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Abstract We analyzed a model of phytoplankton competition for light in a well-
mixed water column. The model, proposed by Gerla et al. (Oikos 120:519–527,
2011), assumed inhibition of photosynthesis at high irradiance (photoinhibition). We
described the global behavior through mathematical analyses, providing a general so-
lution to the multi-species competition for light with photoinhibition. We classified
outcomes of 2- and 3-species competitions as examples, and evaluated feasibility of
the theoretical predictions using empirical relationships between photosynthetic pro-
duction and irradiance. Numerical simulations with published p–I curves indicate
that photoinhibition may often lead to strong Allee effects and competitive facilita-
tion among species. Hence, our results suggest that photoinhibition may play a major
role in organizing phytoplankton communities.
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1 Introduction

Light is an essential resource for photosynthesis and the major source of energy for
both terrestrial and aquatic ecosystems. Excess light, however, causes damage to
the photosynthetic machinery, and thereby lessens photosynthetic production. This
phenomenon, known as photoinhibition, is prevalent to all photosynthetic organisms
from cyanobacteria to higher plants. The molecular mechanisms have been inves-
tigated intensively (Tyystjärvi 2008), and unimodal photosynthesis and irradiance
(p–I ) relationships of algal species were observed in laboratories (Henley 1993).
The corresponding theoretical frameworks were proposed (Eilers and Peeters 1988;
Zonneveld 1998; Han 2002; Muller 2010), which are in good agreement with
measured p–I relationships. Field observations showed impacts of photoinhibi-
tion on ecosystem-level properties such as the magnitude and spatial variations
of primary productivity in aquatic ecosystems (Alderkamp et al. 2010; Baastrup-
Spohr and Staehr 2009; Basterretxea and Aristegui 2000; Bischof et al. 1998;
Elser and Kimmel 1985; Oliver et al. 2003). However, influences of photoinhibi-
tion on ecological community structure are rarely investigated both empirically and
theoretically.

One exception is Gerla et al. (2011), where they extended the classical light com-
petition model of phytoplankton (Huisman and Weissing 1994; Weissing and Huis-
man 1994) by including the effect of photoinhibition (see also Huisman 1997). Their
results suggested that phytoplankton population may exhibit a strong Allee effect and
competitive facilitation. A strong Allee effect is a phenomenon that population goes
extinct when the density is below a threshold, while it persists when the density is
above the threshold. Competitive facilitation is a phenomenon that a species that can-
not grow in monoculture can grow and take over the community under the presence
of another species. Their theory and predictions, based on previous results of Huis-
man and Weissing (1994), Weissing and Huisman (1994) and graphical approach,
indicated significance of photoinhibition in shaping phytoplankton community struc-
ture.

In this paper, we aim at analyzing the global dynamical behavior of a phytoplank-
ton competition model with photoinhibition proposed by Gerla et al. (2011), and at
evaluating feasibility of the theoretical predictions using empirical p–I curves com-
piled by Schwaderer et al. (2011). In doing so, we supplement the theory of Gerla
et al. (2011), and shed light on the significance of photoinhibition in elucidating phy-
toplankton community structure in nature.

2 The Model and Main Results

Consider a model of n phytoplankton species competing for light in a well-mixed
water column. The depth of the water column z ranges from 0 (the water surface)
to zmax (the bottom of the water column). Let xi(t) be the population density of
the ith species per unit surface area of water at time t . The governing equation
for the ith species takes the form: (see Gerla et al. 2011; Weissing and Huisman
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1994)

dxi

dt
=

(
1

zmax

∫ zmax

0
pi

(
I (z, t)

)
dz − di

)
xi, i = 1,2, . . . , n. (1)

The first term within the parentheses denotes the specific production rate av-
eraged vertically in the water column, where pi(I ) is the specific production
rate as a function of light I (z, t). The second term di denotes the specific loss
rate.

According to Lambert–Beer’s law, the light intensity at depth z and time t is ex-
pressed by

I (z, t) = Iin exp

(
−

n∑
j=1

kjxj (t)z
/

zmax − Kbgz

)
, (2)

where Iin is the incident light intensity at the top of the water column, kj , the specific
light attenuation coefficient of j -th species, and Kbg, the background light attenuation
coefficient. Division by zmax in the first term within the parentheses converts the
population density per unit surface area (xj ) to population density per unit volume
(xj/zmax). Following Huisman and Weissing (1994), Weissing and Huisman (1994),
we define Iout to be the light intensity at the bottom of the water column

Iout(t) = I (zmax, t) = Iin exp

(
−

n∑
j=1

kjxj (t) − Kbgzmax

)
. (3)

The specific production rate pi(I ) decays when the light is too strong, known as
photoinhibition (Schwaderer et al. 2011). General assumptions of such function are:
pi(I ) ≥ 0 and dp/dI < ∞ for I > 0, pi(0) = 0, and

dpi

dI
> 0 for 0 ≤ I < Iopt,i ,

dpi

dI
< 0 for I > Iopt,i

where Iopt,i is the light intensity that attains the maximum specific production rate.
A commonly used example of functions that satisfy the above conditions is (Fig. 1A):

pi(I ) = pmax,iI
pmax,i

αi I
2
opt,i

I 2 + (1 − 2 pmax,i

αi Iopt,i
)I + pmax,i

αi

, (4)

where pmax,i is the maximum production rate and αi is the initial slope of pi(I ).
According to Gerla et al. (2011), we rewrite the depth-averaged production rate

in (1). Substitution of variables yields

1

zmax

∫ zmax

0
pi

(
I (z, t)

)
dz = 1

zmax

∫ Iout

Iin

pi(I )
∂z

∂I
dI. (5)
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From (2), we have

∂I

∂z
= −

(
n∑

j=1

kjxj (t)
/

zmax + Kbg

)
I. (6)

By substituting (6) into the right-hand side of (5), we obtain

1

zmax

∫ Iout

Iin

pi(I )
∂z

∂I
dI = 1∑n

j=1 kjxj (t) + Kbgzmax

∫ Iin

Iout

pi(I )

I
dI. (7)

We manipulate (3) and get

ln(Iin) − ln(Iout) =
n∑

j=1

kjxj (t) + Kbgzmax. (8)

By substituting (8) into the right-hand side of (7), we have

1

zmax

∫ zmax

0
pi

(
I (z, t)

)
dz = 1

ln Iin − ln Iout

∫ Iin

Iout

pi(I )

I
dI. (9)

We define the right-hand side of (9) to be gi(Iout), and the governing equation (1)
becomes

dxi

dt
= [

gi

(
Iout(t)

) − di

]
xi, i = 1,2, . . . , n. (10)

The function gi(Iout) satisfies gi(0) = 0, gi(Iin) = pi(Iin). When Iin > Iopt, gi(Iout)

is a unimodal function. In addition, when di is less than the maximum of gi(Iout),
there are two points Iout = λi , μi such that: gi(λi) = gi(μi) = di ; gi(Iout) > di

for Iout ∈ (λi,μi); and gi(Iout) < di for Iout ∈ [0, λi) ∪ (μi,∞) (Fig. 1B; see the
Appendix for the proof).

We define I0 := Iine
−Kbgzmax , and then (3) is rewritten as

Iout(t) = I0 exp

(
−

n∑
j=1

kjxj (t)

)
. (11)

We study (10) where Iout(t) is defined in (11) with the initial condition:

xi(0) > 0 for i = 1,2, . . . , n.

From the mathematical analysis, we prove that the solutions are positive and bounded,
and that if λi > I0, then the species i goes extinct as time t becomes large (see the
Appendix). From now on, we simply assume

0 < λ1 < λ2 < · · · < λn < I0,

and μi �= μj ,λj , I0 for i �= j .
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Fig. 1 (A) Specific production rate pi(I ) of species i as a function of irradiance I expressed by Eq. (4).
The curve has a peak at the optimal irradiance Iopt,i with the maximum production rate pmax,i . (B) The
corresponding production rate averaged over the water column gi(Iout) as a function of Iout, irradiance at
the bottom of the water column. Mathematical analysis shows gi (0) = 0, gi(Iin) = pi(Iin), and that the
curve has a peak at Iout which is lower than Iopt,i . When the loss rate di is lower than the maximum of
gi , there are λi and μi such that gi (λi ) = gi (μi) = di

First, we consider steady state of (10) and the local property. Steady state can be
classified into three types:

E0 = (0,0, . . . ,0);
Eλr = (0, . . . ,0, xλr ,0, . . . ,0), r = 1,2, . . . , n;
Eμr = (0, . . . ,0, xμr ,0, . . . ,0) for which r satisfies μr < I0,

where xλr and xμr are expressed by

xλr = ln I0 − lnλr

kr

,

xμr = ln I0 − lnμr

kr

.

For mathematical convenience, we introduce a positive cone

Ω := {
(x1, x2, . . . , xn) ∈ R

n : xi > 0, i = 1,2, . . . , n
}

and set S as

S :=
n⋃

i=1

(λi,μi).

For some species i and j , intervals (λi,μi) and (λj ,μj ) may overlap. For example, if
λi < λj and μi < μj , the union will be (λi,μj ). In a similar manner, S is expressed
as a disjoint union of several connected components:

S = (λp1,μq1) ∪ (λp2 ,μq2) ∪ · · · ∪ (λpm,μqm),
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where m is the number of connected components, and λpj
and μqj

, respectively,
are the left and right endpoints of component j (j = 1,2, . . . ,m). In addition, we
introduce two sets of steady state, SL and SR :

SL = {Eλr : λr is a left endpoint of components of S} ∪ {E0} if I0 /∈ S,

SR = {Eμr : μr is a right endpoint of components of S}.
From linearization at steady state and the stability analysis, we can conclude that

the local property is related to the structure of S (see the Appendix). The results are
summarized as: steady state E ∈ SL is locally stable; E ∈ SR is saddle with (n − 1)-
dimensional stable manifold (denoted by Ws(E) for E ∈ SR), which intersects Ω ;
and other steady states are unstable, some of which are saddle with a stable manifold
which does not intersect Ω .

By using mathematical methods similar to Butler and Wolkowicz (1985), we prove
that Iout(t) converges as t goes to infinity. Based on the result and local stability of
steady state, we can describe the global behavior of system (10).

Theorem 1 All solutions with initial condition in Ω\(⋃E∈SR
Ws(E)) satisfy

lim
t→∞

(
x1(t), x2(t), . . . , xn(t)

) = E ∈ SL,

and the outcome depends on initial condition.

Theorem 1 tells us that all solutions from a positive initial condition converge
to a steady state in the set SL except when the initial condition lies in the stable
manifold Ws(E) with E ∈ SR . The positive cone Ω is divided by

⋃
E∈SR

Ws(E) into
several regions, and there is only one locally stable steady state E ∈ SL in each region
that attracts all solutions with the initial condition in this region. These statements
completely describe the global dynamics of the system investigated by Gerla et al.
(2011), and assure that the competition outcomes can be evaluated from the structure
of S and the position of I0 for any number of species. We shall investigate some
examples in the next section.

3 Feasibility of Theoretical Predictions

Gerla et al. (2011) showed diverse outcomes of 2-species competition including a
strong Allee effect, competitive facilitation, and multiple positive alternative stable
states. In this section, we demonstrate how mathematical properties of the system
can be translated to ecological phenomena in 2- and 3-species competitions. Then we
test feasibility of the theoretical predictions by applying empirical p–I curves to the
model.

In order to classify competition outcomes, we suppose our basic assumption
λi < I0 holds for all species. Mathematical properties include the structure of S

and the position of I0 relative to S, the set of stable steady states, and the set
of saddles with the stable manifold in Ω . The corresponding ecological phenom-
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Table 1 Mathematical properties and ecological phenomena for the eight possible cases of 2-species
competition. Mathematical properties shown in the table include structure of set S and the position of I0
relative to S (Structure of S), set of stable steady states (Stable), and set of saddles with the stable manifold
in Ω (Saddle). Ecological properties include a strong Allee effect (AL), competitive facilitation (FA), and
the number of positive alternative stable states (ASS+)

Structure of S Stable Saddle AL FA ASS+

(A) (λ1,μ1) ∪ (λ2,μ2); I0 /∈ S E0, Eλ1 , Eλ2 Eμ1 , Eμ2 + – 2

(B) (λ1,μ1) ∪ (λ2,μ2); I0 ∈ S Eλ1 , Eλ2 Eμ1 – – 2

(C) (λ1,μ2); I0 /∈ S E0, Eλ1 Eμ2 + 2 → 1 –

(D) (λ1,μ2); I0 ∈ S Eλ1 – – 2 → 1 –

(E) (λ1,μ2); I0 ∈ S Eλ1 – – – –

(F) (λ1,μ1); I0 /∈ S E0, Eλ1 Eμ1 + – –

(G, H) (λ1,μ1); I0 ∈ S Eλ1 – – – –

ena include a strong Allee effect (AL), competitive facilitation (FA), and presence
of positive alternative stable states (ASS+). AL is defined as the case when the
system shows alternative stable states that include E0 (xi = 0 for all i). ASS+
is defined as the case when the system has multiple positive stable states. There-
fore, alternative stable states consisting of only one positive state and E0 do not
belong to ASS+ but are captured by AL. FA is distinguished by the case when
an interval of positive growth of a winning species overlaps, but does not com-
pletely cover, that of other species. In FA, a winning species i cannot persist
in the system for some Iout where a losing species j can. As species j grows
in the system and reduce Iout, species i eventually takes over the system. This
case is described by j → i in tables. In 3-species competition, stable steady
state may be achieved through a sequence of competitive facilitation such as:
3 → 2 → 1.

For 2-species competition, we have the following eight cases:

(A) λ1 < μ1 < λ2 < μ2 < I0 (E) λ1 < λ2 < I0 < μ1 < μ2

(B) λ1 < μ1 < λ2 < I0 < μ2 (F) λ1 < λ2 < μ2 < μ1 < I0

(C) λ1 < λ2 < μ1 < μ2 < I0 (G) λ1 < λ2 < μ2 < I0 < μ1

(D) λ1 < λ2 < μ1 < I0 < μ2 (H) λ1 < λ2 < I0 < μ2 < μ1

Mathematical properties and the corresponding ecological phenomena for 2-
species competition are summarized in Table 1. Based on backward trajectory and
Theorem 1, we can describe the global behavior of the solutions of system (10)
(Fig. 2). Note that the case (A) is equivalent to the intriguing case discussed in Fig. 6
of Gerla et al. (2011), where both species go extinct when they are initially abundant
in the system (Fig. 2A).

For 3-species competition, we have the following 48 cases:
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Fig. 2 Phase plane (x1, x2) depicts global behavior of 2-species competition. The closed and open circles
are locally stable and unstable stable states, respectively. By reversing time, we draw the stable manifold
of saddle point in the set SL . (A) Two stable manifolds Ws(Eμ1 ) and Ws(Eμ2 ) separate the positive cone
Ω into three parts, and there is an attractor in each part (E0, Eλ1 , Eλ2 ). (B) Ws(Eμ1 ) separates Ω into
two parts, and there is an attractor (Eλ1 ,Eλ2 ) in each part. (C) Ws(Eμ1 ) separates Ω into two parts, and
there is an attractor (E0,Eλ1 ) in each part. A heteroclinic orbit runs from Eμ1 to Eμ2 along Ws(Eμ1 ).
(D, E, G, H) Eλ1 is a global attractor. (F) Ws(Eμ1 ) separates Ω into two parts, and there is an attractor
(E0,Eλ1 ) in each part (Color figure online)
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(A.1) λ1 < μ1 < λ2 < μ2 < λ3 < μ3 < I0 (J.1) λ1 < λ2 < λ3 < μ3 < μ2 < μ1 < I0
(A.2) λ1 < μ1 < λ2 < μ2 < λ3 < I0 < μ3 (J.2) λ1 < λ2 < λ3 < μ3 < μ2 < I0 < μ1
(B.1) λ1 < μ1 < λ2 < λ3 < μ2 < μ3 < I0 (J.3) λ1 < λ2 < λ3 < μ3 < I0 < μ2 < μ1
(B.2) λ1 < μ1 < λ2 < λ3 < μ2 < I0 < μ3 (J.4) λ1 < λ2 < λ3 < I0 < μ3 < μ2 < μ1
(B.3) λ1 < μ1 < λ2 < λ3 < I0 < μ2 < μ3 (K.1) λ1 < λ2 < λ3 < μ2 < μ3 < μ1 < I0
(C.1) λ1 < μ1 < λ2 < λ3 < μ3 < μ2 < I0 (K.2) λ1 < λ2 < λ3 < μ2 < μ3 < I0 < μ1
(C.2) λ1 < μ1 < λ2 < λ3 < μ3 < I0 < μ2 (K.3) λ1 < λ2 < λ3 < μ2 < I0 < μ3 < μ1
(C.3) λ1 < μ1 < λ2 < λ3 < I0 < μ3 < μ2 (K.4) λ1 < λ2 < λ3 < I0 < μ2 < μ3 < μ1
(D.1) λ1 < λ2 < μ1 < μ2 < λ3 < μ3 < I0 (L.1) λ1 < λ2 < λ3 < μ2 < μ1 < μ3 < I0
(D.2) λ1 < λ2 < μ1 < μ2 < λ3 < I0 < μ3 (L.2) λ1 < λ2 < λ3 < μ2 < μ1 < I0 < μ3
(E.1) λ1 < λ2 < μ2 < μ1 < λ3 < μ3 < I0 (L.3) λ1 < λ2 < λ3 < μ2 < I0 < μ1 < μ3
(E.2) λ1 < λ2 < μ2 < μ1 < λ3 < I0 < μ3 (L.4) λ1 < λ2 < λ3 < I0 < μ2 < μ1 < μ3
(F.1) λ1 < λ2 < μ1 < λ3 < μ2 < μ3 < I0 (M.1) λ1 < λ2 < λ3 < μ1 < μ2 < μ3 < I0
(F.2) λ1 < λ2 < μ1 < λ3 < μ2 < I0 < μ3 (M.2) λ1 < λ2 < λ3 < μ1 < μ2 < I0 < μ3
(F.3) λ1 < λ2 < μ1 < λ3 < I0 < μ2 < μ3 (M.3) λ1 < λ2 < λ3 < μ1 < I0 < μ2 < μ3
(G.1) λ1 < λ2 < μ1 < λ3 < μ3 < μ2 < I0 (M.4) λ1 < λ2 < λ3 < I0 < μ2 < μ1 < μ3
(G.2) λ1 < λ2 < μ1 < λ3 < μ3 < I0 < μ2 (N.1) λ1 < λ2 < λ3 < μ3 < μ1 < μ2 < I0
(G.3) λ1 < λ2 < μ1 < λ3 < I0 < μ3 < μ2 (N.2) λ1 < λ2 < λ3 < μ3 < μ1 < I0 < μ2
(H.1) λ1 < λ2 < μ2 < λ3 < μ3 < μ1 < I0 (N.3) λ1 < λ2 < λ3 < μ3 < I0 < μ1 < μ2
(H.2) λ1 < λ2 < μ2 < λ3 < μ3 < I0 < μ1 (N.4) λ1 < λ2 < λ3 < I0 < μ3 < μ1 < μ2
(H.3) λ1 < λ2 < μ2 < λ3 < I0 < μ3 < μ1 (O.1) λ1 < λ2 < λ3 < μ1 < μ3 < μ2 < I0
(I.1) λ1 < λ2 < μ2 < λ3 < μ1 < μ3 < I0 (O.2) λ1 < λ2 < λ3 < μ1 < μ3 < I0 < μ2
(I.2) λ1 < λ2 < μ2 < λ3 < μ1 < I0 < μ3 (O.3) λ1 < λ2 < λ3 < μ1 < I0 < μ3 < μ2
(I.3) λ1 < λ2 < μ2 < λ3 < I0 < μ1 < μ3 (O.4) λ1 < λ2 < λ3 < I0 < μ1 < μ3 < μ2

Mathematical properties and the corresponding ecological phenomena for 3-
species competition are summarized in Table 2. Based on the mathematical analysis,
we can exactly describe the global behavior. We will not present each of 48 cases, but
classify all cases by the number of attractors and the structure of stable manifold of
saddle in Ω , resulting in 8 classical types (Fig. 3).

As we have seen in 2- and 3-species cases, the light competition model with pho-
toinhibition shows a variety of dynamical behaviors. In order to evaluate feasibility
of these theoretical predictions, we applied empirical p–I curves to the model. In
Schwaderer et al. (2011) compiled empirical data of specific growth rate and irradi-
ance relationships for 56 phytoplankton species. Among them, relationships for 39
species indicated photoinhibition, and were fitted by Eq. (4). We considered these 39
species for our numerical experiments. The maximum production rate pmax,i (d−1)
of the species ranged from 0.09 to 2.48 with a median of 0.64; the initial slope αi

(µmol photon−1 m2 s d−1), ranged from 0.003 to 0.099 with a median of 0.015; and
the optimal irradiance Iopt,i (µmol photon m−2 s−1) ranged from 37.5 to 250.8 with a
median of 161.5. In numerical experiments, we set model parameters to combinations
of low or high loss rate (di = 0.25, 0.5 [d−1]), and low, high, or a range of incident
light (Iin = 500, 1500, 0–2000 [µmol photon m−2 s−1]) in a clear (Kbg = 0.2 [m−1])
and shallow (zmax = 1 [m]) water column.

Positive growth intervals (λi,μi) are computed for the 39 species. Several species
cannot grow for any Iout at d = 0.25 due to the low pmax,i (Figs. 4AB). Positive
growth intervals of two species (Scenedesmus crassus and Chlorella pyrenoidosa)
ranged from <10−4 to Iin due to the high pmax,i (1.29 and 2.48) and the relatively
high αi (0.042 and 0.045). Among species that can grow for some Iout, several species
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Table 2 Mathematical properties and ecological phenomena for all possible cases of 3-species competi-
tion. Notation follows Table 1

Structure of S Stable Saddle AL FA ASS+

(A.1) (λ1,μ1) ∪ (λ2,μ2) ∪ (λ3,μ3); I0 /∈ S E0, Eλ1 , Eλ2 , Eλ3 Eμ1 , Eμ2 , Eμ3 + – 3

(A.2) (λ1,μ1) ∪ (λ2,μ2) ∪ (λ3,μ3); I0 ∈ S Eλ1 , Eλ2 , Eλ3 Eμ1 , Eμ2 – – 3

(B.1) (λ1,μ1) ∪ (λ2,μ3); I0 /∈ S E0, Eλ1 , Eλ2 Eμ1 , Eμ3 + 3 → 2 2

(B.2) (λ1,μ1) ∪ (λ2,μ3); I0 ∈ S Eλ1 , Eλ2 Eμ1 – 3 → 2 2

(B.3) (λ1,μ1) ∪ (λ2,μ3); I0 ∈ S Eλ1 , Eλ2 Eμ1 – – 2

(C.1) (λ1,μ1) ∪ (λ2,μ2); I0 /∈ S E0, Eλ1 , Eλ2 Eμ1 , Eμ2 + – 2

(C.2–3) (λ1,μ1) ∪ (λ2,μ2); I0 ∈ S Eλ1 , Eλ2 Eμ1 – – 2

(D.1) (λ1,μ2) ∪ (λ3,μ3); I0 /∈ S E0, Eλ1 , Eλ3 Eμ2 , Eμ3 + 2 → 1 2

(D.2) (λ1,μ2) ∪ (λ3,μ3); I0 ∈ S Eλ1 , Eλ3 Eμ2 – 2 → 1 2

(E.1) (λ1,μ1) ∪ (λ3,μ3); I0 /∈ S E0, Eλ1 , Eλ3 Eμ1 , Eμ3 + – 2

(E.2) (λ1,μ1) ∪ (λ3,μ3); I0 ∈ S Eλ1 , Eλ3 Eμ1 – – 2

(F.1) (λ1,μ3); I0 /∈ S E0, Eλ1 Eμ3 + 3 → 2 → 1 –

(F.2) (λ1,μ3); I0 ∈ S Eλ1 – – 3 → 2 → 1 –

(F.3) (λ1,μ3); I0 ∈ S Eλ1 – – 2 → 1 –

(G.1) (λ1,μ2); I0 /∈ S E0, Eλ1 Eμ2 + 2 → 1 –

(G.2–3) (λ1,μ2); I0 ∈ S Eλ1 – – 2 → 1 –

(H.1) (λ1,μ1); I0 /∈ S E0, Eλ1 Eμ1 + – –

(H.2–3) (λ1,μ1); I0 ∈ S Eλ1 – – – –

(I.1) (λ1,μ3); I0 /∈ S E0, Eλ1 Eμ3 + 3 → 1 –

(I.2) (λ1,μ3); I0 ∈ S Eλ1 – – 3 → 1 –

(I.3) (λ1,μ3); I0 ∈ S Eλ1 – – – –

(J.1) (λ1,μ1); I0 /∈ S E0, Eλ1 Eμ1 + – –

(J.2–4) (λ1,μ1); I0 ∈ S Eλ1 – – – –

(K.1) (λ1,μ1); I0 /∈ S E0, Eλ1 Eμ1 + – –

(K.2–4) (λ1,μ1); I0 ∈ S Eλ1 – – – –

(L.1) (λ1,μ3); I0 /∈ S E0, Eλ1 Eμ3 + 3 → 1 –

(L.2) (λ1,μ3); I0 ∈ S Eλ1 – – 3 → 1 –

(L.3–4) (λ1,μ3); I0 ∈ S Eλ1 – – – –

(M.1) (λ1,μ3); I0 /∈ S E0, Eλ1 Eμ3 + 3 → 1 –

(M.2) (λ1,μ3); I0 ∈ S Eλ1 – – 3 → 1 –

(M.3) (λ1,μ3); I0 ∈ S Eλ1 – – (2 or 3) → 1 –

(M.4) (λ1,μ3); I0 ∈ S Eλ1 – – – –

(N.1) (λ1,μ2); I0 /∈ S E0, Eλ1 Eμ2 + 2 → 1 –

(N.2) (λ1,μ2); I0 ∈ S Eλ1 – – 2 → 1 –

(N.3–4) (λ1,μ2); I0 ∈ S Eλ1 – – – –

(O.1) (λ1,μ2); I0 /∈ S E0, Eλ1 Eμ2 + 2 → 1 –

(O.2–3) (λ1,μ2); I0 ∈ S Eλ1 – – 2 → 1 –

(O.4) (λ1,μ2); I0 ∈ S Eλ1 – – – –

showed a strong Allee effect at d = 0.25 and Iin = 500 (Fig. 4A). On the other hand,
most species showed a strong Allee effect (Figs. 4BCD) at high loss rate d = 0.5
and/or high incoming light Iin = 1500.

The intriguing ecological phenomena such as AL, ASS+, and FA were observed
in the numerical experiments. For example, when Limnothrix redekei and Fragi-
laria rumpens compete under low light (500 µmol photon m−2 s−1) and high loss rate
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Fig. 3 Phase plane (x1, x2, x3) depicts global behavior of 3-species competition. The closed and the
open circles are locally stable and unstable steady states, respectively. Based on the structure of 2-species
cases, we can describe the behavior on the boundary planes of Ω . (A) Ws(Eμ1 ), Ws(Eμ2 ) and Ws(Eμ3 )

separate Ω into four parts, and there is an attractor (E0,Eλ1 ,Eλ2 ,Eλ3 ) in each part. (B) Ws(Eμ1 ) and
Ws(Eμ2 ) separate Ω into three parts, there is an attractor (Eλ1 ,Eλ2 ,Eλ3 ) in each part. (C) Ws(Eμ1 )

separates Ω into two parts, and there is an attractor (Eλ1 ,Eλ2 ) in each part. (D) Ws(Eμ2 ) and Ws(Eμ3 )

separates Ω into three parts, and there is an attractor (E0,Eλ1 ,Eλ3 ) in each part. (E) Ws(Eμ1 ) separates
Ω into two parts, and there is an attractor (Eλ1 ,Eλ3 ) in each part. (F) Ws(Eμ3 ) separates Ω into two
parts, there is an attractor (E0,Eλ1 ) in each part. (G) Eλ1 is a globally attractor. (H) Ws(Eμ1 ) separates
Ω into two parts, and there is an attractor (E0,Eλ1 ) in each part
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Fig. 4 Ranges of Iout with positive net production are depicted for 39 species that exhibit photoinhibi-
tion. Closed and open circles indicate stable and unstable steady states, respectively. Solid lines indicate
intervals where net production is positive. Dotted lines indicate intervals where net production is negative.
(A) Low light (Iin = 500) and low loss rate (d = 0.25) condition. (B) High light (Iin = 1500) and low
loss rate condition. (C) Low light and high loss rate (d = 0.5) condition. (D) High light and high loss rate
conditions. Species with both closed and open circles show a strong Allee effect
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(0.5 d−1) condition, the competition outcome is either that both species go extinct, or
that one of the two species persists depending on the initial condition (Fig. 5A). This
case corresponds to (A) of Table 1 and is classified as AL and ASS+. When Stephan-
odiscus neoastraea and Rhodomonas sp. were grown together under low light and
high loss rate condition from low initial biomasses, Rhodomonas sp. grew first, and
was eventually replaced by S. neoastraea (Fig. 5B). This case corresponds to (D) of
Table 1 and is classified as FA, (Rhodomonas sp.)→(S. neoastraea), where the latter
species cannot grow from the low initial biomass by itself.

Figure 6 shows feasibility of theoretical predictions along the gradient of incoming
light Iin with an increment �Iin = 1. In monoculture, a species either goes extinct,
persists regardless of the initial condition with the biomass converge to a positive
global attractor, or shows a strong Allee effect (Figs. 6AB). The number of species
whose biomass converges to a positive global attractor has a peak around the median
of Iopt, and the number of species that shows a strong Allee effect increases with
increasing Iin. The trends are similar for d = 0.25 and d = 0.5. In 2- and 3-species
competitions, we consider combinations of species that have a positive growth in-
terval in monoculture for a given Iin. For 2-species competition, we classified the
competition outcomes as in Table 1. For 3-species competition, FA is distinguished
whether 1 or 2 species play roles in facilitation (FA(1) and FA(2)), and ASS+, by the
number of positive stable states (ASS+(2) and ASS+(3)). For each case of competi-
tion outcomes, we computed the number of combinations relative to the total number
of combinations of species with a positive growth interval for a given Iin. When
d = 0.25, the relative number of combinations that indicated FA and AL showed in-
creasing trends with Iin while ASS+ was not observed in both 2- and 3-species com-
petitions (Figs. 6CE). When d = 0.5, FA and AL showed similar increasing trends,
and ASS+ was observed in a few combinations at relatively low Iin (Figs. 6DF). For
3-species competition, 3 positive alternative stable states ASS+(3) and sequential
facilitation FA(2) were also possible in several combinations.

When d = 0.25 and d = 0.5, about 60 % and 40 % of species showed an strong
Allee effect at high Iin (Figs. 6AB), which is >70 % and >80 % of species that have
a positive growth interval, respectively. As a result, a strong Allee effect is common
in 2- and 3-species competition at high Iin (Figs. 6CDEF). FA is commonly observed
as well, about 25 % and 50 %, respectively, when d = 0.25 and d = 0.5 in both
2- and 3-species competitions (Figs. 6CDEF). Facilitation by more than one species
was observed only in a few cases when d = 0.5 at relatively low Iin (Fig. 6F). ASS+
was not observed except for very limited combinations when d = 0.5 (Figs. 6DF).
These phenomena are less likely to occur in more turbid and deeper water (results
not shown).

4 Discussion

In this study, we analyzed the dynamical behavior of a light competition model with
photoinhibition proposed by Huisman (1997) and Gerla et al. (2011). We proved that
light at the bottom of the water column Iout(t) converges as t goes to infinity, which
excludes possibility of limit cycle, and hence excludes possibility of coexistence in
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Fig. 5 Trajectories of the 2-species competition on phase plane, and the corresponding time courses in the
inset panels. Biomasses shown in figures are multiplied by the specific light attenuation coefficient (kixi ).
The open triangle and the closed circle on each trajectory indicate the initial condition and the stable steady
state, respectively. (A) Competition between Limnothrix redekei and Fragilaria rumpens. Parameters of
p–I curves can be found in Schwaderer et al. (2011). Other parameters are: Iin = 500, d1 = d2 = 0.5,
zmax = 1, and Kbg = 0.2. The competition outcome is either (I) both species go extinct, (II) L. redekei
wins, or (III) F. rumpens wins, depending on the initial condition. (B) Competition between Stephan-
odiscus neoastraea and Rhodomonas sp. Parameters are the same as in (A). When the initial biomasses
are small, Rhodomonas sp. increases first, and subsequently outcompeted by S. neoastraea (Color figure
online)
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Fig. 6 Results of numerical experiments. Monoculture growth with low (A) and high (B) loss rates;
2-species competition with low (C) and high (D) loss rates; and 3-species competition with low (E) and
high (F) loss rates. Other model parameters are: Kbg = 0.2 and zmax = 1. Outcomes are evaluated by the
relative number of species or species combinations for each Iin. AL indicates a strong Allee effect, FA,
competitive facilitation, and ASS+, presence of multiple positive stable states. In 3-species competition,
FA is distinguished by the number of species that participate in the facilitation, and ASS+, by the number
of positive stable states (Color figure online)

competition between any number of species. This property is similar to the model
without photoinhibition (proof was given by Weissing and Huisman 1994). Theo-
rem 1 states that the positive cone Ω is separated into regions by the stable manifolds
of saddle points in the set SR . In each region, there is only one stable steady state in
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the set SL, which attracts all trajectories in the region. Therefore, there are alterna-
tive stable states and the competition outcomes depend on the initial conditions. Our
mathematical results are consistent with results of Gerla et al. (2011), and augment
them by a more general theory and analytical approach to the question of light com-
petition with photoinhibition. In addition, we employed empirical p–I curves, and
evaluated feasibility of the theoretical predictions.

Resources are beneficial at the limiting amount, yet occasionally show inhibitory
effects on growth when supplied at the excessive amount. Indeed, inorganic and or-
ganic nutrients can be inhibitory at the high concentrations. Resource competition
models that incorporate inhibitory effects of nutrients were proposed by Andrews
(1968) and rigorously analyzed by Butler and Wolkowicz (1985). Such high nutrient
concentrations are rarely observed, however, except for artificially fertilized environ-
ments or for a few specific species in typical in situ conditions. Light, on the other
hand, can be inhibitory in normal conditions for all phototrophs, thus the inhibitory
effects are relevant to ecosystem processes. Yet, effects of photoinhibition on light
competition and community structure are not well understood, and most ecological
theories of light competition do not consider photoinhibition. This study, in concert
with Gerla et al. (2011), gives fundamental theory of light competition with photoin-
hibition.

Inhibitory effects by excessive amount of resources cause a strong Allee effect,
alternative stable steady states, and competitive facilitation in resource competition
models (Butler and Wolkowicz 1985; Gerla et al. 2011). Our numerical experi-
ments suggest that a strong Allee effect and competitive facilitation are common
in competition for light when we consider empirical p–I curves (Fig. 6). The in-
fluence of photoinhibition may be more severe in natural phytoplankton communi-
ties. Empirical p–I curves are obtained in nutrient replete conditions at temperature
around 20 °C. Because recovery from photodamages largely depends on the nutri-
tional conditions of cells as well as the ambient temperature (Bouchard et al. 2006;
Muller 2010), phytoplankton species may be more susceptible to strong light in field
conditions. In addition, fluorescent lamps used in experiments do not emit as much
ultraviolet (UV, 290–400 nm in wavelength) radiation as sunlight, while UV radi-
ation exerts greater photodamages than photosynthetically available radiation (PAR,
400–700 nm) (Bouchard et al. 2006). With exposure to UV in addition to PAR, phyto-
plankton species may show lower maximum growth rate pmax and optimal irradiance
Iopt (Litchman et al. 2002; Litchman and Neale 2005). On the other hand, we ex-
clusively considered species that show photoinhibition in our numerical experiment.
Such selection of species may result in overestimation of the effect of photoinhibition
on phytoplankton communities. However, we think this selection is fair, though not
the best, because most p–I relationships were not evaluated at high irradiance levels
where photosynthesis is inhibited and photoinhibition is detected (Schwaderer et al.
2011). Thus, we conclude that photoinhibition takes an important role in shaping
phytoplankton community structure.

Our mathematical analysis confirmed that coexistence is not possible in competi-
tion for light with photoinhibition in a well-mixed water column. For coexistence of
species, we need to consider additional factors. For example, differential responses of
phytoplankton to different wavelengths of PAR (Stomp et al. 2007) and of UV (Litch-
man et al. 2002; Litchman and Neale 2005) are possibilities. Incomplete mixing of a
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water column may allow niche segregation along the light gradient (Yoshiyama et al.
2009). Including a limiting nutrient to the model (Huisman and Weissing 1995), ver-
tically heterogeneous mixing (Yoshiyama and Nakajima 2002; Ryabov et al. 2010;
Mellard et al. 2011), or taxis behavior (Klausmeier and Litchman 2001) are possible
extensions to the light competition model with photoinhibition.

Trait-based approaches are being increasingly used to explain community organi-
zation along various environmental gradients in both terrestrial and aquatic ecology
(McGill et al. 2006; Litchman and Klausmeier 2008). Light utilization traits are con-
sidered to be among the primary factors that structure plant communities (Kohyama
1993; Huisman and Weissing 1994; Schwaderer et al. 2011). Among the light utiliza-
tion traits, photoinhibition has been dismissed in theoretical ecology. Our study at-
tempted to evaluate whether photoinhibition has significant effects on phytoplankton
community ecology through mathematical analysis and numerical experiments of a
light competition model. Our numerical experiment showed that a strong Allee effect
and competitive facilitation are commonly observed in 2- and 3-species competitions,
and indicated such specific ecological phenomena to inhibitory responses to strong
light may be common in natural phytoplankton communities. Our results, in turn,
suggest the need for better empirical and theoretical understandings of physiological
responses to light along environmental gradients in order to elucidate phytoplankton
community structure.
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Appendix

A.1 Basic Properties

We will demonstrate the shape of function

g(x) = 1

ln Iin − lnx

∫ Iin

x

p(I )

I
dI for x ∈ [0, Iin],

where p(I) satisfies p(0) = 0, p(I) ∈ (0,∞) for 0 < I ≤ Iin, dp/dI < ∞,
dp/dI > 0 for 0 ≤ I < Iopt, and dp/dI < 0 for Iopt < I ≤ Iin. We claim that
g(0) = 0 and g(Iin) = p(Iin), and there is a unique point x̂ such that dg(x̂)/dx = 0,
and dg/dx > 0 for x ∈ [0, x̂); dg/dx < 0 for x ∈ (x̂, Iin].

The proof of g(0) = 0 is straightforward:

lim
x→0

g(x) =
∫ Iin

0

p(I)

I
dI lim

x→0

1

ln Iin − lnx
= 0,
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because
∫ Iin

0
p(I)

I
dI is bounded and limx→0(ln Iin − lnx) = ∞. Likewise, g(Iin) =

p(Iin) can be proved by

lim
x→Iin

g(x) = lim
x→Iin

∫ Iin
x

p(I)
I

dI

ln Iin − lnx
= lim

x→Iin

−p(x)
x

− 1
x

= lim
x→Iin

p(x) = p(Iin).

Next, we prove that g(x) is a unimodal function with a peak at x̂ ∈ (0, Iopt). The
derivative of g(x) is

dg

dx
= 1

(ln Iin − lnx)2

[
−p(x)

x
(ln Iin − lnx) + 1

x

∫ Iin

x

p(I )

I
dI

]

= 1

(ln Iin − lnx)2x

[
−p(x)(ln Iin − lnx) +

∫ Iin

x

p(I )

I
dI

]
.

Let

g1(x) = p(x)(ln Iin − lnx) ≥ 0,

g2(x) =
∫ Iin

x

p(I )

I
dI ≥ 0,

Because p(0) = 0 from the assumption, we have

lim
x→0

g1(x) = lim
x→0

p(x)(ln Iin − lnx) = lim
x→0

ln Iin − lnx

1
p(x)

= lim
x→0

− 1
x

− p′(x)

p2(x)

= lim
x→0

p(x)
x

p′(x)
p(x) = 0.

Therefore, g1(0) < g2(0) and g1(Iin) = g2(Iin) = 0.
The derivatives of g1(x) and g2(x) are:

g′
1(x) = p′(x)(ln Iin − lnx) − p(x)

x
, (12)

g′
2(x) = −p(x)

x
. (13)

Because p′(x) < 0 for x ∈ (Iopt, Iin], we have |g′
1(I

−
in )| > |g′

2(I
−
in )|. Since g1(Iin) =

g2(Iin), it follows that g1(x) > g2(x) for x near Iin. By the intermediate value theo-
rem, there exists a point x̂ ∈ (0, Iin) such that g1(x̂) = g2(x̂).

From g1(x̂) = g2(x̂), g1(Iin) = g2(Iin), there exists a point x̄ ∈ (x̂, Iin) such that
g′

1(x̄) = g′
2(x̄) according to Rolle’s theorem. From (12) and (13), we have p′(x̄) = 0.

From assumption of p(x), it follows that x̄ = Iopt. Hence, x̂ < Iopt < Iin.
Suppose there exists another point x̂′ ∈ (0, Iin) with g1(x̂

′) = g2(x̂
′). If x̂′ ∈

(x̂, Iopt], then by Rolle’s theorem there exists a point s ∈ (x̂, x̂′) such that p′(s) = 0.
It contradicts to that p′(I ) > 0 for 0 ≤ I < Iopt. If x̂′ ∈ (Iopt, Iin), then by Rolle’s
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theorem there exists a point s ∈ (Iopt, Iin) such that p′(s) = 0. It contradict to that
p′(I ) < 0 for 0 ≤ Iopt < I < Iin. Thus, x̂ is the only point with g1(x̂) = g2(x̂).

Next, we prove the following theorem. In the following, we let L(t) = Iout(t) for
convenience. From (11),

L(t) = I0 exp

(
−

n∑
j=1

kjxj (t)

)
. (14)

Theorem 2 The solutions of (10) are positive and bounded.

Proof Assume there exists t1 > 0 and some i ∈ {1,2, . . . , n} such that

xi(t1) = 0, xi(t) > 0 for t ∈ [0, t1),

xj (t) > 0 for t ∈ [0, t1] if j �= i.

By reversing time, let τ = −t and we consider backward behavior of the solution of
(10) with initial data xi(0) = 0, xj (0) = xj (t1) > 0. It follows that xi(τ ) = 0 for all
τ < 0. By the uniqueness of ordinary differential equations, we have xi(−t1) = 0, a
contradiction. Thus, the solutions are positive if the initial condition is in Ω .

To prove the boundedness of solution, we consider the differential inequalities

x′
i = [

gi(L) − di

]
xi ≤ [

Gi(L) − di

]
xi ≤ [

Gi

(
I0 exp(−kixi)

) − di

]
xi,

i = 1,2, . . . , n,

where

Gi(s) =
{

gi(s), for 0 ≤ s ≤ Lmax,i ,

maxs∈[0,I0] gi(s), for s ≥ Lmax,i

with gi(Lmax,i ) = maxs∈[0,I0] gi(s). Let y(t) be the solution of

y′ = [
Gi

(
I0 exp(−kiy)

) − di

]
y.

Then limt→∞ y(t) = yi , where yi satisfies Gi(I0 exp(−kiyi)) − di = 0. Hence, for
given small ε, xi(t) ≤ yi + ε for all t large. Hence, xi(t) is bounded for all time t for
i = 1,2, . . . , n. �

The next theorem says that if the light intensity is weak enough, then some species
die out.

Theorem 3 If λi > I0, then limt→∞ xi(t) = 0.

Proof Since L(t) ≤ I0 for all t ≥ 0, we have L(t) < λi for all t ≥ 0. From gi(L(t)) ≤
Gi(L(t)),

x′
i

xi

= gi

(
L(t)

) − di ≤ Gi

(
L(t)

) − di ≤ Gi(I0) − di < 0,

then xi(t) → 0 as t → ∞. �
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A.2 Local Stability of Equilibria

For simplicity, let

fi

(
x1(t), x2(t), . . . , xn(t)

) := [
gi

(
L(t)

) − di

]
xi(t).

We denote the Jacobian of (10) at an equilibrium E is J (E) = [mij ] ∈ R
n×n, where

mii = ∂fi

∂xi

= [
gi(L) − di

] − kig
′
i (L)Lxi,

mij = ∂fi

∂xj

= −kjg
′
i (L)Lxi, for j �= i.

For the equilibrium E0, the Jacobian at E0 is

J (E0) =

⎡
⎢⎢⎢⎣

g1(I0) − d1 0 0 . . . 0
0 g2(I0) − d2 0 . . . 0
...

0 0 . . . 0 gn(I0) − dn

⎤
⎥⎥⎥⎦ .

Obviously the eigenvalues of J (E0) are gi(I0) − di , for i = 1,2, . . . , n.
If I0 /∈ S, then gi(I0) − di < 0 for all i and E0 is locally asymptotically stable.
If I0 ∈ S, then there exists some i such that I0 ∈ (λi,μi). Hence, gi(I0) − di > 0,

and E0 is unstable. If there exists some j such that I0 /∈ (λj ,μj ), then J (E0) has
negative eigenvalues and E0 is saddle with the local stable manifold

Ws
loc(E0) =

{
n∑

i=1

ciei : ci = 0 except some j with I0 /∈ (λj ,μj ).

}
,

where ei is the eigenvector corresponding to the eigenvalue of (gi(I0) − di). Hence,
the dimension of Ws(E0), the stable manifold of E0, is at most (n − 1) and

Ws(E0) ⊂ {
(x1, . . . , xn) : xi = 0 if I0 ∈ (λi,μi)

}
.

Therefore, Ws(E0) ∩ Ω = ∅.
For the equilibria Eλr , the Jacobian evaluated at Eλr is

J (Eλr ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 0 . . . . . . . . . . . . . . . . . . 0
0 m22 0 . . . . . . . . . . . . . . . 0
...

0 . . . 0 mr−1,r−1 0 . . . . . . . . . 0
mr1 . . . . . . mr,r−1 mr,r mr,r+1 . . . . . . mrn

0 . . . . . . . . . 0 mr+1,r+1 0 . . . 0
...

0 . . . . . . . . . . . . . . . . . . 0 mnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

mjj = gj (λr) − dj , for j = 1,2, . . . , r − 1, r + 1, . . . , n,

mri = −kixλr g
′
r (λr)λr , for i = 1,2, . . . , n.

The eigenvalues of J (Eλr ) are −krxλr g
′
r (λr)λr < 0, and gj (λr) − dj , for all j �= r .

When λr is the endpoint of a component of S, we have that gj (λr) − dj < 0 for
j �= r . Hence, Eλr is locally asymptotically stable.

If λr is not the endpoint of a component of S, then there exists j such that λr ∈
(λj ,μj ). The eigenvector corresponding to the negative eigenvalue −krxλr g

′
r (λr )λr

is

vr = (0, . . . ,0, xr ,0, . . . ,0), xr > 0 in the rth component,

and the eigenvectors corresponding to the negative eigenvalues gi(λr) − di are

vi = (0, . . . ,0, kr ,0, . . . ,0,−ki,0, . . . ,0),

where kr , kj > 0 are in the ith , and r th component of vector vi , respectively. We
know that Eλr is saddle and the local stable manifold is

Ws
loc(Eλr ) =

{
Eλr +

n∑
i=1

civi : ci = 0 except cr and some j with λr /∈ (λj ,μj )

}
.

Hence, the stable manifold of Eλr is

Ws(Eλr ) ⊂ {
(x1, . . . , xn) : xi = 0 if λr ∈ (λi,μi)

}
,

and Ws(Eλr ) ∩ Ω = ∅.
For the equilibria Eμr , the Jacobian evaluated at Eμr is J (Eμr ), the structure is

similar to J (Eλr ) and

mjj = gj (μr) − dj , for j = 1,2, . . . , r − 1, r + 1, . . . , n,

mri = −kixμr g
′
r (μr)μr, for i = 1,2, . . . , n.

The eigenvalues are −krxμr g
′
r (μr)μr > 0, an gj (μr) − dj , for all j �= r .

For the case μr is the endpoint of a component of S, then gj (μr) − dj < 0 for all
j �= r . Hence, Eμr is saddle with one dimensional unstable manifold

Wu(Eμr ) = {
Eμr + svr : vr = (0, . . . ,0, xr ,0, . . . ,0), xr > 0 in the rth component

}
.

The eigenvectors corresponding to the negative eigenvalues gj (λr) − dj for all j �= r

are

vj = (0, . . . ,0, kr ,0, . . . ,0,−kj ,0, . . . ,0),

where kr , kj > 0 are in the j th, and r th components of the vector vj , respectively.
Eμr is saddle which stable manifold Ws(Eμr ) is tangent to

Ws
loc(Eμr ) =

{
Eμr +

n∑
j=1

cj vj : cr = 0, cj �= 0, for j �= r

}
,
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at Eμr . Thus, the (n − 1)-dimensional stable manifold of Eμr satisfies

Ws(Eμr ) ⊂ {
(x1, x2, . . . , xn), xi > 0 for all i

}
,

and Ws(Eμr ) ∩ Ω �= ∅.
For the case μr is not the endpoint of a component of S, then there exists j such

that μr ∈ (λj ,μj ) and gj (λr)−dj > 0. If there exists some i such that μr ∈ (λi,μi),
then Eμr is saddle which stable manifold Ws(Eμr ) is tangent to

Ws
loc(Eμr ) =

{
Eμr +

n∑
j=1

cj vj : cj = 0 except ci with μr /∈ (λi,μi)

}
,

at Eμr . Hence, the stable manifold of Eμr is

Ws(Eμr ) ⊂ {
(x1, . . . , xn) : xi = 0 if μr ∈ (λi,μi)

}
,

and Ws(Eμr ) ∩ Ω = ∅.

A.3 The Proof of Theorem 1

To prove Theorem 1, we need the following three lemmas. We note that the following
proofs are similar to those in Butler and Wolkowicz (1985). We present them for the
sake of completeness of the paper.

Lemma 4 If limt→∞ xi(t) > 0, then limt→∞ L(t) = λi or μi and limt→∞ xj (t) = 0
for j �= i.

Proof Since limt→∞ xi(t) exists and it is positive, and |x′′
i (t)| is bounded, then x′

i (t)

converges to 0 as t goes to infinity, i.e.,

gi

(
L(t)

) − di → 0 as t → ∞.

Therefore, limt→∞ L(t) = λi or μi .
For j �= i, we prove limt→∞ xj (t) = 0 by contradiction. First, we assume

limt→∞ xj (t) > 0, then by the similar argument as above, we obtain that
limt→∞ L(t) = λj or μj , a contradiction. Thus, limt→∞ xj (t) does not exist and
lim supt→∞ xj (t) > 0. Then there exists a subsequence tm increases to infinity as m

goes to infinity, and xj (tm) converges to lim supt→∞ xj (t) and x′
j (tm) = 0. Hence,

gj (L(tm)) − dj = 0 and L(tm) = λj or μj , a contradiction to limt→∞ L(t) = λi

or μi . Thus, we have limt→∞ xj (t) = 0. �

Lemma 5 If limt→∞ L(t) = γ , then γ ∈ {I0, the endpoints of a component of S}.
1. If γ = I0, then I0 /∈ S, and limt→∞ xi(t) = 0 for all i.
2. If γ = λi or μi , the endpoint of a component of S, then γ < I0 and limt→∞ xi(t) =

xλi
or xμi

and limt→∞ xj (t) = 0 for j �= i.
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Proof We prove by contradiction. If not, then γ /∈ {I0, the endpoints of a component
of S}. There are two possibilities: γ ∈ S and γ /∈ S.

If γ ∈ S, from the assumption limt→∞ L(t) = γ , then for ε > 0 there exists some
i and Tε > 0 such that L(t) ⊂ (λi,μi) for t ≥ Tε . It follows that x′

i (t) ≥ 0 for t ≥ Tε ,
and from the fact xi(t) is bounded above, then limt→∞ xi(t) > 0. By Lemma 4,
we have that γ = limt→∞ L(t) = λi or μi . Since γ is not endpoints of S, there exists
j �= i such that γ ∈ (λj ,μj ). It follows that L(t) ⊂ (λj ,μj ) for all large t . By similar
argument as above, we have limt→∞ L(t) = λj or μj , a contradiction.

If γ /∈ S, then for ε > 0 there exists Tε > 0 s.t. L(t) ∈ (γ − ε, γ + ε) ⊂ Sc

for t ≥ Tε . Hence
x′
i (t)

xi (t)
= gi(L(t)) − di < 0 for all i for t ≥ Tε . Therefore,

limt→∞ xi(t) = 0 for all i, and limt→∞ L(t) = I0, a contradiction.

1. Let γ = I0. Assume I0 ∈ S and from the convergence of L(t), there exists i such
that L(t) ∈ (λi,μi) for all t is large. By similar argument as above, we have
limt→∞ xi(t) > 0 and limt→∞ L(t) = λi or μi , it is a contradiction. Thus, I0 /∈ S.

Now we prove limt→∞ xi(t) = 0 for all i by contradiction. First we assume
that there exists i such that limt→∞ xi(t) > 0. Then limt→∞ L(t) = λi or μi ,
a contradiction. Assume limt→∞ xi(t) does not exist and lim supt→∞ xi(t) > 0.
Then there exists a sequence {tm} increases to infinity as t goes to infinity
such that x′

i (tm) = 0 and limm→∞ xi(tm) = lim supt→∞ xi(t). It follows that
gi(L(tm)) − di = 0 and L(tm) = λi or μi for all m, a contradiction to γ = I0.
Thus, limt→∞ xi(t) = 0 for all i.

2. It is clear that γ < I0, since L(t) ≤ I0 for all t . limt→∞ xj (t) = 0 for j �= i follows
from the above argument. Thus, it follows that limt→∞ L(t) =
limt→∞[I0e

−kixi (t)] = λi or μi , or equivalently limt→∞ xi(t) = xλi
or xμi

. �

Lemma 6 L(t) converges as t goes to infinity.

Proof If not, then there exist increasing sequences {tm}, {τm} such that

L′(tm) = 0, lim
m→∞L(tm) = lim sup

t→∞
L(t) := L,

L′(τm) = 0, lim
m→∞L(τm) = lim inf

t→∞ L(t) := L.

Note that there are some i ∈ {1,2, . . . , n} such that xi(t) do not tend to zero. Since

L′(tm) = −L(tm)

[
n∑

i=1

kix
′
i (tm)

]
= 0,

for each m there are some jm ∈ {1,2, . . . , n} satisfies x′
jm

(tm) ≥ 0. There exists some
j such that jm = j for infinitely many m. For this j , we choose a subsequence of
{tm}, also named {tm}, such that x′

j (tm) ≥ 0. It follows that L(tm) ∈ [λj ,μj ] for all

m and L ∈ [λj ,μj ]. Similarly, we can find some k and a subsequence of {τm}, also
named {τm}, such that L(τm) ∈ [λk,μk] for all m and L ∈ [λk,μk].

If L ∈ [λj ,μj ] ⊂ [λp1,μq1 ] and L ∈ [λk,μk] ⊂ [λp2,μq2 ] where (λp1 ,μq1) and
(λp2 ,μq2) are two disjoint components of S. Then there exists an increasing sequence



S.-B. Hsu et al.

{sm} with tm < sm < τm such that L′(sm) < 0 and L(sm) ∈ (μq2 , λp1) ∩ Sc for all m.
Hence, x′

i (sm) < 0 for all i and L′(sm) > 0, a contradiction.
Thus, [λj ,μj ] and [λk,μk] belong to the same set [λp,μq ], that is, L and L

belong to [λp,μq ], where (λp,μq) is a component of S.
If there does not exist γ ∈ Γ , Γ = {λi, μi : i = 1,2, . . . , n}, s.t. γ ∈ (L,L),

then there exists some r s.t. L(t) ∈ [λr,μr ] ⊂ [λp,μq ] for all large t . Then we have
x′
r (t) > 0 for all large t . From the boundedness of xr , it follows that limt→∞ xr(t) =

x∗
r ≥ 0 and limt→∞ L(t) = λr or μr , a contradiction.

Thus, there exists some γ ∈ Γ s.t. γ ∈ (L,L), let γ1, γ2 be two consecutive ele-
ments of Γ such that γ1 < L < γ2. Since L(t) oscillates, there exists T1 < T2 such
that L(T1) = L(T2) = γ2, γ1 < L(t) ≤ γ2 for t ∈ [T1, T2] and L′(T1) < 0 < L′(T2).
From

L′(t) = −L(t)

[
n∑

i=1

kix
′
i (t)

]
,

we have
n∑

i=1

kix
′
i (T1) > 0 >

n∑
i=1

kix
′
i (T2).

We divide the above summation into two parts, one is x′
i (Tj ) < 0, i.e. gi(γ2) < di ,

the other is x′
i (Tj ) > 0, i.e. gi(γ2) > di . Therefore, we have

∑
gi(γ2)<di

kix
′
i (T1) +

∑
gi (γ2)>di

kix
′
i (T1) >

∑
gi (γ2)<di

kix
′
i (T2) +

∑
gi (γ2)>di

kix
′
i (T2),

and

−
∑

gi(γ2)<di

ki

[
gi(γ2) − di

](
xi(T2) − xi(T1)

)

>
∑

gi(γ2)>di

ki

[
gi(γ2) − di

](
xi(T2) − xi(T1)

)
. (15)

For the case gi(γ2) < di , i.e., γ2 /∈ (λi,μi), then L([T1, T2]) is disjoint from (λi,μi).
Hence, x′

i (t) < 0 for t ∈ [T1, T2] and xi(T2) < xi(T1). For the case gi(γ2) > di , i.e.,
λi < γ2 < μi , we have L([T1, T2]) ⊂ (λi,μi). Hence x′

i (t) > 0 for t ∈ [T1, T2] and
xi(T2) > xi(T1). Thus,

−
∑

gi(γ2)<di

ki

[
gi(γ2) − di

](
xi(T2) − xi(T1)

)
< 0

<
∑

gi (γ2)>di

ki

[
gi(γ2) − di

](
xi(T2) − xi(T1)

)
,

a contradiction to (15). Hence, the theorem holds. �
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