus flash simultaneously if the fire​fly is driven at its natural frequency.
Figure 1.5.9b shows that for 
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, the curve in Figure 1.5.9a lifts up and the stable and unstable fixed points move closer together. All trajectories are still attracted to a stable fixed point, but now 
[image: image178.wmf]0

*

>

f

. Since the phase difference ap​proaches a constant, one says that the firefly's rhythm is phase-locked to the stim​ulus.

Phase-locking means that the firefly and the stimulus run with the same instantaneous frequency, although they no longer flash in unison. The result 
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 im​plies that the stimulus flashes ahead of the firefly in each cycle. This makes sense—we assumed 
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 the stimulus is inherently faster than the firefly, and drives it faster than it wants to go. Thus the firefly falls behind. But it never gets lapped—it always lags in phase by a constant amount 
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If we continue to increase 
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 both fixed points have dis​appeared and now phase-locking is lost; the phase difference 
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 the oscillators are in phase again.) Notice that the phases don't sepa​rate at a uniform rate, in qualitative agreement with the experiments of Hanson (1978): 
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The model makes a number of specific and testable predictions. Entrainment is predicted to be possible only within a symmetric interval of driving frequencies, specifically 
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. This interval is called the range of entrainment (Figure 1.5.10).
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Figure 1.5.10

By measuring the range of entrainment experimentally, one can nail down the value of the parameter 
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. Then the model makes a rigid prediction for the phase difference during entrainment, namely
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where 
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Moreover, for 
[image: image199.wmf]1

>

m

, the period of phase drift may be predicted as follows. The time required for 
[image: image200.wmf]f

 to change by 
[image: image201.wmf]p

2

 is given by

[image: image202.wmf]ò

ò

=

=

p

f

f

2

0

d

d

dt

dt

T

drift



[image: image203.wmf]ò

-

-

W

=

p

f

w

f

2

0

sin

A

d

.

To evaluate this integral, from
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Since 
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 and 
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 are presumably fixed properties of the firefly, the predictions 
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 and 
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 could be tested simply by varying the drive frequency 
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. Such experi​ments have yet to be done.

Actually, the biological reality about synchronous fireflies is more complicated. The model presented here is reasonable for certain species, such as Pteroptyx cribellata, which behave as if 
[image: image212.wmf]A

 and 
[image: image213.wmf]w

 were fixed. However, the species that is best at synchronizing, Pteroptyx malaccae, is actually able to shift its frequency 
[image: image214.wmf]w

 toward the drive frequency 
[image: image215.wmf]W

 (Hanson 1978). In this way it is able to achieve nearly zero phase difference, even when driven at periods that differ from its nat​ural period by ±15 percent! A model of this remarkable effect has been presented by Ermentrout (1991) [5].
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