§1.3 Phase “plane” analysis [2]: One-dimensional flow

Consider the autonomous equation
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Sometimes it is more important to understand the qualitative behavior of the solutions than finding the solutions in closed form.

EXAMPLE 3.1:
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implies
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If 
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We are unable to write down the solution 
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 in closed form. However in the following figure 1.3.1 we have the flow on the phase line.
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Figure 1.3.1

Set 
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 are the equilibria of the equation of 
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Definition 3.1: 
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Consider the equilibrium 
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. Do the Taylor expansion of 
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Let 
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where 
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is called the linearized equation about the equilibrium 
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EXAMPLE 3.2:

Find all equilibria for 
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 and classify their stability


Solve:   
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The equilibria are 
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Hence 
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