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Two identical vibrating strings are serially coupled end-to-end with nonlinear joints that behave
like a Van der Pol oscillator. This coupled PDE system has an infinite dimensional center
manifold of orderly periodic solutions of vibration for which the nonlinearity at the joint is not
excited. Based upon the authors’ study of chaotic vibration on a single vibrating string in [Chen
et al., 1995], we analyze the special structure of the nonlinear reflection operator by decoupling.
The decoupled operator has a linear part which is idempotent, and this linear part does not
interact with the iterates of the nonlinear part. Using this, we show that chaotic vibrations and
orderly periodic vibrations coexist and satisfy a certain rule of linear superposition, namely, if
4 is a linear periodic solution and if U is a general nonlinear solution, then U + C'u is also a
solution for any constant C. Numerical simulations and computer graphics are also included

to illustrate the superposition effect.

1. Introduction

The study of nonlinear vibrations and oscillations is
important in science and technology [Stoker, 1950].
In particular, chaotic vibrations in mechanical and
electronic systems governed by second order non-
linear ODFs have become a focal area of this
research, with rapid progress {Chen & Dong, 1993;
Guckenheimer & Holmes, 1983; Moon, 1987;
Wiggins, 1990] being witnessed during the past two
decades. Since mechanical devices or electronic
circuits often appear in serial and/or parallel con-
nections, that is to say, in coupled form, chaos in
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such coupled systems has attracted the attention of
many investigators. See for example [SIAM, 1995]
for a collection of the latest work in this area.

More recently, chaotic vibrations in some non-
linear system governed by PDFEs have also been
probed; see [Chen et al., 1995] for the work by the
authors. In [Chen et al., 1995], only a single vibrat-
ing string was considered. The string itself satis-
fies the one-dimensional linear wave equation, but
in one of the boundary conditions there is nonlin-
earity, causing chaos when the parameters enter a
certain range.
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Here, we consider the situation of two serially
connected linear vibrating strings, but with a nen-
linear coupling at the linkage. We wish to investi-
gate chaotic phenomena arising from this coupled
infinite-dimensional vibrating system.

The simplest form of coupling between two vi-
brating strings is serial connection [Chen & Zhou,
1993, pp. 40-51]. Here, for mathematical tractabil-
ity, we consider two identical strings, with “Van der
Pol” types of nonlinear transmission conditions at
the joint. The mathematical models and motiva-
tions are described in some detail in Sec. 2.

In Sec. 3, we use the method of characteristics
to transform the coupled vibrating strings into a di-
agonalized hyperbolic system. The solution of the
hyperbolic system is completely determined by the
reflection relation between incoming and outgoing
waves at the two end points of the z-interval. The
reflection relation is an ¢mplicit nonlinear 2 X 2 sys-
tem. The key point here is that we are able to de-
couple the nonlinear 2 x 2 system, leading to a single
nonlinear equation of the same type as studied by
us in [Chen et al, 1995]. This nonlinear equation
induces an interval map.

In Sec. 4, we use the basic theorems in [Chen
et al., 1995] to study the chaotic or nonchaotic be-
havior of the iterates of that interval map, which de-
termine the chaotic or nonchaotic properties of the
coupled PDE system. Main theorems are proven
here, showing that linear vibrations and chaotic vi-
brations can coezist, and under certain conditions
linear and chaotic vibrations satisfy a certain rule
of linear superposition. This is the major finding of
the paper.

In Sec. 5, the last section, numerical simula-
tions and computer graphics are presented to help
visualization and to illustrate the theory.

2. Two Linear Vibrating Strings
with Van der Pol Type Coupling
Conditions at the Joint

A vibrating string modelled by the 1 — D wave
equation

0<z<l, t>0,

(2.1)

wylz, t) — czwm(:v, t)=0,

is certainly one of the simplest possible distributed
parameter vibrating systems in existence. Under
the usual fixed end or free end boundary conditions
at ¢ = 0 and z = 1, (2.1) is known to have an

infinite set of (L2—) orthonormal eigenmodes ¢ (x)
with corresponding eigenfrequencies wy that satisfy

qbz(w)+w,%q5k(:v) =0, k=1,2,...,0<z<1,
(2.2)
the equation of a simple linear harmonic oscillator.
For this reason, (2.1) is also recognized as an infinite

dimenstonal harmonic oscillator.
Let us consider the case of two coupled vibrat-

ing strings. They can be connected in many differ-
ent configurations; see [Lagnese et al., 1994], for
example. The simplest such configuration is se-
rial connection. Let the vertical displacement wun
and wy of the two linear vibrating strings satisfy,
respectively, the wave equation

miwi(z, t) — Tiwies(s, 1) =0,

(2.3)
—-1l<z<0,t>0,

mows (T, t) — T2w2:s:c($: t) =0,
(2.4)

0<ae<l, t>0,

where m; > 0 and T; > 0, { = 1, 2, are, respec-
tively, the mass density per unit length and ten-
sion on the ith string. At the middle point x = 0,
the two strings are coupled. It is known [Chen &
Zhou, 1993, pp. 40-51] that for serial conmnection
only two types of coupling or transmission condi-
tions are possible pragmatically:

(Type I) Continuity of displacement,
discontinuity of force:
wi {0, t) = wq(0, ), £ 0;
Tywiz(0, t) — Thwza(0, t) = f(1),
(2.5}

(Type II) Continuity of force, disconti-
nuity of velocity (and displacement)

Tiw1z(0, t) = Thwz(0, 1),
wi(0, 1) —wa(0, 1) = g(t),} t>0, (2.6)

where f(t) and g(¢) in (2.5) and (2.6) are certain
functions which are often prescribed in “feedback
form”. For example, let us choose a velocity feed-
back

f(t) = _’Ylwlt(oa t)(: _'Tl"'-UZt(O: t)): T >0,

(2.7)

in (2.5) for Type I coupling. Assume that strings
1 and 2 are, respectively, fixed at the left end and
right end:

wi(=1, 1) =0, w(l,t)=0, t>0. (2.8)



The total energy of the coupled string system at
time ¢ is given by

0
B = 3{ [ Imiudi@, 0+ Tk, 1o

+f01[mgw§t(x, t)+ Tgwgm(a:, t)]do:} .
(2.9)

The rate of change of energy is found to satisfy

d 0
EEU) = /1[m1w1tw1ca+T1w1mwm]dﬂ?

1
+ /0 [mowasway + Thwoewoa|da

= (integrating by parts and utilizing
(2.3)-(2.5), (2.7), (2.8)) =

= ~mwi(0, 1) <0, (2.10)

and therefore energy is nonincreasing.
Similarly, if in {(2.6), we choose a force feedback

(1) =—7T1Wi(0, t)(=—y2Towz(0, £)), ¥v>0,
(2.11)

then for this Type II joint,

4 Bt) = ~mlTwa(0, O <0,
and again the energy is nonincreasing. The choices
of feedback (2.7) and (2.11) make the coupled sys-
tem dissipative and thus have a stabilizing effect on
vibration; their mechanical designs are depicted in
[Chen & Zhou, 1993, pp. 50-51]. We include them
here for the convenience of the readers; see Figs. 1
and 2.

Now, instead of the linear feedbacks (2.7) and
(2.11), we consider nonlinear feedbacks of Van der
Pol type. We let (2.7) be replaced by

F(t) = arwe(0, t) - Brw}, (0, £);

(2.12)

&y, 6! > 0,
(2.13)

while all the other conditions remain unchanged.
Then (2.10) is replaced by
d

EE(t) = Oé]’w%t(o, t) - ﬁfw‘ilt(oa t)

1/2
S 0 if |'w1t(0, t)l 2 (ﬂ) 3
y Br

S0 if (0, )] < (
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Therefore, similarly to the case of a single string
[Chen et al., 1995], we see that the coupling condi-
tions {2.5) + (2.13) have a self-regulating effect: if
the total energy is increasing, then the magnitude
of velocity at the joint will become small, and con-
versely, if the fotal energy is decreasing, then the
magnitude of velocity at the joint will become large.
Analogously, if we replace (2.11) by

g(t) = ar[T1wiz(0, t)]
—Brr[Tyuns(0, £)]*; orr, Bir > 0,

then in lieu of (2.12) we have

(2.15)

2 Blt) = anlfrwia(0, O - frriTiwna(0, 01

1/2
<0 ifllem(o,t)lz(ﬂ) ,
Bir

1/2

>0 if [Thwie(0, t)|<(ﬂ) .
Brr

(2.16)

From (2.14) and (2.16), obviously, we see that
the coupled string system will have bounded energy
for all time t > 0. But will the nonlinear coupling
conditions couse chaos? This is the major subject
we are interested to explore here.

The method to be employed by us in the next
section will be the method of characteristics. For
mathematical tractability, we assume that the two
strings (2.3) and (2.4} are identical: m; = mg and
Ty = Ts. Since the wave speed ¢; = (T5/m:)'/? plays
only a very minor role in the ensuing analysis, we
simply set m; = mg =1 and Ty = Tp = 1. (The
assumption that ¢ = ¢ will not be robust as far as
our later theorems are concerned. We nevertheless
hope that this study will motivate others to derive
more robust results in the future.} For the ease and
clarity of future reference, we re-list the system of
equations under study here:

wi(z, t) — wnga(z, £} =0,
~-l<z<0,t>0,

w?tt(ms t) _w2a::r:($1 t) =0,
0<z<1, t>0;

(PDEs) (2.17)

(left end boundary

- =0,t>0
condition) wi(-1, 8} =0, >0,
(2.18)

(right end boundary

condition) wy(1, 1) , t>0;

(2.19)
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Fig. 1. Mechanical design and structural analysis of a dissipative joint satisfying the transmission conditions (2.5) and (2.7),
where displacement is continuous across the joint, but the tension force is discontinuous with velocity feedback. {Reprinted

from [Chen & Zhou, 1993], courtesy of CRC Press, Boca Raton, Florida.)

{Van der Pol joint, Type I):
w1 (0, t) = wa(0, 1),
{ wiz(0, 1) — waz (0, t) = arwy(0, t) — Brwi,(0,t); o, Br > 0;
(Van der Pol joint, Type II}):
wi1(0, ) = woz(0, 1),
{ wns(0, £) — wae(0, 1) = arywiL(0, t) — Brrwi (0, t); arr, Brr > 0.
(initial conditions):

{ wi(z, 0) = wie(z) € CH([-1, 0]), wulz, 0) =vo(z) € C¥-1, 0]},
wy(z, 0) = wap(z) € CL(0, 1)),  walz, 0) = vao(z) € CO0, 1]);

(2.20)

(2.21)

(2.22)
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Fig. 2. Mechanical design and structural analysis of a dissipative joint satisfying the transmission conditions (2.8) and (2.11),
where the tension force is continuous across the joint, but the displacement is discontinnous with tension force feedback,
{Reprinted from [Chen & Zhou, 1993], courtesy of CRC Press, Boca Raton, Florida.)
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Before passing, let us point out some useful observation. Consider (2.17}-(2.20). Despite the nonlin-
earity in (2.20), this system contains infinitely many eigenmodes or eigensolutions of the form

wyn(z, t) ) . -1<2<0

wz,:ESU, 9 } = (1 08 N7t + ¢2q 8in nt) sin NI, { d<s<t, ’ (2.23)
for c1p, c2n ER, n =1, 2, 3,..., s.t. their linear superposition

wi (x, 1) s . ) 1<z <0,

wnlz 1) } - E(Cln cos nat + cap sin nat) sin nrx, 0<z<1, (2.24)

is again a solution of (2.17)—(2.20) (provided that the coefficients ¢1, and csn, n =1, 2,..., taper off to
zero sufficiently fast.) The reason is that the midpoint £ = 0 happens to be a noda! point of the cigenmode

(2.23), therefore
'é)

at ot

d
—wl,n(o, t) = —‘wg,n(ﬂ', t) =10,

t>0,

and the nonlinearity s not excited so the RHS of the second equation in (2.21) is zero for all £ > 0.
Similarly, for (2.17)-(2.19) and (2.21), this system has infinitely many eigensolutions of the form

ot 1 _ -1<z<0,
Win( )} = [dmcos (n-|— 5) 7t + day, Sin (n—!—%) wt] cos (n+%) wx,{ y

won (x, t)

2.
0<z<1, (2:25)

for dijn, do. € R, n =0, 1, 2,... s.t. their superposition

'LUQ(.’E, t)

" oo 1 1 1 -1
wi (, )} — Z [dln cos ('n,+ 5) 7t + dgp Sin (n-i- 5) ﬂt] €08 (n+ 5) L, {0 <

n=0

is again a solution of (2.17)—(2.19) and (2.21),
because z = 0 is also a “nodal point” of the eigen-
solution (2.25) in the sense that the nonlinearity in
(2.21) is not excited at z = 0.

In summary, the system (2.17)-(2.22) with a
Van der Pol joint of either Type I or Type 11 admits
an infinite dimensional solution submanifold which
forms a vector space. Such solutions in this linear
submanifold are said to constitute orderly vibrations
of the problem under study.

3. A 2x 2 System of Nonlinear
Reflection Relation and Its
Decoupling

We use the method of characteristics to convert
(2.17) into a diagonalized first order hyperbolic sys-
tem. For : 0 <z < 1 and ¢ > 0, define

1170 o
'u,l(:c, t) = "2' gawl(_ma t) + awl(""m: t)

= %[_wlm(_i', t) + wi(—z, t)] : (31)

Then
D (@, 1) = o[~ wiae(—2, £) + wige(~, 1)
atul T, - 2 1zt 3 1et x,

= é[—-wlmt(—ﬁi, f) +w1mm(_$7 t)]

= 9 {}.[—wm(—m, t) + wi(~z, t)]}

or |2
d
= aul(m, t) .

Similarly, define

'Ul(-"cs t) = —%[wlw(—:ﬂ‘l t) + wlt(_ma t)] ) (32)
un(@, 1) = oo, ) Hunle, 0], (33)
vz, £) = %['w;;m(m, 1) — war(z, 1)]. (3.4)
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Then we obtain

w1 (2, ¢) 1 00 0 ui(z, t)
9 | vz, ) 0 -1 0 0| d |wni)
ot |ua(z, t) 6 0 1 0|3z |ula, )|’ O<z<l, t>0. (3.5)
'”2(ma t) O 0 0 —1 1}2 w, t)

The relationships between wuy, v1, g and vg and the gradient of wy and wy are

w2, t) = ~[ur{—z, t) +v1(-z, 1)],
w2, 1) = ui(~2, t) — nl-z, 1), } -1<z<0, t>0, (3.6)
wya(, t) = us(z, ) +valz, £),
wae(z, t) = ua(a, £) — valz, t),}°<“’<1’ t>0. (3.7)

The boundary and transmission conditions (2.18)—(2.21) have been transformed into the following: At
z=1

u(1, £) = (1, ¢), (from (2.18) and (3.6)) (3.8)
ug(l, t) =v2(1, ¢); (from (2.19) and (3.7)) {3.9)
at o =0
(Type T joint) {ﬁr(m —uy)® - aI(:i : :i):v(:iz:ﬂ + (ug +v2) =0, }t > 0 (3.10)
(Type II joint) { Brr(vy +w)* ~ aI_IE::ll :Zi; :S:l_::;l) ~ (v —ug) =0, }t > 0. (3.11)

The components v (x, t) and va(z, t) are constant along the characteristics z — ¢ = constant. Once these
characteristics hit the right boundary = = 1, a reflection is made according to (3.8) and (3.9). Similarly,
the components u(x, ¢} and ua{z, t) are constant along the characteristics = + ¢ = constant. Once these
characteristics hit the left boundary z = 0, a reflection is made according to (3.10) or (3.11), depending
on which type of joint is installed at z = 0. Here we need to solve v1(0, ¢) and v(0, ¢) in terms of uy(0, t)
and u3(0, t) by (3.10) or (3.11) using Cardan’s formula for cubic algebraic equations. But, as pointed out
in [Chen et al., 1995, Sec. 2], given u; and wuy, (real) solutions vy and vy for (3.10) or (3.11) will not be
unique for a range of the parameter oy or agy. This implies that weak solutions to the PDE system (3.5},
(3.8)—(3.11), plus initial conditions, will not be unique in general. This nonuniqueness issue will be resolved
shortly. Assume for now that with given values of oz, B, azr, 81 > 0 in (3.10) and (3.11), we can choose
a unique pair of (v1, vy) from (uy, u2) such that (3.10) or (3.11) is satisfled. We write this dependence as

vy u] Fi(u, Uz)]

=F = : 3.12

[112] ([uzl) [ﬁ(‘uhuz) (312)

Then the solution (ui{z, t), v (z, t), ua(z, t), vo(x, t)) is unique (according to {3.12)) and is given by the
following: for (z,1),0<z2<1,t=2k4+7,k=0,1,2,...,0<7 <2,

Almenl) ==
Bt I (i) RS
FHI([Z;ES::Iz;D’ 1+z<7<2,
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,
Fk([u1’0($+T) ), z+7<1,
’U.Q,U(JI + 7)
'lLl(IB, t)] k([UID(z—w—T)])
={ F ’ , l1<ae+r<2, 3.14
[ug(a:, t) v20(2 —x —7) ( )
pros ([T DN gy
L 3,0 (.’L‘ +7— 2) ’ ’
where vy g, v2,0, 1,0 and up g are the initial condi- or
tions for vy, we, w1 and ug, respectively. IFrom the
above formulas, obviously chaos occurs if the iter- Brr 3 ( Ofu)
—(V1-U, 1-—= — =
ates 7" of mapping (3.12) is “chaotic” in a certain 8 (Vir=Un)'+ 2 (Vir=Un)+2Un =0,
sense. Therefore F is the natural “Poincaré map” (3.18)

for the PDE systern.

The determination of chaotic behavior for
(3.12) is harder than the case of a single scalar in-
terval map studied in [Chen et al., 1995] because
(3.2) is a 2 X 2 nonlinear system. Fortunately, we
have found that the study of (3.12) is reducible to
a single scalar implicit cubic equation of the same
type in [Chen et al., 1995] through decoupling. This
procedure is described below:

Decoupling for Type I joint:
From (3.10), define
Vi =wv; + v, (3.15)

Then from the second equation in (3.10), the first
of (3.10) can be rewritten as

Bi {%[(’01 —u1) + (v2 - uz)]}s

Uy =u1 +ua.

—ar {%[(Ul —uy) + (ve — ug)]}

+ [(v1 — u1) + (v2 — u2)] + 2(u1 + uz) =0,

or
%(VI ~U + (1 - %) (Vi = Up) +2U; = 0.
(3.16)
Decoupling for Type Il joint:
From (3.11), define
Vir=v1 —vs, Urnr=—(u1—ug). (3.17)

Then the first equation of (3.11) can be rewritten
as

3
rr {31000 + ) = (v2 +ua)]}

— oy {%[(Ul +ur) — (va + ’Mz)]}

A [(w1 + wr) — (va +ua)} — 2(u1 +ug) =0,

the form of which is identical to (3.16).

Note that both (3.16) and (3.18), except for the
notation of coefficients o5, 3; and the variables U;,
Vi, i = I, IT, are identical in form to the equation

Blu—vP+-a)u—-v)+20=0; a 8>0,

(3.19)

studied in [Chen et al., 1995, (3.1)]. To make this
paper sufficiently self-contained, let us recapitulate
the relevant information from [Chen et al, 1995]
below.

From Cardan’s formula (see the discussion in
[Chen et al., 1995, Sec. 2|}, we know that for (3.19),

i) if0 <a<1, 8 >0, then for each given v €
R, there exists a unique real solution © € R
satisfying (3.19). This defines a single-valued
mapping © = F(v).

(ii) if « > 1, B > 0, then for each given v € R, there
exist multiple solutions « € R satisfying (3.19):

(a) if [v| > v* = 25t
unique v € R satisfying (3.19), with

_ v (1—a)? ”U?'% s
u=v+ _E-l- —EBT—-F—EE

v [(1-a)® ? 3 3_
+ "B‘“ W-{-F ;

(3.20)

+/ %1 then there exists a

(b) if |v| < v*, then there exist three distinct



real u; € R, i =1, 2, 3, satisfying (3.19):

_ v (1—a)® 2 £)°
m=vt gt Syt

n v (1—0{)3_|_v2 2

ARG

_ v (1-a)® o? ) °
Uy = 1V + w —ﬁ-l- W‘FF

] w (1-a) 1:2% :

YTBET | TER TE) [

_ I (1-a)® 7 :)°
Uy =v+w —B-i- W‘FE

N (1-a)® ? z 5‘
TNTE T e e [

(3.23)

W=

(-14+vV3), w= -;»(“1 - /33).

[T

(c) if Ju| = v*, then there exist two distinet real
i; € R, ¢ = 1, 2, satisfying (3.19). We may
take

iy = lim RHS of (3.22),
io = lim RHS of (3.23).

v——y*
The convention to choose a single-valued funec-
tion v = F(v) in {Chen et el., 1995] is made as
follows:

RHS of (3.20), if |v] > v,
u=F(v)=¢ RHS of (3.21), if |v| <v*,
limit of RHS of (3.20), if v==4v*.

(3.24)

In either (i) or (ii), the mapping F': R — R will
have a global (not necessarily minimal) invariant
rectangle Z = I x I C R? in the phase plane, where
I is a closed connected interval n R, s.t. F: I — 1.

In case (i), F' has a unique repelling fixed point
0 : 0 = F(0); all the other points are attracted
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to a unique pair of attracting period-2 fixed points
Fupy 1 —vp2 = Fvp2), vp2 = F({—v,3). Therefore
the map F' is not chaotic as an interval map.

In case (i}, the interval I = [—a, a] contains
+v* in the interior of 7. Let A be a closed
subinterval of I. Following Keener [1980], we de-
fine a rotation number ps (with respect to the in-
terval A) as in [Chen et al,, 1995 (A.2)]: For any
z el

k()

pale)= lim 3" xa(F(z), zel, (325)
k=1

where Y 4 is the characteristic function of set 4, and
F™ is the nth iterate of the function F'. We say that
F I — Iis chaotic if

ra,n§e pa(z) 2 (61, 82),
=€ (3.26)

0 <6 < 8y, for some 61, 85,

l.e., rangep, contains an interval (&, 62). Since
a rational rotation number pa(z) corresponds to
asymptotically periodic orbits, and an irrational
rotation number pa{z) corresponds to aperiodic
trajectories, the iterates {F™(z)|lx € I} on I are
therefore rich in both periodic and aperiodic solu-
tions, each set of which is dense in A. It has been
proven in [Chen et al., 1995, Sec. 4] that

if 3.7433%... < a < 28.27305...,
. (3.27)
3 > 0, then F is chaotic.

Return to (3.16) and (3.18), We now adopt
the convention analogous to (3.24) for (3.16) and
(3.18). By comparing (3.16} and (3.18) with (3.19),

. a—1 x—1
and from the way v* = T‘/W

define
Q
- (5-Y) [@m=
‘ 3 3(8:/8)
o2 oy -2
-3 36

i=1orlIfl.

is given, we

(3.28)

We now know that if o 1 0 < ; £ 2, 5, > 0,8 =
I, IT, for each given U;, there corresponds exactly
one V; satisfying (3.16) or (3.18). This correspon-
dence gives the single-valued function V; = F(U;),
t=1, Il
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But if o > 2, §; > 0, i =1, I, then we know
that

(a) if |U;] > U}, then (3.16) or (3.18) has only one
real solution

_ S U (; —2)F U?
o Ui (i —2)%  U?
RN DU S M AR Rt & R
+d 2 \/ T
(3.29)

for given U; € R;

(bY if |U;] < U7, three distinct real values of V;
satisfying (3.16) or (3.18) can be obtained for
each given U; € R:

_ 3| U; (o —2)° Uz

Vi=Ui+2 J_EJF\/ et
of Ui (a; —2)* U}

. LR Y

+J 2 Il

(3.30)

P — 2)3 Ui2
V U +2 w\[ 62 \/7 27ﬁ3 ﬂ_f

_al Ui (ai—2)3 Ul
—— R
+“’J 2 \/ I
(3.31)
S 8 U; (ai-—2)3 U2
Ui (ai—2)3 UE
-HAJd—E— ——W‘l‘ﬁ ER,
(3.32)

(¢) if U; = +U}, then two distinct real values of V;
satisfying (3.16) or (3.18) can be obtained:

V; = lim RHS of (3.31),
Ui— Uy

Vi= lim
U7 -

RIS of (3.32).

The above multi-valued correspondence (a), (b), (c}
can be seen in Fig. 3(a).

We now define a single-valued function F by
adopting the convention analogous to (3.24) for
(3.16) and (3.18):

Vi = F(U))

RHS of (3.29), if U3 > U?,
_ | RHS of (3.30), if U] < UF,
i=1,1I.
limit of RHS of (3.29), if U; = £UF,
(3.33)

Then this reflection relation 7 is single-valued,
allowing a unique solution(s) of (2.17)-(2.22} to
exist. It has the same advantages such as being
skew-symmetric and mathematically tractable as in
[Chen et al, 1995]. However, the relation (3.26)
is not “naturally occurring” in the sense that it is
not a relazetion oscillation; it can only be enforced
through some control devices such as a design sug-
gested in [Chen et al., 1995, Appendix B, for ex-
ample. We again call F the controlled hysterectic
reflection relation. See Fig. 3(b).

Once Vi = w1 + w9 or Viy = v3 — w2 has been
determined respectively from F', then we can solve
v1 and v, from (3.10) and (3.11):

tup=Vr=Flu +
(Type I joint) { vt v =Vr=Flu+u)
U] — Uz = U) — U3
(3.34)
v~ vg = Vi = F(—uy +ug),
e IT joint
(Typ J ){v1+v2:—(u1+u2)_
(3.35)
This determines the relation F in (3.12):
. . V1
(Type I joint) [Uz]
_ 0!
-#1([])
_ 1 [ (u1 — ug) + Fug + up) ] . (3.36)
2 [ (—u1 + ug) + Fluy + u2)
. )
(Type II joint) [Uz]
- u
=7ir([))
1 —(u1+u2)+ﬁ(——u1 +'M2)]
=— ~ . 3.37
2 [—(u1+u2)—F(—u1+u2) (3.37)
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Fig. 3. (a) The multi-valued relation between U and Vi

satisfying (3.16), with ar = 8, 8;r = 8. {b) The single-valued
controlled hysterectic reflection relation obtained from (a).

By using Fy or Fiy in (3.13) and (3.14), the
problem is solved by repeated reflections at z = 0
and x = 1 along characteristics. The 2 x 2 opera-
tors Fr and Fr have iterates £} and FFy satisfying
simple yet highly useful algebraic properties given
below, namely, the linear part of F; or Fy; is tdem-
potent (or odd-idempotent), and is separable from
the nonlinear part.
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Lemma 3.1 (Idempotency of the Linear Part ond
Separable Nonlinearity of Fr and Frr). We have

A ([a]) =5[]

()

_ (=1 [—(ul +up) + (—1)F (= F)(—uy + u2>]
2 —(us + ) — (L) (= F)*(—ug +ug) ]’

fork=1,2,....

Proof. The verification can be done by mathemat-
ical induction from the definitions of F; and Fry in
(3.36) and (3.37). Since the work is straightforward,
we omit it here. B

4. Linear Superposition of Chaotic
and Orderly Vibrations

The solutions (3.13) and (3.14) depend on the it-
erates of Fr or Fr;. Therefore chaotic vibrations
can be associated with the chaotic properties of F;,
i = I, II, which map R? into R?. Although certain
methods exist for the study of dynamic behavior of
multi-dimensional maps such as F; here (see for ex-
ample [Devaney, 1989, Part 2], [Wiggins, 1990]), the
treatment would be lengthy and tedious. Instead,
we take a somewhat relaxed approach. From the
representations of Fr and Fry in (3.37) and (3.37),
it is obvious that chaos of 7y and 7y can only re-
sult from that of F', because the rest F; and Fyy
involves merely linear operations. We thus define
the following.

Definition 4.1. Wesay that 7; : R* = R* i =TI or
I1, is chaotic if the mapping F in (3.36) and (3.37)
is chaotic as an interval map (satisfying (3.26)).

By (3.27), the following becomes trivial.

Theorem 4.1. If

T.48878 ... <a; <56.64610..., 5;>0, i=I 1T,
(4.1)

then Fr and Fr; are chaotic.

Qur limited scope of interest and emphasis in
this paper is to show that for the system(s) (3.5)-
{3.11), although there is the presence of nonlinearity
in Van der Pol joints of Type I or Type 11, both
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orderly vibrations and chaotic vibrations can occur,
and two such vibrations can be linearly superposed.

Our first theorem characterizes the condition of
linear vibrations.

Theorem 4.2 (Linear Solutions of Two Nonlinearly
Coupled Strings with a Type I Joint). Consider the
PDE system (3.5) and (3.8)—(3.10), with oy > 0
and By > 0 in (3.10) and with given initial condi-
tions u;(+, 0), v;(-0) € C([0, 1)), ¢ =1, 2, s.t. (3.8)~
(3.10) are satisfied at t =0, and
ur(z, 0) + ua(z, 0) =0,
vi(w, 0) +va(x, 0) =0,
Then the solution (ui(z, t), vi(z, 1)), 1 = 1,2,
satisfies
ur(z, t) +ua(z, t) =0,
vi{z, t) +va(z, t) =0,

}VmemJL (4.2)

}VxemJL VE> 0,
(4.3)

Conseguently, for any two solutions of (3.5)+(3.8)~
(8.10) whose respective wnitial date satisfy (4.2),
their linear superposition is again a solution (cor-
responding to the initial date that is the linear su-
perposition of the two sets of given initial data).

Proof. The solution u;{z, t), vi(z, t), i = 1, 2, sat-
isfies {3.13) and (3.14), whose RHS depend on the
iterates of F¥. Let

| _ k| _
[%]—f[ [ﬁz]’ any k=1,2,...,

where 7 + @3 = 0. But by Lemma 3.1, we see that
1 =
71+ 7 = S [(T — ) + Fr(T) + )
1., . _ Sk
+5[(—ﬂ1 + %) + F (T + T2))

1
= (T — W) + 5(—ﬁ1 + %)
=0. (4.4)
We may take w1 = wui(z, 0) (resp., v1{z, 0)) and
Uy = up{z, 0) (resp. v2(z, 0)). By (4.2), (3.13) and
(3.14), we conclude that (4.3) is satisfied, and the

rule of linear superposition holds for all solutions
with given initial data satisfying (4.2). B

Similarly, we obtain the following.

Theorem 4.3 (Linear Solutions for Two Nonlin-
early Coupled Strings with o Type II Joint). Con-

sider the PDE system (3.5), (3.8), (3.9) and (3.11),
with apy > 0 and Brr > 0 in (3.11), and with given
initial data (-, 0), v(, 0) € C({0,1]), i = 1, 2,
5.t (3.8), (8.9) and (8.11) are satisfied at t = 0,
and

ul(x: 0) - u2($1 0) =0,

v1(z, 0) — va(z, 0) = 0, } Vze[0,1]. (4.5)

Then the solution (ui(z,t), vi(z, 1)), i =
satisfies

1,2,

wy(z, t) —us(x, t) =

0,
vi(z, t) — vafz, t) 0,} vz €0,1], t>0,

(46)

Consequently, for any two solutions of (3.5) + (3.8)
+ (3.9) + (3.11) whose respective initial data sat-
isfies (4.5), their linear superposition is again a so-
lution (corresponding to the initicl condition that
is the linear superposition of the two sets of given
initial data).

Example 4.1. Consider the original PDE system
(2.17)-(2.20) and (2.22), where a Type I joint is
placed at z = 0. Let the initial conditions be

'u,?l(.r,O)}_Oo . {—1<3:<0,
welz, 0) | nzzzl CaSIMATE g <z < 1,
(4.7)
and
wi(z, 0) | . -1<z<0,
wa(z, 0) }—T; Mo SIN AT, | o 1.
(4.8)

where the coefficients {cin, can}o2, decay to zero
sufficiently fast with respect to n. Then (2.24) is
the solution of (2.17)-(2.20) + (2.22), which obeys
the rule of linear superposition. By using (3.1}~
(3.4), we get

1 oo ) A
w(z, 0)=—§ Z nw(€1n+Cap) 8in nET

n=1

nw(e1pn+Con ) sin nrE,

8

1
”U,z(m, D)=§

n=1

> 0<o<l,
1

2

™8

v (z, 0}=— ar (€1 —Can) Sin AT,
n=1
1 o
va(z, 0)= 5 Z AT (C1n — Caq ) SID MWL |

n=1 J

(4.9)



therefore (4.2} is satisfied, and Theorem 4.2 is ap-
plicable. This is consistent with the linearly super-
posed solution (2.24).

Example 4.2 (Nonlinear, Nonchaotic Vibrations
which Eventually Become Linear Vibrations). We
know from (3.33) (or, from [Chen et al, 1995,
Lemma 3.1}} that 0 = F(0), and 0 is a repelling

fixed point of F. Let ¥ be the set of all preimages
of 0 under F:

U ={ucR|Fu)=0,

= U F*+({oy).
k=1

k=1,2,3,...}

It is clear from [Chen et al., 1995, Sec. 4.1] that if

o >14, B>0, i=1I1II,

then ¥ is trivial: ¥ = {0}. But for
TA48878... <a; £ 14, Bi>0, =111,
we have ¥ 2 {0}. Consider the line L in R?:
L = {(u1, us) € B%|uy + ug = 0}.
It easily follows from Lemma 3.1 that

FH(L) = {(w, ug) € Rluy +uy € F5({0})}

Therefore, if the initial data u;(-, 0), »(-, 0) €
([0, 1]), ¢ = 1, 2, in Theorem 4.2 do not satisfy
(4.2), but instead, satisfy

(ui(z, 0), ua(z, 0)) € Fr¥(L),
(Ul(xi 0): UQ("T! 0)) € fl—k(L):

for some large positive integer &,

} Yo € [0, 1),

then the solution of the PDE system (3.5) and
(3.8)—(3.10) will not obey the rule of linear super-
position (within this class of solutions). But the
solution becomes linear vibrations after t > 2k, in
the sense that (4.3) is satisfied for ¢ > 2k (instead
of t > 0}).

The final two theorems are the major results of
this paper.

Theorem 4.4 (Linear Superposition of a Linear So-
lution end ¢ Nonlinear Solution for Two Nonlin-
early Coupled Strings with o Type I Joint). Let
(u1(z, 1), vi(z, t), ualz, t}, vo(z, t})) be the solution
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of (3.5) and (3.8)~(8.10) with oy > 0 and Br > 0
and with initial condition (ui(z, 0), w(z, 0),
ua(z, 0), va(z, 0)) s.t. (4.2) and (4.9) are satisfied,
and let (Ui(z, t), Vi(z, t), Ua(z, t), Valz, t)) be the
solution of (8.5) and (3.8)-(8.10), with initial con-
dition (Ul(ﬂ'), O)J Vi.(ml 0): U2(m1 0): .V2($! 0)) that
does not satisfy (4.2) and ({.3). Then for any con-
stant C € R,

(Ui(z, t)+Cu(z, ), Vi(z, t)+Cui(z, t), Us(z, t)
+ C‘U,g(ﬂ'f', t): V?(‘r’ t)+CU2(1', t))
is the solution to (3.9) and (3.8)~(3.10) correspond-

ing to the initial condition
(th(z, 0) + Cui(z, 0), Vi(z, 0) + Cui(=x, 0),
Usp(z, 0) + Cuy(z, 0), Va(z, 0) + Cua(x, 0)).

Proof. It suffices to verify that (U; +Cuq, V1 +Cuy,
Uy + Cuy, Vo + Cvg) satisfies (3.13) and (3.14). For
anyz:0<zx<1,t=2k+7,0< 71 <2, where
k is an arbitrary nonnegative integer, consider for

example, the case
r<T<1l+z. (4.10)

Then the middle equation in (3.13) is satisfied by
U, Viand us, v, 1=1, 2:

ol =7 (2ol
)= (2o 0)])
Therefore

[Vl(m, t)+Cui(z, t)] =}_k+1(|:U1(T—:E, 0)])

Va(z, t)+Cua(z, t) I Us(r—=z, 0)
u(r—z, 0}
aar ()]
(4.11)

But, since u;, v, 1 = 1, 2, satisfy (4.2} and (4.3), by
Lemma 3.1, we have

f}cﬂ ( (w1 (T - =, 0)])

.u2(T -z, 0)

[ —;—(ul(r —z,0) —us(r -z, 0))

_ %(_ul(f — 2, 0) +uz(r —z, 0))
(4.12)
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On the other hand, by Lemma 3.1,
I UQ(T - T, 0)

By (4.11)-(4.13) and (4.2), we therefore get

}-k+1 ([Ul('r — &y 0)]) — l [ (UI(T - T 0) - UQ(T -, 0)) +Ff+l(U1(T — I, 0) + UZ(T -, 0)) ]
\ 2 | (=Ui(r — 2, 0) + Us(r — x, 0)) + F*Y (T (1 — 2, 0) + U(T —z, O)) |

(4.13)

([Ui(r—=, 0)+Cui(r—=, 0)]—[Uz(r—=, 0)+ Cuz(r—z, 0)])

[Vl(;c, t)+Cu(z, t)] _1
Va(z, t)+Cua(z, t)

1 +F’°+1([U1(T—:c, 0)+Cuy(r—z, 0)]+[Va(7—=, 0)+Cug(r—z, 0)])
T2 (~[h(T~=, 0)+Cui(T = =, O)]+[Uz(r -2, 0)+Cus(r—=z, 0)])

+F*HY (UL (2, 0)+Cua (T —2, 0)]+[Uz(r—=, 0)+Cug(r -z, 0)])

Hence U; + Cuy, Vi 4 Cuy, @ = 1, 2, also satisfy the
middle equation of (3.13) in the case of (4.10). The
other cases in (3.13) and (3.14) can be verified sim-
ilarly. Therefore (U; + Cu;, Vi + Cw;), © = 1, 2,
is the solution to {3.5) and (3.8)-(3.12) with ini-
tial data (U;(z, 0)+Cu;(z, 0), Vi(z, 0)+Cui(z, 0)),
i=1,2 o

Similarly, we conclude the following.

Theorem 4.5 { Linear Superposition of a Linear So-
lution and o Nonlinear Solution for Two Nonlin-
early Coupled Strings with a Type II Joint). Let
(ui(z, t), vilz, 1), ualz, t), vo(w, t)) be the solu-
tion of (8.5), (8.8), (8.9) and (8.11) with ayr > 0
and Br; > 0 and with initial condition (u;{z, 0),
vi{z, 0), us(z, 0}, wva(z, 0)) st (4.5) and (4.6)
are satisfied, and let (Uy(z, t), Vi(z, t), Ua(z, t),
Va(z, t)) be the solution of (3.5), (3.8), (3.9) and
(8.11), with initial condition (Ui(z, 0), Vi(z, 0),
Ua(z, 0), Va(z, 0)) that do not satisfy (4.5) and
(4.6). Then for any constant C € R,

(Ul(:t:, t) + Oul(w‘l t)a ‘fl(ma t) + C'Ul(m: t)a
Ua(z, t) + Cua(z, t), Va(z, t) + Cua(z, 1))

is the solution to (3.5), (3.8), (3.9) and (3.11) cor-
responding to the initial condition

(Uy(z, 0) + Cus(z, 0), Vi(x, 0) + Cui(z, 0),
Ua(z, 0) + Cua(z, 0), Va{z, 0) + Cuva(z, 0)).

5. Numerical Simulations and
Graphics

We include some numerical examples in this section
to show that linear and chaotic vibrations can co-
exist, and satisfy the rule of linear superposition.
Throughout this section, we consider only a Type I

joint. The parameters are chosen to be ay = 8.5
and fBr = 8 in the range (4.1). By Theorem 4.1, the
mapping Fy is chaotic.

Example 5.1 (Linear Periodic Vibrations). For the
PDE system (3.5) and (3.8)—(3.10), choose the ini-
tial data

uy{x, 0) = —sin 27z,

v1(x, 0) = sin 27z,

0<z<1. (5.1)

ug(zx, 0) = sin 27z,

vo(z, 0) = —sin 27z,
Then (4.2) is satisfied, and Theorem 4.2 is
applicable.

The solution w;(zx, t), w(z, t), ¢ = 1,2, is
solved by using formulas (3.13) and (3.14). Be-
cause ui(zx, t) and vi(x, t) were defined from wy
through (3.1) and (3.2) while w;(z, t) is defined for
—1 £ x <0, let us reintroduce notation

'ﬂ.l(iﬂ, t) = "'Ul(_ma t):

ﬁl(m,t)=—u1(—a:,t),} ~lses0, t20,

w2 (z, t) = uz(x, t) }
<< >
ﬁg(m‘,t):'vg(m,t), 0_:[:_1, t_O’

(5.2)

so that @;, ¥;, 1 = 1, 2, can be displayed on the nat-
ural spatial interval [-1, 0] U [0, 1] 5 =. According
to the change of variables (5.2), the initial condi-
tion (5.1) is plotted as the solid curve in Fig. 4.
The solution (5.2) is plotted in Figs. 5-8 for time
durations [10,12] and (50, 52]. The periodic nature
of the solution can be easily seen from these figures.

Example 5.2 (Superposition of Linear and Chaotic
Vibrations). Suppoese Ui{z, t), Vi(z, t), i = 1, 2,
is a solution of (3.5) and (3.8)-(3.10) with initial
data Uy(z, 0), Vi(z, 0), ¢ = 1, 2, which is genuinely
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Fig. 4.

nonlinear in the sense that (4.3) and (4.4) are not
satisfied.

Even though F; is a chaotic interval map,
the solution U;, V;, 1 = 1, 2, satisfying (3.13) and
(3.14) may not manifest chaotic dynamic behavior
because if

J1 = supp[Ui(z, 0) + Ua(x, 0)],
J2 = supp[Va(z, 0) + Va(z, 0)]
(supp = support of a given function)

(5.3)

contain only periodic {or eventually periodic) points

The initial data of Examples 5.1 and 5.2, plotted on [—1, 1] according to change of variables formula (5.2).

of F, then by Lemma 3.1 and (3.13) and (3.14),
we easily see that U;(z, t), Vi(z, t), ¢ = 1, 2, will
not manifest dynamic chaotic behavior. In order
for U;(z, t) and Vi(z, t), ¢ =1, 2, to contain chaos,
the intervals Jy and J2 in (5.2) and (5.3) must be
sufficiently large s.t. (3.6) holds for Fie,

zEJy xwCJy
for some 0 < & < 63, for some closed interval A,

(5.4)

range pa(z) 2 (81, &2), or range pa(z) 2 (61, &) }




1524 G. Chen et al.

1274 *

Fig. 5. The linear solution ;{x, t) and %a(z, t) on the
spatial span [—1, 1] 3 =z, for the time duration [10, 12] 2 ¢,
of Example 5.1. (The part Wi(z, ) lives on the spatial
interval © € [—1, 0], while the part Ua(z, £) lives on z €
[0, 1].) This linear solution is periodic.

-1

[}

A
27%) *
Fig. 6. The linear solution #1(z,t) and %z(z, t) on the
spatial span [—1, 1] 3 =z, for the time duration [50, 52} 3 ¢,
of Example 5.1. The solution profile is identical to that in
Fig. b because the solution is periodic with period 1.

v=-axis

-1

127 ’L—aﬂs
Fig. 7. The linear solution #(z, t) and T2(x, t) on the
spatial span [—1, 1} 3 z, for the time duratien [10, 12] 3 ¢,
of Example 5.1. Again note the periodicity of the solution.

-1

38
525 .,L,ai‘
Fig. 8. The linear solution ¥1(z, t) and Ta(z, t) on the
spatial span [—1, 1] 3 &, for the time duration [50, 52] 3 ¢,
of Example 5.1. This profile is identical to that of Fig. 7.



where

h=F(n)cl, J=F(R)CI;
I is a nontrivial interval s.t.

4 (5.5)
F:I'—-71, and AC1T,

for some positive integer ¢ sufficiently large. (The
existence of such an £ is clear because I x I is a
global invariant rectangle.)

Let us choose the initial data to be

Ui(z, 0) = —sin 27z + 5z%(1 — z)?,
Vi{z, 0) = —¢in 27z,

Us{z, 0) = sin 27z, 0szsl
Vo(z, 0) = —sin 27z,
(5.6)
Then
J1 =0, orélféil 52%(1 —x)?) = [0, —1%-] (5.7}
Js = {0}. (5.8)

uv-axis

-2 o —r ; —
-1 0 1
X-axis
Fig. 9. The solution U;{zx, ), Vi(x, ), 1 =1, 2, on the spa-
tial span [—1, 1] 5 =, at time ¢ = 11}, of Example 5.2. These
are nonlinear solutions. Irregular vibration patterns begin to

appear.
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The global invariant rectangle I x I is found with
I [_ ( /(aI/Z)—1+(a;/2)—1 [(ar/2)-1
3-(B1/8) 3 3(6:/8) }’
(ar/2)-1  (er/2)-1 flar/2)-1
3-(Br/8) 3 3-(B1/8)

_ 4.25-1 (4.25-1) f4.25-1
()

4.25-1

[435-1 PRCECEDY
3 3 3

~[—2.1684, 2.1684];

(5.9)

cf. [Chen et al., 1995, Case (4.3.1)]. We did not rig-
orously verify (5.4) for (5.7)-(5.9), but based upon

uv-axis

-2

-1 1
X-axis

Fig. 10. The solution U;(x, t), Vi(z, 1}, ¢ = 1, 2, on the
spatial span {—1, 1] 3 #, at time ¢ = 503, of Example 5.2.
As time becomes progressively large, disorderly vibrations
become prominent. Note that U and V are actually quite
smooth on half of the spatial span [-1, 1}. This is due to the
fact that chaotic disturbances propagate with a unit speed
and are nondispersive; they exist only on half of the spatial
span [—1, 1] at any time.
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17 =

Fig. 11. The solution U7 (z, t) and Us(z, t) on the spatial
spans [—1, 1] 9 =z, for the time duration [10, 12] 3 ¢, of Ex-
ample 5.2. Chaotic vibrations are seen to be “piggybacking”
on linear periodic vibrations.

(v :‘I kNi\‘N ) \' V JLL' f\‘ i \ ‘ 1 i

'é I!l.l‘f,mpp'(iﬁuu li\i‘llll‘l‘
[
=

A
; mv.v.\'a\'a\w
1 '. i m 11

527

Fig. 12. The solution T (z, t) and U2(=, t) on the spatial
span [—1, 1] 3 =z, for the time duration [50, 52] 3 t, of
Example 5.2. In comparison with Fig. 11, the magnitude
of chaotic vibrations become more prominent.
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Fig. 13. The solution V1 (zx, t) and ¥3(z, t) on the spatial
span [—1,1] 3 z, for the time duration [10, 12] 3 ¢, of
Example 5.2.
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Fig. 14. The solution ¥, (z, t) and V3(z, t) on the spatial
span[-1, 1} 3 z, for the time duration [50, 52] 3 z, of Ex-
ample 5.2. In comparison with Fig. 13, we again observe
the coexistence of linear and chaotic vibrations, and that
the magnitude of chaotic vibrations has increased.



our knowledge in [Chen et al., 1995], we know that
(5.4) is true.

Note that the £ sin 27z terms in the initial data
(5.6) will generate the linear periodic solution in Ex-
ample 5.1. The term 52°(1 — z)? in (5.6) will cause
chaotic dynamic behavior of U; and Vi, ¢ = 1, 2.
We solve U, Vi, £ = 1, 2, according to (3.13} and
(3.14). The graphs of U;, V;, i =1, 2, cf. (5.2), are
plotted for ¢ = 11}, 501, and for the time durations
[10,12] and [50,52]; see Figs. 9-14. The reader can
easily observe that chaotic vibrations are “piggy-
backing” on the linear periodic vibrations (waves)
in Figs. 5-8 of Example 5.1.

Another interesting phenomenon may also be
observed. In (5.6), the perturbation term 5z%(1 —
z?) causing chaos lives only on half of the natural
spatial span {—1, 0] U [0, 1] of the coupled string
system. From Figs. 9 and 10, we see that chaotic
vibrations are happening on only half length of the
total span [—1, 0] U [0, 1]. This is due to the single
speed nondispersive wave propagation on the cou-
pled string system.
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