Let S be a nonempty set of real numbers,
a real number $3 \in \mathbb{R}$ is called
an upper bound of the set S, if
$\Im \geq \%$, $\forall \pi \in S$
e.g. $let S = \{1, 2, 3, 4\}$, then $4, 5$,
6.8, etc. are all upper bound of S
1 - 2 - 2 - 7 - 7 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6
bound of S
a real number 7 EIR is called
a least upper bound of the set S, if
On is an upper bound of S, and if 3
is any upper bound of $S, 3 \ge 7$.
(i. Mis the minimum among all upper bounds)

6 Least upper bound axiom
Every nonempty set of real numbers that has
an upper bound has a least upper bound.
(dearly, if we change real numbers to rational
humbers, it's not true)
Lemma A: Let f be a continuous fun on
= [a,b]. If f(a)< 0 < f(b) or f(b) < 0 < f(a)
then $\exists c$, $a < c < b$, s, t , $f(c) = o$
Pf: we'll prove the case for fraze < frb>,
because f(b)<0 <f(a) is="" similar.<="" td=""></f(a)>
Now since $f(a) < 0$, f cont, there exists a $t > a$ s.t. $f(x) < a$ $\forall x \in [a, t]$
In tact, there are many & having this property.
Consider the set { t: f(x)<0 & x \in [a,t) }

Since this set has an upper bound, (for example,) bis an upper it must have a least upper bound by the axiom. Define C := least upper bound of S, where S:={t: f(x)<0 V x ∈ [ait)}. clearly C ≤ b. Moneaver, := this notation means "defined as" 1 If f(c) > 0, then since f is cont, there exists 1>0, s.t. V x e (c-7, c], f (x) >0. But this means that 7 is an upper bound of the set S and it is smaller than C, which contradict to the definition that C is 1.u.b. - X. Thus $f(c) \leq 0$. 2 Since $f(b) > 0 \implies C \neq b \implies C < b$. 3° If f(c) < 0, then since f is cont, there lkists 5>0, s.t. ∀x∈ [C, C+5),f(x)<0 But this means C is not an upper bound of the set S, also contradict to the definition that C is l.u.b. *

Thus $f(c) = 0$, and we are done $*$
using this Lemma A, we can prove the
întermediate value theorem:
Thm: If f is cont. on Ea, b], and k is
any number between fras and f(b), then
there is at least one number c between
a and b such that $f(c) = k$.
Pf: suppose we have f(a) < k < f(6). The
other cases can be proved similarly.
Consider a new function $g(x) := f(x) - K$,
then $g(a) < o$ and $g(b) > o$. So Lemma A
implies that IC between a and b s.t.
f(c) = 0, which means $f(c) = K$
· · · · · · · · · · · · · · · · · · ·

Next, we look at the extreme value theorem. Lamma B: If f is continuous on Ea, b7, then fis bounded on [a,b]. Pf. The idea is similar to Lemma A we'll consider a conceptinding set, and argue that the least upper bound is what we want. consider a set S $S := \{t : t \in [a,b] \text{ and } f \text{ is bounded on } [a,t] \}$ This set is nonempty because a E S, it's bounded above by b because $5 \leq [a, b]$ "subset Define c := least upper bound of S. clearly c≤b. claim: c=b Suppose C<b. Since f is continuous on [a,6], it is cont. at C, so = 170 sit, for $x \in [c-n, c+n]$, |f(x) - f(c)| < |

'e. f(x) is bounded on [c-n, c+n]. Since c is the l.u.b. of S ⇒ C-7∈S So fix) is bounded on [a, c-7]. But this means f(x) is actually bounded on [a, c+7], i.e. C+7 ES, contradict to the definition that C is l.u.b. of S. $\cdot \cdot \cdot C = b$. This also means fix is bounded on [a,t] for all t<b, b/c now b is the l.u.b. of S. On the other hand, f being continuous on [a,b] implies that I J>0, s.t. for XE [b-J, b], |f(x)-f(b)|< 1, i.e. f(x) is bounded on [b-J,b] Now b being the I. u. b. of S implaes that f is bounded on [a, b-J], thus, f is bounded on [a,b]. × ×

me use one more property: (Weierstrass Principal) Every bounded infinite sequence of real numbers has a convergent subsequence. (This property can be prived by using I.u.b.) 1hm: If f is continuous on a bounded closed interval [a, b], then f takes on both a max value M and a min value m on [a, b]; Pf: Since f is cont. on Earb], so by Lemma B f is bounded on Ea, 6], is, the set of value of f, $S:=\{f(x), x \in [a,b]\}$ is a bounded set. Then, by the I.u.b. axiom, there exists a l.u.b. M of S, i.e. M is the smallest number that satisfies fix) < M, YXE [a, b]) either "MES, then we are done

 $M = \lim_{h \to \infty} A_n, \text{ for } \{A_n\} \subset S$ (we'll look at sequences & their limits in the Spring) In case ②, there exists $(notice f X n \} \subset [a,b] \subset of f$ while $\{a,b\} \subset S$ a sequence {xn } c [a,b] s,t. $\lim_{n \to \infty} f(x_n) = M$ N image of Then by the above property, these exists a convergent subsequence { yn } C { Xn }, i.e. $\lim_{n \to \infty} \Im_n = C$, for some $C \in [a, b]$. Now, use again that f is continuous, we have $M = \lim_{n \to \infty} f(y_n) = f(\lim_{n \to \infty} y_n) = f(c)$ minimum can be proved similarly. X Remark ; Extreme value theorem can be proved