Let S be a nonempty set of real numbers,

- a real number $\mathcal{\mathcal { F }} \in \mathbb{R}$ is called an upper bound of the set S, if $\xi \geqslant x, \forall x \in S$
e.g. let $S=\{1,2,3,4\}$, then 4,5 , 6.8 , etc. are all upper bound of S
- let $S=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$, then $1,2,3.7, \pi$, etc, are all upper bound of S
- a real number $\eta \in \mathbb{R}$ is called a least upper bound of the set S, if
(1) η is an upper bound of S, and ${ }^{(2)}$ if ξ is any upper bound of $S, \xi \geq \eta$.
(ie. η is the minimum among all upper bounds)

G Least upper bound axiom
Every nonempty set of real numbers that has an upper bound has a least upper bound.
(dearly, if we change real numbers to rational numbers, it's not true)

Lemma A : Let f be a continuous fun on $[a, b]$. If $f(a)<0<f(b)$ or $f(b)<0<f(a)$ then $\exists c, a<c<b$, st. $f(c)=0$

Pf: well prove the case for $f(a)<0<f(b)$. because $f(b)<0<f(a)$ is similar.

Now since $f(a)<0, f$ cont, there exists a $t>a$, sit. $f(x)<0 \quad \forall x \in[a, t)$

In fact, there are many ξ having this property. Consider the set $\{t: f(x)<0 \quad \forall x \in[a, t)\}$
since this set has an upper bound, it must have a least upper bound by the axiom.
Define $C:=$ least upper bound of S, where $S:=\{t: f(x)<0 \quad \forall x \in[a, t)\}$. dearly $c \leq b$. Moearer,
1^{0} If $f(c)>0$, then since f is cont, there exists $\eta>0$, sit. $\forall x \in(c-\eta, c], f(x)>0$. But this means that η is an upper bound of the set S and it is smaller than c, which contradict to the definition that c is $1 . u . b . *$ Thus $f(c) \leqslant 0$.
2° since $f(b)>0 \Rightarrow c \neq b \Rightarrow c<b$.
3° If $f(c)<0$, then since f is cont, there exists $\delta>0$, sit. $\forall x \in[c, c+\delta), f(x)<0$ But this means C is not an upper bound of the set S, also contradict to the definition that C is $1 . u, b . *$

Thus $f(c)=0$, and we ate done using this Lemma A, we can prove the intermediate value theorem:

The: If f is cont on $[a, b]$, and k is any number between $f(a)$ and $f(b)$, then there is at least one number c between a and b such that $f(c)=k$.

Pf: suppose we have $f(a)<k<f(6)$. The other cases can be proved similarly. Consider a new function $g(x):=f(x)-K$, then $g(a)<0$ and $g(b)>0$. So Lemma A implies that $\exists C$ between a and b sit. $g(c)=0$, which means $f(c)=k$

Next, we look at the extreme value theorem.
Lemma B : If f is continuous on $[a, b]$, then f is bounded on $[a, b]$.

Pf: The idea is similar to Lemma A. We il consider a conesponding set, and argue that the least upper bound is what we want.

Consider a set S
$S:=\{t: t \in[a, b]$ and f is bounded on $[a, t]\}$
This set is non empty because $a \in S$, it's bounded above by b because $S \subseteq[a, b]$
"subset".
Define $c:=$ least upper bound of S.
clearly $c \leqslant b$. claim: $c=b$.
Suppose $c<b$. Since f is continuous on $[a, b]$, it is cont. at C, so $\exists \eta>0$ sit, for $x \in[c-\eta, c+\eta],|f(x)-f(c)|<1$
is. $f(x)$ is bounded on $[c-\eta, c+\eta]$.
Since c is the 1.u.b. of $S \Rightarrow c-\eta \in S$
So $f(x)$ is bounded on $[a, c-\eta]$.
But this means $f(x)$ is actually bounded on $[a, c+\eta]$, ie. $c+\eta \in S$, contradict to the definition that C is l.u.b. of S.

$$
\therefore c=b .
$$

This also means $f(x)$ is bounded on $[a, t]$ for $a(l) t<b$, b / c now b is the l.u.b. of S. On the other hand, f being continuous on $[a, b]$ implies that $\exists \delta>0$, st. for $x \in[b-\delta, b]$, $|f(x)-f(b)|<1$, ie, $f(x)$ is bounded on $[b-\delta, b]$ Now b being the 1.u.b. of S implies that f is bounded on $[a, b-\delta]$, thus, f is bounded on $[a, b]$.
we use one more property: (Weierstrass Principe) Every bounded infinite sequence of real numbers has a convergent subsequence.
(This property can be proved by using 1.u.b.)
Thy : If f is continuous on a bounded closed interval $[a, b]$, then f takes on both a max value M and a min value m on $[a, b]$.

Pf: Since f is cont. on $[a, b]$, so by lemma B, f is bounded on $[a, b], i l$, the set of value of $f, S:=\{f(x), x \in[a, b]\}$ is a bounded set. Then, by the I. u,b. axiom, there exists a l.u.b. M of S, ie. M is the smallest number that satisfies $f(x) \leq M, \forall x \in[a, b]$ \Rightarrow either (1) $M \in S$, then we are done
(2) $M=\lim _{n \rightarrow \infty} a_{n}$, for $\left\{a_{n}\right\} \subset S$ (well look at sequences \& their limits in the Spring)
In case (2), there exists
a sequence $\left\{x_{n}\right\} \subset[a, b]$ sit. domain

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=M \quad\left(\begin{array}{ll}
\text { notice } & \left\{x_{n}\right\} \subset[a, b] \\
\text { while } & \left\{a_{n}\right\} \subset S_{C_{\text {image of }}}
\end{array}\right)_{f}
$$

Then by the above property, there exists a convergent subsequence $\left\{y_{n}\right\} \subset\left\{x_{n}\right\}$, ie. $\lim _{n \rightarrow \infty} y_{n}=c$, for some $c \in[a, b]$.

Now, use again that f is continuous, we have

$$
M=\lim _{n \rightarrow \infty} f\left(y_{n}\right)=f\left(\lim _{n \rightarrow \infty} y_{n}\right)=f(c)
$$

minimum can be proved similarly.

