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Introduction

In this lecture note we shall discuss the mathematical modelling in Biological Sci-
ence. Especially we shall restrict our attentions to the following topics:

1. Continuous population models for single species, delay models in population
biology and physiology.

2. Continuous models for inter acting populations: predator-prey model, com-
petition models, mutualism or symbiosis.

3. Chemical reaction Rinetics: Michaelis-Menten theorey for enzyme-substrate
Rinetics.

4. Biological Oscillators: Feedback and control mechanisms, Hodgkin-Huxley
theory for nerve membrane: FitzHugh-Nagumo model.

5. Belousov-Zhabotinski Reactions.

6. Reaction Diffusion, Chemotaxis and Non-local Mechanisms.

7. Biological waves for single species model and multiple-species model.

8. Pattern formation Theory.

In each topics, we shall derive the biological models, then we do the non-
dimensional analysis to reduce the model to a simple model with fewer parameters.
We shall only do the elementary analysis, for example, the linearized stability anal-
ysis or heuristic arguement for the models. Finally we shall show the reader the
computation results. Basically we shall show the readers how to use the mathemat-
ical software, like Matlab, Mathematica, xxp to realize the biological phenomena.
The models will be nonlinear and each topics are of difficult mathematics, a chal-
lenge for students to do and explore. We shall present the important references for
each topics.
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Chapter 1

Continuous population model
for single species

1.1 Logistic equation

The simplest population model of single species is the Malthusim model. Let N(t)
be the population density of the species at time t. Assume the rate of change of the
population is proportional to the current population, i.e.

dN

dt
= rN, N(0) = N0, r > 0 (1.1)

Then obviously N(t) = N0e
rt → ∞ as t → ∞. r is called the intrinsic growth

rate of the species. Model (1.1) is called the Malthusim model. It is used for the
growth of species, like bacteria in a nutrient-unlimited supplied environment. In
1848 Verhulst introduced the following logistic equation:

dN

dt
= rN − bN2 (1.2)

N(0) = N0

In (1.2) the interspecific competition between the members of the species in the
population is considered. It can be rewritten as

dN

dt
= rN

(
1 − N

K

)
(1.3)

N(0) = N0

Then for any N0 > 0, N(t) → K as t → ∞. K is called ”carrying capacity” of the
environment. Although (1.3) can be solved directly by separation of variables,

N(t) =
N0Kert

K + N0(ert − 1)
,

, it is easy to see that if N(t) < K/2 then N ′′(t) > 0 while N(t) > K/2 imples
N ′′(t) < 0. Hence the solution N(t) has a typical sigmoid character with inflection
point at t0 where N(t0) = K/2, which is commonly observed. Sometimes the
inflection point is at t0, N(t0) = θK, 0 < θ ≤ 1, then we consider the following
model due to Gilpin:

dN

dt
= rN

(
1 −
(

N

K

))θ

(1.4)
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Fig.1.1

1.2 Delayed logistic equation

In 1950 ecologist Hutchinson proposed a delayed logistic equation in the following
form

1
N

dN

dt
= r

(
1 − N(t − T )

K

)
(1.5)

i.e. the per capital growth rate depends on the population N(t− T ) at t− T time.

Scaling:

Let τ = t/T and x(τ) = N(t)
K = N(Tτ)

K . Then (1.5) becomes

dx

dτ
=

T

K
rN(t)

(
1 − N(t − T )

K

)
= Trx(τ) (1 − x(τ − 1)) (1.6)

Let α = Tr and y(τ) = x(τ) − 1. Then we have

dy

dτ
= −αy(τ − 1) (1 + y(τ)) (1.7)

From (1.6), x(τ) ≡ 1 is a steady state and the linearized equation about the steady
state x(τ) ≡ 1 is

dy

dτ
= −αy(τ − 1) (1.8)

Let
y(τ) = eλτ (1.9)

and substitutes (1.9) into (1.8), then we have

λeλ = −α (1.10)

The transcendental equation (1.10) has infinitely many roots λ. In A5 of the book
[H], the result due to Hayes was presented.
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Theorem 1.1 All roots of the equation (z + a)ez + b = 0 where a, b ∈ R, have
negative real parts if and only if

a > −1
a + b > 0
b < ξ sin ξ − a cos ξ

where ξ is the root of ξ = −a tan ξ, 0 < ξ < π if a �= 0 and ξ = π/2 if a = 0.

Lemma 1.3 ([H]p.255) Equation (1.7) has a Hopf bifurcation at α = π/2.
For α > π/2, Jones introduced the idea of finding a cone and a map from cone

into itself, and applied a fixed point theorem of cone to prove the existence of
periodic solutions. The reader may check the details in p.254-260 of [H].

1.3 Time-delay models from physiology

Conceptually simple feedback mechanisms are believed to be fundamental for the
control of a large number of different physiological processes. The simplest negative
feedback described by ordinary differential equation

dx

dt
= λ − rx

In physiological situations, time lags are often important and λ and/or r are not
constants, but are some appropriate functions of x(t) and/or x(t − τ).

Delay Models in Physiology : Dynamic Diseases

Cheyne-Stokes respiration:

Cheyne-Stokes respiration is a human respiratory illness manifested by an alter-
ation in the regular breathing pattern which directly related to the breath volume-
the ventilation V . Let the level of arterial carbon dioxide (CO2), c(t), is monitored
by receptors which determine the level of ventilation. It is believed that these CO2-
sensitive receptors are situated in the brainstem so there is an inherent time lag T ,
in the overall control system for breathing levels. We assume the dependence of the
ventilation V on c is a Hill’s function

V = Vmax
cm(t − T )

am + cm(t − T )
, m > 0.

We also assume that the removal of CO2 from the blood is proportional to the
product of the ventilation and the level of CO2 in the blood. Let p be the constant
production rate of CO2 in the body. Then the dynamics of the CO2 level is modelled
by

dc

dt
= p − bc(t) · Vmax

cm(t − T )
am + cm(t − T )

x =
c

a
, t∗ =

pt

a
, T ∗ =

pT

a
, α =

abVmax

p
, V ∗ =

V

Vmax

The model becomes (drop ∗)
x′(t) = 1 − αx(t)V (x(t − T ))

= 1 − αx(t)
xm(t − T )

1 + xm(t − T )
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Steady state:

1 − αx0V (x0) = 0 or V (x0) = 1
αx0

Linearized equation:

u = x − x0 V0 = V (x0), V ′
0 =

dV

dx
(x0)

u′ = −αuV0 − αx0V
′
0u(t − T )

Stability analysis:

u(t) = eλt ⇒ λeλt = −αeλtV0 − αx0V
′
0 − αx0V

′
0eλ(t−T )

λ = −αV0 − αx0V
′
0e−λT

Let
A = αV0, B = αx0V

′
0

then
λ = −A − Be−λT or (λ + A) eλT + B = 0 (1.11)

Set z = λT then
(

z
T + A

)
ez + B = 0 or (z + a) ez + b = 0, where a = AT, b = BT .

By Hayes Theorem and a > 0, b > 0, the steady state x0 is stable if and only if

b < ξ sin ξ − a cos ξ

where ξ is the root of ξ = −a tan ξ, 0 < ξ < π.
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Let T be a bifurcation parameter. Set λ = µ + iω. Then (1.11) becomes

µ = −A − Be−µT cos ωT

ω = Be−µT sinωT
(1.12)

We are interested in the Hopf bifurcation, i.e., the real part µ = 0. If µ = 0 then
(1.12) gives, with s = ωT ,

tan s = − s

AT
π/2 < s < π.

Let µ = 0 and s = s1 then

0 = −A − B cos s1,

s1 = BT sin s1.

This implies

BT =
[
(AT )2 + s2

1

] 1
2

.

When T = 0 we have µ = −A − B < 0. Increase T from T = 0 to T satisfies

BT <
[
(AT )2 + s2

1

] 1
2

,

tan s1 = − s1
AT .

(1.13)

We note that if (1.13) holds then Reλ = µ < 0 i.e. the steady state is stable. In
terms of the original dimensionless variables from (1.13) the conditions are

αx0V
′
0T <

[
(αV0T )2 + s2

1

] 1
2

,

tan s1 = − s1
αV0T .

(1.14)

The actual parameters for normal humans have been obtained by Mackey and Glass
[MG], They are

x0 = 40mmHg, p = 6mmHg/min, V0 = 7.44litre/min,

V ′
0 = 4litre/minmmHg, T = 0.25min,

α = 80litre/min.

The solution of the second equation in (1.13) is s1 ≈ π/2 and

αV0T =
T

x0
= 0.0375.

Hence s1 � αV0T and from (1.14) it follows that the inequality is approximately

V ′
0 <

π

2αx0T
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Fig. 1.2. (a) Schematic picture of the ventilatory control function. (b) Oscillatory
behavior of the ventilation obtained by integrating equation for parameters in which
the ventilation is oscillatory because of instabilities in the negative-feedback control
loop. (c) Ventilation during Cheyne-Stokes respiration. Panels (b) and (c) are from
Mackey and Glass (1977).

These observations are of interest when considering a breathing patern known
as Cheyne-Stokes respiration (see figure 1.2(c)), in which there is a regular waxing
and waning of ventilation. Cheyne-Stokes respiration often occurs in the patho-
logical condition of congestive heart failure (associated with increased circulatory
time τ from the lungs to the chemosensitive centers in the brain stem regulating
ventilation), in obese individuals (increased τ), and it has been reported after neu-
ral brain-stem lesion (associated with increased sensitivity of the ventilatory CO2

response function, i.e., an elevated x∗). Cheyne-Stokes respiration has been in-
duced in normal dogs via an increase in τ with the addition of an arterial extension,
thereby increasing the circulatory time.

In normal individuals, Cheyne-Stokes respiration occurs at high altitude, par-
ticularly during sleep. This phenomenon is the cause of the frequently reported
inability to sleep soundly during the first few nights following movement to a high
altitude from a low altitude. In such circumstances, both O2 and CO2 blood gas
concentrations are believed to play a role. The low O2 stimulates hyperventilation,
which lowers CO2 to the lower asymptote of the CO2 control curve. Ventilation is
then sharply reduced or zero until either an increase of CO2 or a decrease of O2

stimulates a resumption of ventilation.

Regulation of hematopoiesis:

The formation of blood cells in the body, for example white and red blood cells,
platelets produced in the bone marrow is consided. Let c(t) be the concentration
of cells (the population species) in the circulating blood; the units of c are, say,
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cells/mm3. We assume that the cells are lost at a rate proportional to their con-
centration, that is like gc, which the parameter g has dimensions (day)−1. After
the reduction in cells in the blood stream there is about a 6 day delay before the
marrow releases further cells to replenish the deficiency. We thus assume that the
flux λ of cells into the blood stream depends on the cell concentration at an earlier
time, namely c(t − T ), where T is the delay. Such assumptions suggest a model
equation of the form

dc(t)
dt

= λ (c(t − T )) − gc(t). (1.15)

Mackey and Glass (1977) [MG] proposed two possible forms for the function (c(t − T )).
The one we consider gives

dc

dt
=

λamc(t − T )
am + cm(t − T )

− gc, (1.16)
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Chapter 2

Continuous Models for
Interacting Populations

In this chapter we shall introduce the predator-prey models, competition models
and mutualist models.

2.1 Predator-Prey models

Let x(t) be the population density of prey, y(t) be the population density of predator
at time t. The general model for predator-prey interaction is following

dx

dt
= xf(x, y)

dy

dt
= yg(x, y)

x(0) > 0, y(0) > 0

where f(x, y) and g(x, y) satisfy

∂f

∂y
≤ 0,

∂g

∂x
≥ 0.

In 1926 Volterra first proposed a simple model for the predation of one species by
another to explain the oscillatory levels of certain fish catches in the Adriatic. The
model is

dx
dt = x (a − by)

dy
dt = y (cx − d)

(2.1)

The model (2.1) is known as Lotka-Volterra model since the same equations were
also derived by Lotka, a chemist, from the autocatalysis in chemical reation.

As a first step in analysing (2.1) we non-dimensionalize the system by

u(τ) =
cx(t)

d
, v(τ) =

by(t)
a

, τ = at, α = b/a

and (2.1) becomes
du
dτ = u(1 − v)

u(0) > 0, v(0) > 0
dv
dτ = αv(u − 1)

(2.2)

9
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In the uv phase plane, we have

dv

du
= α

v(u − 1)
u(1 − v)

or
v − 1

v
dv + α

u − 1
u

du = 0 (2.3)

Integrate (2.3) we obtain

V (u, v) =
∫ v

1

ξ − 1
ξ

dξ + α

∫ u

1

η − 1
η

dη ≡ const (2.4)

or

v − 1 − ln v + α (u − 1 − ln u) ≡ H

Then each solution of (2.2) is a periodic solution and we obtain a series of ”neutrally”
stable closed curves in u − v plane.

Fig.2.1

If we assume the prey grows logistically with carrying capacity K in the absence of
predation, then the model takes the form⎧⎨⎩

dx
dt = rx

(
1 − x

K

)− bxy,

dy
dt = y (cx − d) .

(2.5)

Let τ = rt, u = x/K, v = b
γ y, β = d

c , α = c
γ . Then (2.5) becomes

du
dt = u(1 − u − v),

dv
dt = αv(u − β).

(2.6)

It can be shown that if β > 1 then the solution of (2.6) satisfies (u(t), v(t)) → (1, 0)
as t → ∞. On the other hand if 0 < β < 1, then (u(t), v(t)) → (β, 1−β) as t → ∞.
(We may employ V (u, v) as a Lyapunov function).
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Fig.2.2

2.2 Realistic Predator-Prey Model

Consider the following Gause-type predator-prey system:

dx
dt = xg(x) − p(x)y

dy
dt = (cp(x) − q(x)) y

(2.7)

where x = x(t), y = y(t) are density of prey and predator respectively. The function
g(x) satisfies

(H1) g(0) > 0, g(K) = 0 for some K > 0 and (x − K)g(x) < 0 for all x �= K.
For example g(x) = r

(
1 − x

K

)
, g(x) = r

(
1 − ( x

K

)θ). The functional response
p(x) satisfies

(H2) p(0) = 0, p′(x) > 0∀x ≥ 0.
The death rate q(x) satisfies

(H3) q(x) > 0, q′ ≤ 0, x ≥ 0.

The constant c is called the conversion rate. There are three types of functional
responses,

(i) p(x) = kx —- Type I,

(ii) p(x) = mx
a+x —- Type II,

(iii) p(x) = mxn

a+xn —- Type III,

Fig.2.3
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Type I is the Lotka-Volterra type. Type II is called Holling’s type II functional
response or Michaelis-Menten type with maximal growth rate m and half saturation
constant a. Type III is also called the learning functional response since the curve
p(x) is a sigmoid type curve with an inflection point.

Stability of the equilibria:
There are three equilibria: (0, 0), (K, 0), (x∗, y∗).
The Jacobian of the system (2.7) is

J(x, y) =
[

xgx(x) + g(x) − ypx(x) ,−p(x)
cypx(x) cp(x) − q(x)

]
.

Then

J(0, 0) =
[

g(0) 0
0 −q(0)

]
Since g(0) > 0, the equilibrium (0, 0) is a saddle point with stable manifold {(x, y) :
x = 0, y ≥ 0} and unstable manifold {(x, y) : y = 0, x ≥ 0}.

The Jacobian matrix at (K, 0) is

J(K, 0) =
[

Kgx(K) ,−p(K)
0 , cp(K) − q(K)

]
Since gx(K) < 0, (K, 0) is stable if and only if cp(K) − q(K) < 0.

The Jacobian at interior equilibrium (x∗, y∗) is

J(x∗, y∗) =
[

H(x∗) −p(x∗)
y∗px(x∗) , 0

]
where

H(x∗) = x∗gx(x∗) + g(x∗) − x∗g(x∗)px(x∗)
p(x∗)

. (2.8)

Since the eigenvalues of J(x∗, y∗) are given by

H(x∗)
2

±
[
H2(x∗) − 4y∗p(x∗)px(x∗)

] 1
2

2
.

It is clear that the sign of the real parts of these eigenvalues coincide with the sign
of H(x∗).
From this we may come to the following condusions, again utilizing y∗ = x∗g(x∗)

p(x∗) ,

H(x∗)2 − 4x∗p(x∗)px(x∗) < 0(> 0) ⇒ (x∗, y∗) is a spiral (node). (2.9)

Further
H(x∗) < 0(> 0) ⇒ (x∗, y∗) is stable (unstable).

The prey isocline is y = xg(x)
p(x) and the predator isocline is x = x∗. From (2.8)

H(x∗)
x∗g(x∗)

=
gx(x∗)
g(x∗)

+
1
x∗ − px(x∗)

p(x∗)

=
d

dx
ln
[
xg(x)
p(x)

]
|x=x∗ .

Then the stability criterion (2.9) becomes

d

dx
ln
[
xg(x)
p(x)

]
|x=x∗ < 0(> 0) ⇒ (x∗, y∗) is stable (unstable) (2.10)
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Then (2.10) is equivalent to the prey isocline

y =
xg(x)
p(x)

is decreasing (increasing)at x∗ ⇒ (x∗, y∗) is stable (unstable).

Example:[HHW] [C]

x′ = rx
(
1 − x

K

)− mx
a+xy

y′ =
(

mx
a+x − d

)
y

x(0) > 0, y(0) > 0

(2.11)

From [HHW] and [C] we have the following results.

Theorem 2.1:

(i) If 0 < K < λ = a

(m
d )−1

then the solution of (2.11) satisfy limt→∞ x(t) = x∗ = λ

and limt→∞ y(t) = y∗.

(ii) If K > λ then there is a unique limit cycle Γ which is globally orbitally stable.

Fig.2.4

Remark: ”Paradox of enrichment” Rosenzweig [R]. The system (2.11) exhibits the
well-known ”paradox of enrichment” which states that according to model (2.11),
enriching a predator-prey system (increasing the carrying capacity K) will cause
an increase in the equilibrium density of the predator but not in that of prey, and
will destabilize the positive equilibrium (the positive steady state changes from
stable to unstable as K increase) and thus increase the possibility of stochastic
extinction of predator. Unfortnately numerous filed observations provide contrary
to this ”paradox of enrichment”. What often observed in nature is that fertilization
does increase the prey density, does not destabilize a stable steady state and fails
to increase the amplitude of oscillations in systems that already cycle.
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In the following we constract a Lyapunov function V (x, y) for the system (2.7) to
prove the global stability for the local stable equilibrium (x∗, y∗) under the condi-
tion that the lines x = x∗ and y = y∗ separate the prey isocline y = xg(x)

p(x) into two
disjoint parts.

Theorem 2.2: [Hsu 1978] If
(

xg(x)
p(x) − y∗

)
(x − x∗) ≤ 0 for all x ≥ 0 then (x∗, y∗)

is globally stable in the 1st quadrant.

Proof: Construct Lyapunov function

V (x, y) =
∫ x

x∗

cp(ξ) − q(ξ)
p(ξ)

dξ +
∫ y

y∗

η − y∗

η
dη (2.12)

on G = {(x, y) : x > 0, y > 0}. Then the time derivative computed along the solu-
tion of (2.7) is

V̇ = (cp(x) − q(x))
(

xg(x)
p(x)

− y∗
)

≤ 0 on G.

Let E =
{
(x, y) ∈ G : V (x, y) = 0

}
. Then E =

{
(x, y) : xg(x)

p(x) = y∗, y ≥ 0
}

, and the
largest invariant set M in E is {(x∗, y∗)}. Hence the theorem follows directly from
LaSalle’s Invariance Principle [H].

There are two types of ”ratio-dependence” models.

Example [Hsu & Hwang] Holling-Tanner model

x′ = rx
(
1 − x

K

)− mx
a+xy

y′ = δy
(
1 − y

hx

)
x(0) > 0, y(0) > 0

(2.13)
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Fig.2.5

Consider the nondimensional system of (2.13)

dx
dt = x(1 − x) − x

a+xy = f(x, y)

dy
dt = y

(
δ − β y

x

)
= g(x, y)

(2.14)

It is easy to verify E∗ = (x∗, y∗) is locally asymptotically stable if P (x∗) > 0 where

P (x) = 2x2 + (a + δ − 1)x + aδ

and E∗ is an unstable focus or node if P (x∗) < 0. In [HH1] the author prove the
global stability of E∗ by application Dulac’s criterion. To show the uniqueness of
limit cycle, we convert the system (2.14) into a Gause-type predator-prey system
by the transformation (x, y) → (x, u) where u = yl(x), l(x) =

(
1−x

x

)δ. Then (2.14)
becomes

dx
dt = x(1 − x) − x

a+x
u

l(x) ,

du
dt = u2β

xl(x)(1−x)(a+x)

(
x + a

x∗
)
(x − x∗).

(2.15)

The isocline u = h(x) = (1 − x)(a + x)l(x) satisfies

h′(x) = − l(x)
x

P (x)

The graph of h(x) is Fig.2.6.

Fig.2.6
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If x∗ < x̂ then we construct a Lyapunov function like (2.12) to show that (x∗, y∗)
is global stable. For α1 < x∗ < α2, (x∗, y∗) is unstable and by Poincaré-Bendixson
Theorem there exists a limit cycle. The problem of uniqueness of limit cycle was
studied in [HH2].

For x∗ > α2, E∗ is global stable. For x̂ < x∗ < α1, there may exists limit cycles
even E∗ is stable due to the subcritical Hopf bifurcation.

Example: [HHK]

x′ = rx
(
1 − x

K

)− c( x
y )

a+( x
y )y = rx

(
1 − x

K

)− cxy
ay+x = F1(x, y)

y′ =
[

m( x
y )

a+( x
y ) − d

]
y =
(

mx
ay+x − d

)
y = F2(x, y)

(2.16)

This model demostrates the possibilities of simultaneous extinction of predator and
prey and the outcomes depending on the initial populations.

We note that (0, 0) is also an equilibrium of (2.16) for

lim
(x,y)→(0,0)

F1(x, y) = lim
(x,y)→(0,0)

F2(x, y) = 0

With the scaling
t → rt, x → x/K, y → my

K
,

(2.16) is converted into

x′(t) = x(1 − x) − sxy
x+y

y′(t) = δy(−r + x
x+y )

(2.17)

where s = c
ma , δ = f

a , d
f .

Consider the change of variables (x, y) → (u, y), u = x
y , then (2.17) is reduced

to the following Gause-type predator-prey system

u′(t) = g(u) − ϕ(u)y

y′(t) = ψ(u)y
(2.18)

where

g(u) = u(A + Bu)/(1 + u),
ϕ(u) = u2,

ψ(u) = δ

(
u

u + 1
− r

)
A = 1 + δr − s, B = 1 + δr − δ.

(2.18) can also be rewritten as

u′(t) = ϕ(u) (h(u) − y)

y′(t) = ψ(u)y
(2.19)

we see that the prey isocline of (2.18) is given by

y =
g(u)
ϕ(u)

= h(u) =
A + Bu

u(u + 1)
.
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There are several cases for the shapes of prey-isoclines for different A and B. (See
Fig. 2.7)

Fig.2.7: Scenarios of the shape of y = h(u).

The direction field for (2.19) under various conditions is shown as in Fig. 2.8.
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Fig.2.8: The direction field chart for system (2.19) under various
conditions.

The most interesting cases are the case 0 < r < 1, A > 0, B < 0 in Fig. 2.8(f). For
θ0 < u∗ < θ1, there are two possible cases:

(i) The stable manifold Γ of equilibrium E1 = (θ0, 0) of the system (2.18) intersect
prey-isocline y = h(u). Then Γ connects to the equilibrium E∗ = (u∗, y∗) (See
Fig. 2.9)

Fig.2.9

In this case, it can be shown that limt→∞ (u(t), y(t)) = (0, 0) as t → ∞ for
(u(0), y(0)) �∈ Γ

(ii) The stable manifold Γ does not intersect the prey-isocline y = h(u)
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Fig.2.10

Then limt→∞ (u(t), y(t)) = (0, 0) if (u(0), y(0)) is above Γ and there exists a unique
limit cycle C below Γ and limt→∞ dist ((u(t), y(t)) ,Γ) = 0 provided (u(0), y(0)) �=
E∗ and (u(0), y(0)) below Γ. (See Fig. 2.10)

For u∗ > θ1, then Γ does not intersect y = h(u). If (u(0), y(0)) is above Γ then
(u(t), y(t)) → (0, 0) as t → ∞. If (u(0), y(0)) is below Γ then (u(t), y(t)) → E∗ as
t → ∞. (See Fig. 2.11)

Fig.2.11

If we return to original variables, then the dynamical behavior of the solutions are
show in Fig. 2.12.
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Fig.2.12: Figures 2.12(a,b) illustrate the case when origin is the global
attractor. Figures 2.12(c,d) illustrate the case when a heteroclinic cycle
is the global attractor. Figures 2.12(e,f) illustrate the case when a limit

cycle is the global attractor.

Open problems:
The prey-dependent model (2.11) and ratio-dependent model (2.16) are two

extreme cases for predator-prey models. Some ecologists propose the following
model ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′ = rx
(
1 − x

K

)− c( x
yr )

a+( x
yr )y

y′ =
(

m( x
yr )

a+( x
yr ) − d

)
y

x(0) > 0, y(0) > 0

(2.20)

For r = 0, we have system (2.11) which behavior of the solutions are independent
of initial populations and conversion rate c, depend on carrying capacity K. On the
other hand, for r = 1, the ratio-dependent system (2.16) which behavior of solutions
depends on initial population and c, independent of K. Treat γ, 0 < γ < 1 as a
bifurcation parameter, it is interesting to see how the behavior changes for the
system (2.20), when does the bifurcation occurs.

2.3 Competition Models

The general n-species competition model is decribed by the following systems

x′
1 = x1f1(x1....xn)

...

x′
n = xnfn(x1....xn)

xi(0) > 0, i = 1, 2, ..., n

(2.21)

where fi(x1, ...xn) satisfies
∂fi

∂xj
≤ 0, j �= i.
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In this section we first consider two-species competition model

x′
1 = x1f1(x1, x2) ∂f1

∂x2
≤ 0, ∂f2

∂x1
≤ 0

x′
2 = x2f2(x1, x2)

(2.22)

Lotka-Volterra two-species competition model:

dx1
dt = r1x1

(
1 − x1

f1

)
− α1x1x2

dx2
dt = r2x2

(
1 − x2

K2

)
− α2x1x2

(2.23)

There are equilibria: E0 = (0, 0), E1 = (K1, 0) and E2 = (0,K2). The interior equi-
librium at E∗ = (x∗

1, x
∗
2) exists under following case (iii) and (iv). The varational

matrix E(x1, x2) is

A(x1, x2) =

⎡⎣ γ1

(
1 − x1

K1

)
− α1x2 − γ1

K1x1, −α1x1

−α2x2, γ2

(
1 − x2

K2

)
− α2x1 − γ2

K2
x2

⎤⎦
At E0,

A(0, 0) =
[

γ1 0
0 γ2

]
E0 is a source or a repeller.
At E1 = (K, 0)

A(K1, 0) =
[ −γ1, −α1K1

0, γ2 − α2K1

]
At E2 = (0,K2)

A(0,K2) =
[

γ1 − α1K2, 0
−α2K2, 0

]
There are four cases according to the position of isoclines L1 : γ1

(
1 − x1

K1

)
−α1x2 =

0 and L2 : γ2

(
1 − x2

K2

)
− α2x1 = 0:

(i) Extinction case: species y wins

In this case E2 = (0,K2) is a stable node, E1 = (K1, 0) is a saddle point and
E0 = (0, 0) is an unstable node. It can be show that limt→∞ (x1(t), x2(t)) =
(0,K2).
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(ii) Extinction case: species x1 win.

In this case E1 = (K1, 0) is a stable node, E2 = (0,K2) is a saddle point
and E0 = (0, 0) is an unstable node. It can be shown limt→∞ (x1(t), x2(t)) =
(K1, 0).

(iii) Coexistence case:

In this case E1 = (K1, 0) and E2 = (0,K2) are saddle point, E0 = (0, 0) is an
unstable node. It can be shown limt→∞ (x1(t), x2(t)) = (x∗

1, x
∗
2).

The variational matrix for E∗ is

A(x∗
1, x

∗
2) =
[ − γ1

K1
x∗

1, −α1x
∗
1

−α2x
∗
2, − γ2

K2
x∗

2

]
The characteristic polynomial of A(x∗, y∗) is

λ2 +
(

γ1

K1
x∗ +

γ2

K2
x∗

2

)
λ + x∗

1x
∗
2

(
γ1γ2

K1K2
− α1α2

)
= 0

Since γ2
α2

> K1, γ1
α1

> K2, it follows that E∗ = (x∗
1, x

∗
2) is a stable node.
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(iv) Bistable case:

In this case E1 = (K1, 0) and E2 = (0,K2) are stable nodes. E0 = (0, 0) is an
unstable node.
And from E1 > γ2

α2
, K2 > γ1

α1
, it follows that E∗ = (x∗

1, x
∗
2) is a saddle

point. It can e shown that there exists an one-dimensional stable manifold
Γ of E∗ = (x∗

1, x
∗
2) such that every trajectory with initial condition on the

left(right) hand of Γ converges to (0,K2) ((K1, 0)).

Remark 3.1: We apply isocline analysis and Poincaré-Bendixon theorem to obtain
the global behavior of the solutions in case (i)–(iv). This technique is frequently
used in the cases of resource-based two species competition model in chemostat.

Remark 3.2: For the general n-species system (3.1), M. Hirsch [Hirsch] showed
that there exists a ”carrying” simplex W which is the boundary of repeller of origin
and is homeomorphic to a n-simplex, such that the ω-limit set of each trajectory
lies on W .

Remark 3.3: For n = 3, M. Hirsch [Hirsch] and Smith [S] showed that Poincaré-
Bendixon Theorems holds and every periodic orbit ”enclose” an equilibrium.
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Remark 3.4: May-Leonard model of Three competing species [May][SSW][Hsu].
Consider

x′
1 = x1 (1 − x1 − αx2 − βx3)

x′
2 = x2 (1 − βx1 − x2 − αx3)

x′
3 = x3 (1 − αx1 − βx2 − x3)

(2.24)

under the assumption 0 < α < 1 < β, α +β > 2, then there exists a unique interior
equilibrium P = 1

1+α+β (1, 1, 1) which is a saddle point with one-dimensional stable
manifold Γ and the solutions with x0 = (x1(0), x2(0), x3(0)) Γ exhibits nonperiodic
oscillations. Specifically, the ω-limit set ω(x0) = O123, where the orbit O3 on
x1x2 plane connecting e2 = (0, 1, 0) to e1 = (1, 0, 0) and orbit O2 on x1x3 plane
connecting e1 = (1, 0, 0) to e3 = (0, 0, 1) and orbit O1 on x2x3 plane connecting e3

to e2.

Remark 3.5: Smale [[S], P.71] show that for n ≥ 4, given only dynamical system on
n-simplex (including chaotic dynamics), we are able to constract an n-dimensional
competitive system. Hence for n ≥ 4, we anticipate a complicated behavior of the
solutions.

Remark 3.6: We say the following system

x′
i = xifi (x1, x2, x3, ...., xn) , i = 1, 2, ...., n (2.25)

is a cooperative system (or mutalist system) if ∂fi

∂xj
≥ 0 for all j �= i. We note that

the competitive system (3.1) is the ”reverse” time system of (3.5). One nice thing
of cooperative system is the property of monotonicity, i.e., −→x (0) ≥ −→y (0) implies
−→x (t) ≥ −→y (t) for all t ≥ 0, where x(t), y(t) are solutions of (3.5). The monotonicity
can be obtained by Kamke’s Theorem [C]. For two species competition model

x′
1 = x1f1(x1, x2)

x′
2 = x2f2(x1, x2)

(2.26)

we also have the monotonicity property. Define a = (a1, a2) ≤K b = (b1, b2) if
and only if a1 ≤ b1, a2 ≥ b2. Then it can be shown that −→x (0) ≤K

−→y (0) implies
−→x (t) ≤K

−→y (t) for all t ≥ 0.



Chapter 3

Chemical Reaction Kinetics

3.1 Enzyme Kinetics

Law of Mass Action:
The rate of a reaction is proportional to the product of the concentrations of

the reactants.

Fig.3.1

Consider one of the most basic enzymatic reactions, proposed by Michaelis and
Menten (1913) involving a substrate (molecule) S reacting with an enzyme E to
form a complex SE which in turn is converted into a product P . Schematically we
have

S + Ek1
k−1SE, SE →k2 P + E.

Let
s = [S], e = [E], c = [SE], p = [P ]

where [ ] denotes concentration. By Law of mass action, we have the system of
nonlinear equations

ds
dt = −k1es + k−1c,

de
dt = −k1es + (k−1 + k2) ,

dc
dt = k1es − (k−1 + k2) c, dp

dt = k2c,

s(0) = s0, e(0) = e0, c(0) = c0, p(0) = p0.

(3.1)

From (3.1), we have

de

dt
+

dc

dt
= 0 or e(t) + c(t) ≡ e0 (3.2)

25
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By (3.2) we have

ds
dt = −k1e0s + (k1s + k−1) c,

dc
dt = k1e0s − (k1s + k−1 + k2) c,

s(0) = s0, c(0) = 0

(3.3)

With the nondimensionalization

τ = k1e0t, u(τ) = s(t)
s0

, v(τ) = c(t)
e0

λ = k2
k1s0

, K = k−1+k2
k1s0

, ε = e0
s0

(3.4)

the system (3.3) become

du
dτ = −u + (u + K − λ) v

ε dv
dτ = u − (u + K) v

u(0) = 1, v(0) = 0

(3.5)

where 0 < ε � 1 and from (3.4), K > λ.

Fig.3.2

Here v(τ) changes rapidly in dimensionless time τ = O(ε). After that v(τ) is essen-
tially in a steady state, or ε dv

dτ ≈ 0, i.e., the v-reaction is so fast it is more or less
in equilibrium at all times. This is Michaelis and Menten’s pseudo-steady state hy-
pothesis. In the following we introduce method of singular perturbation for system
(3.5).

Singular Perturbation: Initial Value Problem

Consider the following system

dx
dt = f(x, y)

εdy
dt = g(x, y), 0 < |ε| � 1

x(0, ε) = x0, y(0, ε) = y0

(3.6)
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If we set ε = 0 in (3.6), then

dx
dt = f(x, y), x(0) = x0

0 = g(x, y)
(3.7)

Assume g(x, y) = 0 can be solved as

y = ϕ(x) (3.8)

Substitute (3.8) into (3.7), then we have

dx
dt = f (x, ϕ(x))

x(0) = x0

(3.9)

Let X0(t), 0 ≤ t ≤ 1 be the unique solution of (3.9) and Y0(t) = ϕ (X0(t)). In
general Y0(0) �= y. Assume the following hypothesis:

There exists K > 0 such that for 0 ≤ t ≤ 1

[
∂g

∂y

] ∣∣∣∣∣∣∣ x = X0(t)
y = Y0(t)

≤ −K(H)and

[
∂g

∂y

] ∣∣∣∣∣∣∣ x = X0(t)
y = λ

≤ −Kforall

λ lying between Y (0) and y0. We shall prove that

lim
ε↓0

x(t, ε) = X0(t), lim
ε↓0

y(t, ε) = Y0(t)

Uniformly on 0 < t ≤ 1. Since Y0(0) �= y0, we expect Y0(t) to be non-uniformly
valid at t = 0. Introduce a new variable, the stretch variable ξ = t/ε and write

x(t, ε) = X(t, ε) + u(ξ, ε)

y(t, ε) = Y (t, ε) + v(ξ, ε)
(3.10)

where X(t, ε), Y (t, ε) are called ”outer solutions” and u(ξ, ε), v(ξ, ε) are called ”inner
solutions”. There is a matching condition between inner and outer solutions,

lim
ξ↑∞

u(ξ, ε) = 0 lim
ξ↑∞

v(ξ, ε) = 0 (3.11)

Fig.3.3
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Step 1: Finding outer solutions X(t, ε) and Y (t, ε).
Let

X(t, ε) =
∞∑

n=0

εnXn(t), Y (t, ε) =
∞∑

n=0

εnYn(t). (3.12)

Do the regular perturbation for system (3.6), i.e. substitute (3.12) into (3.6) and
compare εn-term for n = 0, 1, 2, ..... Compute

f (X(t, ε), Y (t, ε)) = f (
∑

εnXn,
∑

εnYn)

= f (X0, Y0) + ε

[(
∂f
∂x

)
X0,Y0

X1 +
(

∂f
∂y

)
X0,Y0

Y1

]
+ O(ε2),

g (X(t, ε), Y (t, ε)) = g (
∑

εnXn,
∑

εnYn)

= g (X0, Y0) + ε

[(
∂g
∂x

)
X0,Y0

X1 +
(

∂g
∂y

)
X0,Y0

Y1

]
+ O(ε2)

(3.13)

The comparison of ε2 term by substituting (3.11) into (3.6) yields

O(1)

dX0
dt = f(X0, Y0)

= g(X0, Y0)
(3.14)

O(ε)

dX1
dt =
(

∂f
∂x

)
X0,Y0

X1 +
(

∂f
∂y

)
X0,Y0

Y1

0 =
(

∂g
∂x

)
X0,Y0

X1 +
(

∂g
∂y

)
X0,Y0

Y1 − dY0
dt

(3.15)

In (3.14) X0(t), Y0(t) satisfy

Y0(t) = ϕ (X0(t)) ,

dX0
dt = f (X0, ϕ(X0)) ,

X0(0) = x0.

(3.16)

From (3.15), we obtain

Y1(t) =

[
dY0

dt
−
(

∂g

∂x

)
X0,Y0

X1

]/(
∂g

∂y

)
X0,Y0

, (3.17)

and X1(t) satisfies

dX1
dt = ψ1(t)X1 + µ1(t)

X1(0) = 0
(3.18)
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where

ψ1(t) =
(

∂f

∂x

)
X0,Y0

−
(

∂f
∂y

)(
∂g
∂x

)
(

∂g
∂y

) |X0,Y0 ,

µ1(t) =

(
∂g
∂y

)
X0,Y0

dY0
dt(

∂g
∂y

)
X0,Y0

·

Inductively we shall have for i = 2, 3, .....

Yi(t) = αi(t) + βi(t)Xi(t)

dXi

dt = ψi(t)Xi + µi(t),

Xi(0) = 0.

(3.19)

for x(0, ε) = X(0, ε) = x0 =
∑∞

i=1 Xi(0)εn it follows that X0(0) = x0 and Xi(0) = 0
for i = 1, 2, .....

Step 2: Inner expansion at sigular layer near t = 0.
From (3.6) and (3.10), ξ = t/ε, we have

du
dξ = d

dξ (x(εξ, ε) − X(εξ, ε))

= εf (X(ξε, ε) + u(ξ, ε), Y (ξε, ε) + v(ξ, ε))

−εf (X(ξε, ε), Y (ξε, ε))

dv
dξ = g (X(ξε, ε) + u(ξ, ε), Y (ξε, ε) + v(ξ, ε))

−g (X(ξε, ε), Y (ξε, ε))

u(0, ε) = x(0, ε) − X(0, ε) = 0

v(0, ε) = y0 − Y (0, ε) �= 0

(3.20)

Let

u(ξ, ε) =
∞∑

n=0

un(ξ)εn, v(ξ, ε) =
∞∑

n=0

vn(ξ)εn. (3.21)

Expand (3.20) in power series in ε by (3.21) and compare the coefficients on both
sides of (3.20), we have set ε = 0, we obtain

O(1) ⎧⎨⎩
du0
dξ = 0

⇒ u0(ξ) ≡ 0
u0(0) = 0

(3.22)
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and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dV0
dξ = g (X0(0), Y0(0) + V0(ξ)) − g (X0(0), Y0(0))

≡M.V.T V0(ξ)G (V0(ξ))

V0(0) = y0 − Y0(0) (Boundary layer jump)

(3.23)

From hypothesis (H), G (V0(ξ)) ≤ −K < 0, |V0(ξ)| initially decreases and |V0(ξ)| ≤
|V0(0)|e−Kξ for ξ > 0 small.

O(1): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du1
dξ = f [X0(0), Y0(0) + V0(ξ)] − f (X0(0), Y0(0))

≡ V0(ξ)F (V0(ξ))

u1(0) = 0

(3.24)

Once V0(ξ) is solved by (3.23), we solve (3.24) and obtain

u1(ξ) =
∫ ξ

∞
v0(s)F (v0(s)) ds

by the matching condition (3.11) u1(∞) = 0.
Hence

x(t, ε) ∼ X0(t) + ε [X1(t) + u1 (t/ε)] + O(ε)2

y(t, ε) ∼ Y0(t) + v0 (t/ε) + O(ε)

Now we go back to the Michaelis-Menten Kinetics

dx
dt = f(x, y) = −x + (x + K − λ) y, K > 0, λ > 0

εdy
dt = g(x, y) = x − (x + K) y

(3.25)

Let

x(t, ε) = X(t, ε) + u(ξ, ε) =
∞∑

n=0

εnXn(t) +
∞∑

n=0

εnun(t)

y(t, ε) = Y (t, ε) + v(ξ, ε) =
∞∑

n=0

εnYn(t) +
∞∑

n=0

εnvn(t)

Then from (3.16)

Y0(t) = ϕ (X0(t)) =
X0(t)

X0(t) + K
(3.26)

where X0(t) satisfies⎧⎨⎩
dx
dt = −x + (x + K − λ) x

x+K = −λx
x+K

x(0) = x0 = 1

Then X0(t) satisfies
X0(t) + K ln X0(t) = 1 − λt (3.27)
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From (3.23) we obtain

dV0

dξ
= [x0 − (x0 + K) (Y0(0) + v0(ξ))] − [x0 − (x0 + K) Y0(0)]

= − (x0 + K) v0(ξ)
v0(0) = y0 − Y0(0), x0 = 1, y0 = 0

and

v0(ξ) =
(

y0 − x0

x0 + K

)
e−(x0+K)ξ

=
( −1

1 + K

)
e−(1+K)ξ

Hence

y(t, ε) ∼ x0(t)
x0(t) + K

+
( −1

1 + K

)
e−(1+K)ξ(t/ε).

From (3.24)

du1

dξ
= f (x0(0), Y0(0) + V0(ξ)) − f (X0(0), Y0(0))

= (1 + K − λ) v0(ξ) =
λ − (1 + K)

1 + K
e−(1+K)ξ

u1(∞) = 0,
u1(ξ) = ((1 + K) − λ) e−(1+K)ξ

3.2 Autocatalysis

Autocatalysis is the process where by a chemical is involved in its own production.

Example: A + X
k1−→←−−

k−1

2X

Suppose A is maintained at constant concentration, by the law of mass action
we have

dx

dt
= k1ax − k−1x

2 (3.28)

where x = [X], a ≡ [A]. The autocatalysis reaction exhibits a strong feedback with
the ”product” inhibiting the reaction rate.

Example: A + X
k1−→←−−

k−1

2X,B + X →k2 C. X is used up in the production of C.

dx
dt = k1ax − k−1x

2 − k2bx

= (k1a − k2b) x − k−1x
2

(3.29)
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Fig.3.4: Bifurcation diagram

Example: Lotka-Volterra equation

A + X →k1 2X, X + Y →k2 2Y, Y →k3 B

⎧⎨⎩
dx
dt = k1ax − k2xy

dy
dt = k2xy − k3y

(3.30)

Under the scalig

u =
k2x

k3
, v =

k2y

k1a
, τ = k1at, α =

k3

k1a

becomes

du
dτ = u(1 − v)

dv
dτ = αv(u − 1)

(3.31)

In almost all biological process we do not know the detailed biochemical reactions
that are taking place. However we often do know the qualitative effect of varying a
known reactant.

Activation and Inhibition:

For a general system

du

dt
= f(u, v),

dv

dt
= g(u, v) (3.32)

u is an activator of v if ∂g
∂u > 0 while v is an inhibitor of u if ∂f

∂v < 0.

Example: Thomas mechanisms
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It is based on a specific reaction involving the substrate oxygen (v) and uric acid
(u) which react in the presence of the enzyme uricase. The dimensionless equations
are

du
dt = a − u − ρR(u, v) = f(u, v)

dv
dt = α(b − v) − ρR(u, v) = g(u, v)

R(r, v) = uv
1+u+Ku2

(3.33)

where a, b, α, ρ and K are positive constants. We note that the term R(u, v) exhibits
substrate inhibition. Given v,R(u, v) is linear in u for u small and R(u, v) decrease
in u for large u. The parameter K measures the severity of inhibition, R(u, v), as
a function of u, reach maximum at u = 1√

K
.

Fig.3.5

Example: (Gierer and Meinhardt) Activator-inhibitor system

du
dt = a − bu + u2

v(K+u2) = f(u, v)

dv
dt = u2 − v = g(u, v)

(3.34)

Fig.3.6
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3.3 Biological Oscillators: Monotone cyclic feed-
back systems

In this section we shall consider the biological model in the form of the system of
ordinary differential equations

d−→u
dt

= −→
f (−→u ). (3.35)

where ←−u = −→u (t) is the concentration vector. −→
f describes the nonlinear reaction

kinetics or underlying biological oscillator mechanism. We are interested in finding
periodic solution u(t). In the following we consider a mathematical model concern-
ing the feedback control mechanisms of certain metabolites repressing the enzymes
which are essential for their own synthesis. This is done by inhibiting the transcrip-
tion of the molecule DNA to messenger RNA (mRNA) which is the template which
makes enzyme. Goodwin (1965) proposed a simple model for this process which is
schematically in following figure.

Fig.3.7

Let M,E,P be the concentration of mRNA, the enzyme and the product of the
reaction of the enzyme and a substrate assumed to be avaiable at a constant level.
The equations are

dM
dt = V

K+P m − αM

dE
dt = bM − cE

dρ
dt = dE − eP

(3.36)

For general feedback control system, a suitable nondimensional form is given as
following:

du1
dt = f(un) − k1u1

dui

dt = ui−1 − kiui, i = 2, 3, ...., n
(3.37)

where ki > 0i = 2, 3, ...., n and f(u) > 0,∀u, is the nonlinear feedback function. If
f ′(u) > 0,∀u > 0 the system represents a positive feedback loop while if f ′(u) < 0,
for all u ≥ 0, the system represents a negative feedback system loop or feedback
inhibition. Positive feedback loops are not common metabolic control mechanisms
where as negative one are (See Tyson and Othmer (1978)).

Steady state solutions of (3.37) are give by

f(un) = k1k2......knun, un−1 = kun

u1 = k2k2......knun.
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With positive feedback functions f(u), multiple steady states are possible whereas
with feedback inhibition there is always a unique steady state.

For the more important negative feedback system (3.37), it is quite simple to
determine a bounded domain Ω satisfying −→n · d−→u

dt < 0 for −→u ∈ ∂Ω, i.e., the
trajectory with initial condition in Ω stays in Ω for t ≥ 0. Consider first the two
species case of (3.37), namely

du1

dt
= f(u2) − k1u1

du2

dt
= u1 − k2u2

where f(u2) > 0 and f ′(u2) < 0. Consider first the rectangular domain bounded
by u1 = 0, u2 = 0, U1 = U1 and u2 = U2 where U1 and U2 are to be determined.
On the boundaries

u1 = 0, −→u · d−→u
dt

= −du1

dt
= −f(u2) < 0 for all u2 ≥ 0,

u2 = 0, −→u · d−→u
dt

= −du2

dt
= −f(u1) < 0 for u1 > 0,

u1 = U1, −→u · d−→u
dt

= −f(u2) − k1U1 < 0

if U1 >
f(u2)

k1
for all 022

U1 >
f(0)
k1

Fig.3.8

u2 = U2, −→u · d−→u
dt

= u1 − k2U2 < 0

if U2 >
u1

k2
for 0 < u11

If we choose U1, U2 to satisfy the inequalities

U1 >
f(0)
k1

, U2 >
U1

k2
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then the bounded region Ω is positively invariant under the system (3.37). We note
that the unique steady state (u∗

1, u
∗
2) lies in Ω.

Similarly for n-species negative feedback loop, we can construct a positively
invariant, bounded region Ω given by Ω = {(u1, ...., un) : 0 ≤ ui ≤ Ui, i = 1, ...., n}
where Ui, i = 1, ...., n satisfy

U1 >
f(0)
k1

, U2 >
U1

k2
, ......., Un >

U1

k1k2....kn
.

For the large time behavior of (3.37), Mallet-Paret and H. Smidth [?] studied
the general monotone cyclic feedback systems of the following form

x′
i = fi(xi, xi−1), i = 1, 2, ......, n (3.38)

where we agree to interpret x0 as xn. In the cyclic system (3.38) our key assumption
is

δi
∂fi

∂xi−1
(xi, xi−1) > 0for all xi, xi−1 > 0 (3.39)

for some δi ∈ {−1,+1}. Thus δi describes whether the effect of xi−1 is to inhibit
the growth of xi(δi = −1) or to augment its growth (δi = +1). The product

� = δ1δ2........δn (3.40)

characterizes the entire system as one with negative feedback (� = −1) or positive
feedback (� = +1). We term such a system, of the form (3.38) satisfying (3.39),
a monotone cyclic feedback system. In [MS] the authors proved that the Poincaré-
Bendixson theorem holds for monotone cyclic feedback systems. In particular, the
omega-limit set of any bounded orbit of a monotone cyclic feedback system can
be embedded in R2 and must, in fact, be the type encountered in two-dimensional
systems: either a single equilibrium, a single nonconstant periodic solution, or a
structure consisting of a set of equilibria together with homoclinic and hetroclinic
orbits connecting these equilibria. In a general sense ”chaos” is ruled out. The
authors use an integer valued Lyapunov function N as a principal tool. Interested
readers should consult [].

Besides the single-loop feedback system (3.37), we give the following systems as
examples of (3.38).

Example: Simple Biochemical Control Circuit

y′
1 = f(yn) − α1y1

b1+y1

y′
i = βiyi−1

ai+yi−1
− αiyi

bi+yi
, 2 ≤ i ≤ n.

(3.41)
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Example: ([] Banks and Mahaffy) Multigene model with negative feedback

y′
1 = f1(wm) − α1y1

y′
i = βiyi−1 − αiyi, 2 ≤ i ≤ p

z′1 = f2(yp) − γ1z1

z′j = ηjzj−1 − γjzj , 2 ≤ j ≤ l

w′
1 = f3(zl) − δ1w

1

w′
k = ξkwk−1 − δ1w

k, 2 ≤ k ≤ m

(3.42)

where αi, βi, γj , ηj , ξk, δk > 0 and f1, f2, f3 satisfies negative feedback assumption
f ′

i(u) < 0 for u ≥ 0, i = 1, 2, 3. This example displace the ”three-gene”. Read-
ers may imagine there are n genes where the end procuct of qth gene inhibits the
transcription of mRNA associated with (q + 1)st gene. Delays are sometimes intro-
duced in the first terms of the right side of (3.42). One could also replace the linear
terms in (3.42) by Michaelis-Menten nonlinearities as in (3.41). We note that J.
Mallet-Paret and G. Sell [JDE 1996] proved the Poincaré-Bendixson Theorem for
the following Monotone cyclic feedback system with delay:

x′
i(t) = fi

(
xi(t), xi−1(t − βi)

)
(3.43)

3.4 Biological Oscillators: Belousov-Zhabotinskii
reaction

In 1951 Belousov found oscillations in the ratio of concentration of the catalyst in
the oxidation of citric acid by bromate. The study of this reaction was continued
by Zhabotiskii (1964) and is now known as the Belousov-Zhabotinskii reaction or
simply the BZ reaction. When the details of this important reaction and some of its
dramatic oscillatory and wave-like properties reached the West in 1970, it provoked
widespread interest and research. Now BZ reaction is considered the prototype
chemical oscillator in both theoretical and experimental sense. Here we briefly de-
scribe the key steps in the reaction by the Field-Noyes model. The basic mechanism
consists of the oxidation of malonic acid, in an acid medium, by bromate ions, BrO−

3 ,
and catalyzed by cerium, which as two state Ce3+ and Ce4+.

Sustained periodic oscillation are observed in the cerium ions. With other metal
ion catalysts and appropriate dyes, for example, iron Fe2+, Fe3+ and phenanthro-
line, the regular periodic colour change is visually dramatic, oscillating between a
reddish-orange to blue. See the following figure Fig. 3.9.
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Fig.3.9

In Fig. 3.9. we can see the relaxation oscillations which will be discussed latter.
Next we discuss Field-Noyes model or FN model. The key chemical elements in

5-reaction FN model are

X = HBrO2, Y = Br , Z=Ce4+

A = BrO3, P=HOBr

and the model reactions can be approxmated by the sequence

A + Y →k1 X + P, X + Y →k2 2P

A + X →k3 2X + 2Z, 2X →k4 A + P, Z →k5 fY

where the rate constants k1....k5 are known and f is a stoichiometric factor, f ≈ 0.5.
We assume the concentration [A] of the bromate ion to be constant. Using the Law
of Mass Action, we obtain

dx

dt
= k1ay − k2xy + k3ax − k4x

2

dy

dt
= −k1ay − k2xy + fk5z

dz

dt
= 2k3ax − k5z

This oscillator system is sometimes referred to as the ”Oregonator” since it exhibits
limit cycle osciaations and research by Field et al was done at the University of
Oregon. Following Tyson (1985), introduce

x∗ = x
x0

, y∗ = y
y0

, z∗ z
z0

, t∗ = t
t0

x0 = k3a
k4

≈ 1.2 × 10−7M, y0 = k3a
k2

≈ 6 × 10−7M,

z0 = 2(k3a)2

k4k5
≈ 5 × 10−3M, t0 = 1

k5
≈ 50s

ε = k5
k3a ≈ 5 × 10−5, δ = k4k5

k2k3a ≈ 2 × 10−4

q = k1k4
k2k3

≈ 8 × 10−4, f ≈ 0.5

(3.44)
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Then above system is converted into following non-dimensional equations

εdx
dt = qy − xy + x(1 − x)

δ dy
dt = −qy − xy + 2fz

dz
dt = x − z

(3.45)

The equilibrium of (3.45) are (0, 0, 0) and (xs, ys, zs) where zs = xs, yx = 2fxs

q+xs
, 2xs =

(1 − 2f − q) +
(
(1 − 2f − q)2 + 4q(1 + 2f)

]1/2. It is easy to verify that (0, 0, 0) is
always linearly unstable. If we linearize (3.45) about the positive steady state
(xs, ys, zs), the eigenvalue λ satisfies

|A − λI| =

∣∣∣∣∣∣
1−2xs−ys

ε − λ q−xs

ε 0
−ys

δ −xs+q
δ − λ 2f

δ
1 0 −1 − λ

∣∣∣∣∣∣
or

λ3 + Aλ2 + Bλ + C = 0

where

A = 1 +
q + xs

δ
+

E

ε
> 0

E + 2xs + ys − 1 =
x2

s + q(xs + 2f)
q + xs

> 0

B =
q + xs

δ
+

E

ε
+

(q + xs)E + yx(q − xs)
εδ

C =
x2

s + q(2f + 1)
εδ

> 0

From Routh-Hurwitz criterion (xs, ys, zs) is locally stable if and only if A > 0, B >
0, C > 0 and AB > C. To find a positively invariant box Ω = {(x, y, z) : x1 ≤ x ≤ x2,
y1 ≤ y ≤ y2, z1 ≤ z ≤ z2} enclosing (xs, ys, zs), we need to verify

�n · d�r

dt
< 0 on S = ∂Ω

where �r is the vector field of (3.45) and �n is the unit outward normal vector. On
the plane x = x1, �n = (−1, 0, 0),

�n · d�r

dt
= −dx

dt

∣∣
x=x1 < 0 =⇒ qy − xy + x − x2 |x=x1 > 0.

Since 0 < q � 1, we assume x1 = O(q) then y(q−x1)+x1−x2
1 ≈ y(q−x1)+x1 > 0

for all y1 ≤ y ≤ y2.
So we choose x1 = q < xs, then

�n · d�r

dt
|x=x1=q = −q(1 − q)

ε
< 0 if q < 1.

On x = x2, �n =�i = (1, 0, 0)

�n · d�r

dt
|x=x2 =

dx

dt
|x=x2 < 0 =⇒ [y(q − x) + x − x2

]
x=x2

< 0



40 CHAPTER 3. CHEMICAL REACTION KINETICS

Choose x2 = 1, then x1 = q < xs < x2 = 1 and

�n · d�r

dt
|x=1 = y(q − 1) < 0 for all y1 ≤ y ≤ y2.

Consider the planes z = z1 and z = z2 where z1 < zs < z2. On z = z1, �n = −�k =
(0, 0,−1),

�n · d�r

dt
|z=z1 = −dz

dt
|z=z1 = −(x − z1) < 0

we choose z1 = q. On z = z2, �n = �k = (0, 0, 1),

�n · d�r

dt
|z=z2 < 0 =⇒ (x − z2) < 0 x1 ≤ x ≤ x2.

we choose z2 = 1. Finally consider the planes y = y1 and y = y2, y1 < yx < y2.
On y = y1, �n = −j = (0,−1, 0), then

�n · d�r

dt
= [y(q + x) − 2fz]y=y1

< 0

or

y1 <
2fz

q + x
for all q ≤ x ≤ 1, q ≤ z ≤ 1.

We choose y1 = 2fq
q+1 . When y = y2, �n = �j, we need

�j
d�r

dt
|y=y2 < 0 ⇒ 2fz − y(q + x) |y=y2 < 0

or

y2 >
2fz

q + x
for q ≤ x ≤ 1, q ≤ z ≤ 1.

Take

y2 =
2f

2q
=

f

q

Hence Ω =
{

(x, y, z) : q < x < 1, 2fq
1+q < y < f

q , q < z < 1
}

is positively invariant.

Hastings and Murray (1975) have given a rigorous proof tracing the trajectory
from a compact region in Ω into itself and using Brouwer fixed point theorem to
show the existence of limit cycle. The proof was rather complicated. Here we
present another proof. The Jacobian matrix of the vector field at a point (x, y, z)
is given by

J =

⎛⎝ 1−y−2x
ε

q−x
ε 0

−y/δ −x+q
δ

2f
δ

1 0 −1

⎞⎠ (3.46)

The signs of entries of matrix J is⎛⎝ ∗ − 0
− ∗ +
+ 0 ∗

⎞⎠
Consider the come Km =

{
(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0

}
.
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Let P = diag(1, 1,−1) and

⎛⎝ x
y
z

⎞⎠ = P

⎛⎝ x
y
z

⎞⎠, i.e., x = x, y = y, z = −z.

Then the system (3.46) is converted into a competitive system on Km:

εx′ = qy − xy + x(1 − x) = f1(x, y, z),

δy′ = −qy − xy − 2fz = f2(x, y, z),

z′ = −(x + z) = f3(x, y, z).

(3.47)

We note that on Km, ∂f1
∂y = q − x < 0, ∂f1

∂z = 0, ∂f2
∂x = −y < 0, ∂f2

∂z = −2f < 0,
∂fs

∂x = −δ < 0, ∂f3
2y = 0. The positive equilibrium Es = (xs, ys, zs) of (3.46) is either

asymptotically stable or unstable. Since the determinant J at Es is

det(J) = C =
x2

s + q(2f + 1)
εδ

> 0

, Es have one-dimensional stable manifold Γ provided Es is unstable.

From the Poincaré-Bendixson Theorem for 3-dimensional competitive system,
we have the following theorem.

Theorem 3.1: Suppose Es is hyperbolic and unstable for (3.46). Then the stable
manifold Γ of Es, is one dimensional. For any PΓ, the ω-limit set ω(P ) is a non-
trivial periodic orbit in Ω.
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Chapter 4

Nerve Conduction

In this chapter we shall derive the famous Hodgkin-Huxley model (1952) for which
they were awarded the Nobel Prize in physiology and medicine in 1963. Hodgkin-
Huxley model is too complicated to do mathematical analysis, people instead study
the FitzHugh-Nagumo equations and their variants which extracts the essential
behavior of the Hodgkin-Huxley fast-slow phase-plane and presents it in a simplied
form.

4.1 Electrical Circuit model of the cell membrane

We may view the cell membrane as a capacitor for its separating charge. The
capacitance Cm is defined as

Cm =
Q

V
(4.1)

where Q is the charge across the capacitor and V is the voltage potential necessary
to hold that charge. From standard electrostatics (Coulomb’s law), one can derive
the fact that for two parallel conducting plates separated by an insulator of thickness
d, the capacitance is

Cm =
kε0
d

(4.2)

where k is the dielectric constant for the insulator and ε0 is the permittivity of free
space. For membrane Cm ≈ 1.0µF/em2, ε0 =

(
10−9/(36π)

)
F/m, hence it follows

that k ≈ 8.5.
A simple electric circuit model of cell membrane is shown in Fig.4.1

Fig.4.1 Electrical circuit model of the cell membrane.

43



44 CHAPTER 4. NERVE CONDUCTION

It is assumed that the membrane acts like a capacitor in parallel with a resistor.
Since the current I is defined as dθ

dt , from (4.1) the capacitive current is Cm
dV
dt .

There can be no net buildup of charge on either side of the membrane, the sum
of the ionic and capacitive currents must be zero and so

Cm
dV

dt
+ Iion(V, t) = 0 (4.3)

Where V = Vi − Ve, Vi and Ve are internal and external potential of the membrane
respectively.

Potential difference across the cell membrane causes ionic currents to flow through
channels in the cell membrane. Regulation of this membrane potential by control
of ionic channels is the most important for cellular functions. Many cells, such
as neurons and muscle cells, use the membrane potential as a signal and thus the
operation of the nervous system and muscle contraction are both dependent on the
generation and propagation of electrical signal.

To understand electrical signaling in cells, it is helpful (and not too inaccurate)
to divide all cell types into two groups: excitable cells and nonexcitable cells. Many
cells maintain a stable equilibrium potential. For some, if currents are applied to
the cell for a short period of time, the potential returns directly to its equilibrium
value after the applied current is removed. Such cells are called nonexcitable, typical
examples of which are the epithelial cells that line the walls of the gut. Photore-
ceptors are also nonexcitable, although in their case, membrane potential plays an
extremely important signaling role nonetheless.

However, there are cells for which, if the applied current is sufficiently strong,
the membrane potential goes through a large excursion, called an action potential,
before eventually returning to rest. Such cells are called excitable. Excitable cells
include cardiac cells, smooth and skeletal muscle cells, secretory cells, and most
neurons. The most obvious advantage of excitability is that an excitable cell either
responds in full to a stimulus or not at all, and thus a stimulus of sufficient amplitude
may be reliably distinguished from background noise. In this way, noise is filtered
out, and a signal is reliably transmitted.

There are many examples of excitability that occur in nature. A simple example
of an excitable system is a household match. The chemical components of the
match head are stable to small fluctuations in temperature, but a sufficiently large
temperature fluctuation, caused, for example, by friction between the head and a
rough surface, triggers the abrupt oxidation of these chemicals with a dramatic
release of heat and light. The fuse of a stick of dynamite is a one dimensional
continuous version of an excitable medium, and a field of dry grass is its two-
dimensional version. Both of these spatially extended systems admit the possibility
of wave propagation. The field of grass has one additional feature that the match
and dynamite fuse fail to have, and that is recovery. While it is not very rapid by
physiological standards, given a few months of growth, a burned-over field of grass
will regrow enough fuel so that another fire may spread across it.

Although the generation and propagation of signals have been extensively stud-
ied by physiologists for at least the past 100 years, the most important landmark in
these studies is the work of Allan Hodgkin and Andrew Huxley, who developed the
first quantitative model of the propagation of an electrical signal along a squid giant
axon (deemed ”giant” because of the size of the axon, not the size of the squid).
Their model was originally used to explain the action potential in the long giant
axon of a squid nerve cell, but the ideas have since been extended and applied to
a wide variety of excitable cells. Hodgkin-Huxley theory is remarkable, not only
for its influence on electrophysiology, but also for its influence, after some filtering,
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on applied mathematics. FitzHugh (in particular) showed how the essentials of the
excitable process could be distilled into a simpler model upon which mathematical
analysis could make some progress, Because this simplified model turned out to
be of such great theoretical interest, it contributed enormously to the formation
of a new field of applied mathematics, the study of excitable systems, a field that
continues to stimulate a vast amount of research.

Because of the central importance of cellular electrical activity in physiology,
because of the importance of the Hodgkin-Huxley model in the study of electrical
activity, and because it forms the basis for the study of excitability, it is no exag-
geration to say that the Hodgkin-Huxley model is the most important model in all
of the physiological literature.

Hodgkin and Huxley developed the first quantitative model of the propagation
of an electrical signal along a squid giant axon. In the squid giant axon, as in many
neural cells, the principal ionic currents are the sodium (Na+) current and the
potassium (K+) current. Although there are other ionic currents, like the chloride
current (cl−), H − H theory assume they are small and lumped together into are
current called the leakage current. Equation (4.3) becomes

Cm
dV

dt
= −gNa (V − VNa) − gk (V − VK) − gL (V − VL) + Iapp. (4.4)

where
gNa =

INa

V − VNa
(Compare with) R =

V

I
,

gNa = 1
R is the membrane conductance with respect to ionic flow Na+. Similarly

for gK and gL. We may rewrite (4.4) as

Cm
dV

dt
= −geff (V − Veq) + Iapp

where geff = gNa+gK+gL, Veq = (gNaVNa + gKVK + gLVL) /geff , Veq is the mem-
brane resting potential and is a balance between the reversal potentials for three
ionic currents. In fact, at rest, sodium and leakage conductance are small compared
to potassium conductance, so that the resting potential is closed to potassium equi-
librium potential.

Next we want to find the conductance gNa and gK as a function of voltage V
and time t. Hudgkin and Huxley used the voltage clamp to measure the transient
transmembrane current. In Fig.4.2, they found that when the voltage was stepped
up and held fixed at a high level, the total ionic current was initial inward, but
at later time an outward current developed. They argue that the initial inward
current is carried almost entirely by Na+ ions, while the outward current that
develops latter is carried largely by K+ ions. Let’s denote the Na+ currents for
two cases of normal extra cellular Na+ and zero extracellular Na+ by I ′Na and I2

Na

respectively (INa = I ′Na + I2
Na and

I ′Na/I2
Na ≡ K ≡ constant.

Since Iion = INa + IK , I ′K = I2
K , it follows that I ′ion − I ′Na = I2

ion − I2
Na

(
I ′K = I2

K

)
and thus

I ′Na =
K

K − 1
(I ′ion − I2

ion)(
I ′ion − I2

ion = I ′Na − I2
Na = I ′Na − 1

K
I ′Na =

K − 1
K

I ′Na

)
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and

I ′K =
I ′ion − KI2

ion

1 − K

I ′K = I ′ion − I ′Na = I ′ion − K

K − 1
(
I ′ion − I2

ion

)
=

KI2
ion − I ′ion

K − 1
.

Hence given measurements of the total ionic currents in two cases, and given the
ratio K of the Na+ currents, it is possible to determine the complete time courses
of both the Na+ and K+ currents. Finally we obtain the conductance

gNa =
INa

V − VNa
, gK =

IK

V − VK

Samples of hodgkin and Huxley’s data are shown in Fig.4.3. The plots show ionic
conductances as a function of time following a step increase or decrease in mem-
brane potential.

From the experimental data, it is reasonable to expect gK obeys some differential
equation

dgK

dt
= f(ν, t)

where ν = V − Veq. However, for gK to have the required sigmoidal increase and
exponential decrease. Hodgkin and Huxley wrote

gK = ḡKn4 (4.5)

for some constant ḡK . The variable n obeys

τn(ν)
dn

dt
= n∞(ν) − n (4.6)
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for some functions τn(ν) and n∞(ν) must be determined from the experimental
data. (4.6) can be written in the form

dn

dt
= αnν(1 − n) − βn(ν)n (4.7)

where

n∞(ν) =
αn(ν)

αn(ν) + βn(ν)
,

τn(ν) =
1

αn(ν) + βn(ν)
.

Solve (4.6) with n(0) = 0, we have

n(t) = n∞(ν0)
[
1 − exp

( −t

τn(ν0)

)]
(4.8)

which satisfies limt→∞ n(t) = n∞(ν0).
To match the data of gK which has sigmoidal increase and exponential decrease.

In response to a step decrease in ν from ν0 to 0 say, the solution for n is

n(t) = n∞(ν0) exp
( −t

τn(ν0)

)
(4.9)

Now we describe how the function n∞ and τn are determined from experimental
data. For any given voltage step, the time constant τn, n can be determined by fit-
ting (4.8) (Fig.4.4) to the experimental data. By this procedure one can determine
τn and n∞ at a discreate set of ν, those values used in experiments.

The sodium conductance
Hodgkin and Huxley proposed that the sodium conductance is of the form

gNa(ν) = ¯gNam3h

and they fit the time-dependent behavior of m and h to exponentials with dynamics

dw

dt
= αw(1 − w) − βww

where w = m or h.
Because m is small at rest and increases, it is called to sodium activation, and

because h shut down or inactivates, the sodium current, it is called sodium inacti-
vation. As we did in data fitting for gK , we fit the data in Fig.4.3c to determine
the unknown function αw(V ) and βw(V ), w = m or h.

Summary of the equations
In summary, the Hodgkin-Huxley equations for the space clamped axon are

Cm
dν

dt
= −ḡKn4(ν − νK) − ¯gNam3h(ν − νNa) − ḡL(ν − νL) + Iapp,(4.10)
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dm

dt
= αm(1 − m) − βmm, (4.11)

dn

dt
= αn(1 − n) − βnn, (4.12)

dh

dt
= αh(1 − h) − βhh. (4.13)

The specific functions α and β proposed by Hodgkin and Huxley were, in units of
(ms)−1,

αm = 0.1
25 − ν

exp
(

25−ν
10

)− 1
, (4.14)

βm = 4 exp
(−ν

18

)
, (4.15)

αh = 0.07 exp
(−ν

20

)
, (4.16)

βh =
1

exp
(

30−ν
10

)
+ 1

, (4.17)

αn = 0.01
10 − ν

exp
(

10−ν
10

)− 1
, (4.18)

βn = 0.125 exp
(−ν

80

)
. (4.19)

For these expressions, the potential ν is the deviation from rest (V = Veq + ν),
measured in units of mV , current density is in units of /cm2, conductances are in
units of mS/cm2, and capacitance is in units of /cm2. The remaining constants are

¯gNa = 120, ḡK = 36, ḡL = 0.3, (4.20)

with (adjusted) equilibrium potentials νNa = 115, νK = −12 and νL = 10.6. In
Fig.4.5 are shown the steady-state functions, and the time constants are shown in
Fig.4.6.

Fig.4.5 Steady-state functions m∞(v), n∞(v) and h∞(v)

FitzHugh-Nagumo equation
In 1960, Nagumo, a Japanese electrical engineering, built the following circuit

(See Fig.4.6) using a tunnel diode as a nonlinear element
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Fig.4.6

where I0 is an applied external current, i = i(τ) the current through the resistor
with resistance R and inductor with inductance L, V = Vi − Ve is the membrane
potential, τ is the dimensional time.

Let the function F (V ) be of the ”cubic” shape having three zeros of which the
smallest V = 0 and the largest V = V1 > 0 are stable state of the differential
equation dV

dτ = −F (V ), by Kirchhoff’s law we have the following equations

Cm
dV
dτ + F (v) + i(τ) + I0 = 0 (current)

L di
dt + Ri = V − V0 (potential)

Introduce the following scaling:

R1 =
1

F ′(0)
> 0, v =

V

V1
, W =

R1i

V1
,

t =
R1

L
τ and f(v) =

−R1

V1
F (vV1)

then we have ⎧⎨⎩
εdv

dt = f(v) − W − W0

dW
dt = v − rw − v0

where 0 < ε = R2
1Cm

L � 1, W0 = R1I0
V1

, v0 = V0
V1

and r = R
R1

.
If f(v) = Av(v − α)(1 − v), 0 < v < 1 then above system gives the FitzHugh-

Nagumo model. Another form of f(v) given by Mckean (1970) is

f(v) = H(v − α) − v =
{

1 − v, v > α
−v, v < α.

An important variant of FitzHugh-Nagumo equation is the Van-der Pol equation{
Cm

dv
dτ + F (v) + i = −I0

L di
dτ + Ri = V − V0

If R = 0 then di
dτ = V

L − V0
L and it follows that

Cm
d2v

dτ2
+ F ′(v)

dv

dτ
+

di

dτ
= 0
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or

Cm
d2v

dτ2
+ F ′(v)

dv

dτ
+

v

L
=

V0

L

Set F (v) = A
(

v3

3 − v
)

and from the rescaling, we obtain Van der Pol equation

v′′ + a
(
v2 − 1

)
v′ + v = 0



Chapter 5

Reaction diffusion equations

5.1 Simple random walk and derivation of the dif-
fusion equation

Consider one-dimensional random walk. Suppose a particle moves randomly back
and forwarded along a line in a fixed step �x that are taken in a fixed time �t.
Let p(m,n) be the probability that a particle reaches a point m space steps to the
right (i.e. x = m�x) after n time steps (i.e. after a time n�t), where n ∈ Z+ and
−n ≤ m ≤ n. Let us suppose that to reach m�x it has moved a steps to the right
and b to the lift. Then

m = a − b, a + b = n

Then a = n+m
2 , b = n − a.

The number of possible paths that a particle can reach this point x = m�x is

n!
a!b!

=
n!

a!(n − a)!
≡ Cn

a

The total number of possible n-step paths is 2n and so the probability p(m,n) is

p(m,n) =
1
2n

n!
a!(n − a)!

, a =
n + m

2

n + m is even.
Note that from binomial theorem

n∑
m=−n

p(m,n) =
n∑

a=0

Cn
a

(
1
2

)n−a(1
2

)a

= 1

p(m,n) is the binomial distribution.
From Stirling’s formula

n! (2πn)
1
2 nne−n, as n → ∞,

p(m,n)
[

2
πn

] 1
2 exp
[
−m2

2n

]
, m � 1, n � 1. (Exercises)

Set
m�x = x, n�t = t

with x, t fixed and m → ∞, n → ∞, �x → 0, �t → 0. Then p(m,n) → 0 as
m,n → ∞ and it is not the quantity of interest. Let u = p

2�x . Then u2�x is the

51
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probability of find a particle in the interval (x, x + �x) at time t. With m = x
�x ,

n = t
�t ,

u =
p
(

x
�x , t

�t

)
2�x

[ �t

(2π · t · |�x)2

] 1
2

exp
[

x2�t

2t(�x)2

]
.

If we assume

lim
�x → 0
�t → 0

(�x)2

2�t
→ D

then

u(x, t) = lim
�x → 0
�t → 0

p
(

x
�x , t

�t

)
2�x

=
(

1
4πDt

) 1
2

exp
(
− x2

4Dt

)
. (5.1)

D is the diffusion coefficient. It is a measure of how effectively the particles disperse
from a high to a low density. For example in blood, haemoglobin molecules has
diffusion coefficient of order 10−7cm2/sec while for oxggen in blood is of order of
10−5cm2/sec.

Now we consider the classical approach to diffusion, namely, Fickian diffusion.
Let J be the flux of material (cells, chemical etc). Then J is proportional to the
gradient of the concentration of the materials. That is

J ∝ − ∂c

∂x
or J = −D

∂c

∂x

where c(x, t) is the concentration of the species and D is the diffusivity. The minus
sign indicates the diffusion transports matter from a high to a low concentration.
Consider a small region x0 < x < x1 = x0 + �x. Then

∂

∂t

∫ x1

x0

c(x, t)dx = J(x0, t) − J(x1, t).

If �x → 0 then we obtain

∂c

∂t
= −∂J

∂x
=

∂
(
D ∂c

∂x

)
∂x

.

If D is a constant then
∂c

∂t
= D

∂2c

∂x2
(5.2)

Let c(x, 0) = Qδ(x) then the solution of PDE

c(x, t) =
Q

2 (πDt)
1
2
e−

x2
4Dt

If Q = 1 then we obtain the same result as (5.1) from a random walk.
Now we relate the random walk to the diffusion equation (5.2). Let p(x, t) be

the probability that a particle released at x = 0 at t = 0 reach x in time t. At time
t −�t the particle was at x −�x or x + �x. Thus if α and β are the probability
that a particle will move to the right or left

p(x, t) = αp(x −�t, t −�t) + βp(x + �x, t −�t)
α + β = 1



5.2. REACTION DIFFUSION EQUATIONS 53

If α = β = 1
2 i.e. the random walk is isotropic (no bias) then Taylor expansion at

(x, t) yields
∂p

∂t
=

(�x)2

2�t

∂2p

∂x2
+
(�t

2

)
∂2p

∂t2
+ ...

Now let �x → 0 and �t → 0 s.t

lim
�x → 0
�t → 0

(�x)2

2�t
= D

we get
∂p

∂t
= D

∂2p

∂x2

5.2 Reaction diffusion equations

Consider diffusion in three space dimensions. Let S be an arbitary surface enclosing
a volume V . Then we have rate of change of amount in V equals to rate of flow of
material across S into V plus the material created in V .

∂

∂t

∫
V

c(x, t)dV = −
∫

S

J · ds +
∫

V

f · dV

By divergence Theorem∫
V

[
∂c

∂t
+ D · J − f(c, x, t)

]
dv = 0.

Since V is arbitary, we obtain the reaction diffusion equation

∂c

∂t
+ ∇ · J = f(c, x, t) (5.3)

Now J = −D∇c then (5.3) becomes

∂c

∂t
= ∇ · (D∇c) + f (5.4)

The system of reaction-diffusion equation is

∂�u

∂t
= �f + ∇ · (D∇�u)

where D is a matrix of diffusives and u(x, t) ∈ Rk.

5.3 Chemotaxis

A large number of insects and animals rely on an acute sense of smell for conveying
information between members of the species. Chemicals which are involved in this
process are called pheromones. For example, the female silk moth Bombyxmori
exudes a pheromone, called bombykol, as a sex attractant for the male, which has
a remarkably efficient antenna filter to measure the bombykol concentration, and it
moves in the direction of increasing concentration. The modelling problem here is
a fascinating and formidable one (Murray 1977). The acute sense of smell of many
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deep sea fish is particularly important for communication and predation. Other than
for territorial demarcation the simplest important exploitation of pheromone release
is the directed movement it can generate in the population. Here we model this
chemically directed movement, that is chemotaxis, which, unlike diffusion, directs
the motion up a concentration gradient.

It is not only in animal and insect ecology that chemotaxis is important. It
can be equally crucial in biological processes where there are numerous examples.
For example when a bacterial infection invades the body it may be attacked by
movement of cells towards the source as a result of chemotaxis. Convincing evi-
dence suggests that leukocyte cells in the blood move towards a region of bacterial
inflammation, to counter it, by moving up a chemical gradient caused by the infec-
tion (see, for example, Lauffenburger and Keller 1979, Tranquillo and Lauffenburger
1986, 1988, Alt and Lauffenburger 1987).

A widely studied chemotactic phenomenon is that exhibited by the slime mold
Dictyostelium discoideum where single-cell amoebae move towards regions of rela-
tively high concentrations of a chemical called cyclic-AMP which is produced by
the amoebae themselves. Interesting wave-like movement and spatial patterning are
observed experimentally. A discussion of the phenomenon and some of the math-
ematical models which have been proposed together with some analysis are given,
for example, in the book by Segel (1984). The kinetics involved have been modelled
by several outhors. As more was found out about the biological system the models
changed. Recently new, more complex and more biologically realistic models have
been proposed by Martiel and Goldbeter (1987) and Monk and Othmer (1989).
Both of these new models exhibit oscillatory behaviour.

Let us suppose that the presence of a gradient in an attractant, a(x, t), gives
rise to a movement, of the cells say, up the gradient. The flux of cells will increase
with the number of cells, n(x, t), present. Thus we may reasonably take as the
chemotactic flux

J = nχ(a)∇a, (5.5)

where χ(a) is a function of the attractant concentration. In the general conservation
equation for n(x, t), namely

∂n

∂t
+ ∇ · J = f(n),

where f(n) represents the growth term for the cells, the flux

J = Jdiffusion + Jchemotaxis

where the diffusion contribution is from (5.4) with the chemotaxis flux from (5.5).
Thus the reaction (or population) diffusion-chemotaxis equation is

∂n

∂t
= f(n) −∇ · nχ(a)∇a + ∇ · D∇n. (5.6)

where D is the diffusion coefficient of the cells.
Since the attractant a(x, t) is a chemical it also diffuses and is produced, by the

amoebae for example, so we need a further equation for a(x, t). Typically

∂a

∂t
= g(a, n) + ∇ · Da∇a, (5.7)

where Da is the diffusion coefficient of a and g(a, n) is the kinetics/source term,
which may depend on n and a. Normally we would expect Da > D. If several
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species or cell types all respond to the attractant the governing equation for the
species vector is an obvious generalization of (9.28) to a vector form with χ(a)
probably different for each species.

In the slime mold model of Keller and Segel (1971), g(a, n) = hn − ka where
h ,k are positive constants. Here hn represents the spontaneous production of the
attractant and is proportional to the number of amoebae n, while-ka represents
decay of attractant activity: that is there is an exponential decay if the attractant
is not produced by the cells.

One simple version of the model has f(n) = 0: that is the amoebae production
rate is negligible. This is the case during pattern formation phase in the mold’s life
cycle. The chemotactic term χ(a) is taken to be a positive constant χ0. The form
of this term in any case is speculative. With constant diffusion coefficients, together
with the above linear form for g(a, n), the model in one space dimension becomes
the nonlinear system

∂n
∂t = D ∂2n

∂x2 − χ0
∂
∂x

(
∂a
∂x

)
,

∂a
∂t = hn − ka + Da

∂2a
∂x2

(5.8)

Other forms have been proposed for the chemotactic factor χ(a). For example

χ(a) =
χ0

a
, χ(a) =

χ0K

(K + a)2
, χ0 > 0, K > 0 (5.9)

which are known respectively as the log law and receptor law. In there, as a de-
creases the chemotactic effect increases.
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Appendix A

Let m = (m1,m2, ....,mn) where mi ∈ {0, 1} and

Km = {x ∈ Rn : (−1)mixi ≥ 0, 1 ≤ i ≤ n} .

Km is a cone in Rn and it generates a partial order ≤m defined by x ≤m y if
and only if y − x ∈ Km. Equivalently xi ≤ yi for those i for which mi = 0 and
yi ≤ xi for those i for which mi = 1. Let P be the diagonal matrix defined by
P = diag ((−1)m1 , ....., (−1)mn). Obviously P = P−1 and x ≤m y if and only if
Px ≤ Py. The domain D is said to be Pm-convex if tx + (1 − t)y ∈ D whenever
x, y ∈ D, 0 < t1 and x ≤m y. We say x′ = f(x) is cooperative with respective to
Km provided D is Pm-convex and

(−1)mi+mj
∂fi

∂xj
(x) ≥ 0, i �= j, x ∈ D. (A.1)

It is competitive with respect to Km if

(−1)mi+mj
∂fi

∂xj
(x) ≤ 0, i �= j, x ∈ D. (A.2)

Proposition A.1: Let D be Pm-convex and f is continuously differentiable vector
field on D such that (A.1) holds. If x ≤m y, t > 0 and the flow ϕt(x) and ϕt(y) are
defined, then ϕt(x) ≤m ϕt(y). If (A.2) holds then similar conclusions are valid for
t > 0.

Proof: Let g(y) = Pf(Py), y ∈ PD. Then vector field g generates a flow ψt defined
by ψt(y) = Pϕt(Py). Since gi(y) = (−1)mifi(Py), ∂gi

∂yj
(y) = (−1)mi+mj ∂fi

∂xj
(Py) ≥ 0

by (A.1). If x ≤m y, it follows that Px ≥ Py then by Prop 1.1[], ψt(Px) ≤ ψt(Py).
This implies ϕt(x) ≤m ϕt(y) as asserted. The other assertions follows similarly.

Proposition A.1 suggests an algorithm for determining whether a given system
x′ = f(x) is cooperative or competitive in a domain D with respect to one of the
comes Km. First we check the off-diagonal elements of the Jacobian matrix are
sign-stable in D. This means that each i �= j either (a) ∂fi

∂xj
(x) ≥ 0 for all x ∈ D

or (b) ∂fi

∂xj
(x) ≤ 0 for all x ∈ D. Assuming this test is passed, then the Jacobian

matrix must be tested for sign-symmetry: ∂fi

∂xj
(x)∂fj

∂xi
(y) ≥ 0 for all x �= j, x, y ∈ D.

If this test is satisfied, then for each i < j set sij = 0 if ∂fi

∂xj
(x) + ∂fj

∂xi
(x) > 0 for

some x ∈ D. sij = 1 if ∂fi

∂xj
(x) + ∂fj

∂xi
(x) < 0 for some x ∈ D. Now consider the

system of n(n − 1)/2
mi + mj = sij(mod 2), i < j
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Solve m and we find the cone Km. Consider the graph G with vertices {1, 2, ...., n}
where an undirected edge connects vertices i and j if ∂fi

∂xj
(x) or ∂fj

∂xi
(x) does not

vanish identically in D. Attach a sign + or - to the edge. Then x′ = f(x) is coop-
erative in D with respect some cone Km if and only if every closed loop in G the
number of edges with - signs is even. It is competitive if every loop in G has an odd
number of edges with - signs.

For system (3.45), from (3.46), the graph is

Relaxation oscillations in BZ reaction: [ ] p.193
Consider FN model (3.45)

εdx
dt = qy − xy + x(1 − x)

δ dy
dt = −qy − xy + 2fz (3.45)

dz
dt = x − z

with dimensionless parameters given by (3.44). Note that ε � δ and we set εdx
dt ≈ 0.

This gives

x = x(y) =
(1 − y) +

[
(1 − y)2 + 4qy

] 1
2

2
(A.3)

Then (3.45) is reduced to

δ dy
dt = 2fz − y [x(y) + q]

dz
dt = x(y) − z

(A.4)

From (3.48) with q � 1, the z-nullcline of (3.49) is

z = x(y) ≈
{

1 − y for q � 1 − y ≤ 1
qy

y−1 for q � y − 1.
(A.5)

Then y-nullcline is

z =
y [x(y) + q]

2f
≈

⎧⎪⎨⎪⎩
y(1−y)

2f for q � 1 − y � 1
y[ qy

y−1+q]
2f q � y − 1

qy
f y � 1

(A.6)

Then we have the following figures of relaxzation oscillation.
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