Q : If we know that $\lim _{x \rightarrow \infty} f(x)=\infty$, how do we know if there's an oblique asymptote?

There are two suggestions by some of you, let wo try to state what they are:
\langle Suggestion I >
Calculate $\lim _{x \rightarrow \infty} f^{\prime}(x)$, and if it's a fixed number. called it " a ", then next calculate $\lim _{x \rightarrow \infty}(f(x)-a x)$ called it " b ", and the oblique asymptote is $y=a x+b$.
The idea is that, if an oblique asymptote exists, u. $f(x)=(a x+b)+R(x)$ for some $a, b \in \mathbb{R}$, and $\lim _{x \rightarrow \infty} R(x)=0$.
so $f^{\prime}(x)=a+R^{\prime}(x)$

And one may guess that if $\lim _{x \rightarrow \infty} R(x)=0$, then $\lim _{x \rightarrow \infty} R^{\prime}(x)=0$ also, thus

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f^{\prime}(x)=a, \text { and } f(x)-a x=b+R(x) \\
& \therefore \lim _{x \rightarrow \infty} f(x)-a x=\lim _{x \rightarrow \infty} b+R(x)=b
\end{aligned}
$$

While the idea to get " b " is correct, the idea to get " a " has some problem.

The reason being

$$
\lim _{x \rightarrow \infty} R(x)=0 \text { doosnt imply } \lim _{x \rightarrow \infty} R^{\prime}(x)=0
$$

for example, let $R(x)=\frac{1}{x} \sin \left(x^{2}\right)$
Then $\lim _{x \rightarrow \infty} R(x)=0$. But the limit of $R^{\prime}(x)=2 \cos \left(x^{2}\right)-\frac{1}{x^{2}} \sin \left(x^{2}\right)$ doessit exist

To be more precise, let $f(x)=x+\frac{1}{x} \sin \left(x^{2}\right)$ then $\lim _{x \rightarrow \infty} f(x)=\infty$, so no horizontal asymptut? $\lim _{x \rightarrow \infty} \frac{1}{x} \sin \left(x^{2}\right)=0$, so $y=x$ is an oblique as y. However, if you just take $f^{\prime}(x)$, then you would have

$$
\lim _{x \rightarrow \infty} f^{\prime}(x)=1+2 \cos \left(x^{2}\right)-\frac{1}{x^{2}} \sin \left(x^{2}\right)
$$

which doesnt exist, and you would be con duding that $f(x)$ has no oblique asy. b/c $\lim _{x \rightarrow \infty} f^{\prime}(x)$ doesn't exist; which is incorrect.
< Suggestion II >
Calculate $\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ and if it's a fixed number. called it " a ", then next calculate $\lim _{x \rightarrow \infty}(f(x)-a x)$ called it " b ", and the oblique asymptote is $y=a x+b$.

The idea for this approach, is that, if the oblique asymptote exists, then
$f(x)=a x+b+R(x)$ with $\lim _{x \rightarrow \infty} R(x)=0$
thus $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{a x}{x}+\frac{b}{x}+\frac{R(x)}{x}$
and $\sin \omega \lim _{x \rightarrow \infty} \frac{b}{x}=0, \lim _{x \rightarrow \infty} \frac{R(x)}{x}=0$
we have $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=a$, and

$$
\lim _{x \rightarrow \infty} f(x)-a x=\lim _{x \rightarrow \infty} b+R(x)=b .
$$

This approach is indeed correct, because we are only using what we know, namely,

$$
\lim _{x \rightarrow \infty} R(x)=0 \Rightarrow \lim _{x \rightarrow \infty} \frac{R(x)}{x}=0
$$

The meaning of this $\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ limit is comparing the value of $f(x)$ and the value of x, as $x \rightarrow \infty$, Thus if it has an oblique asymptote, $\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ should be a constant! so let's test the example $f(x)=x+\frac{\sin \left(x^{2}\right)}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} 1+\frac{\sin \left(x^{2}\right)}{x^{2}}=1, \because \lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)}{x^{2}}=0 \\
& \text { so } a=1 \text {, and } b=\lim _{x \rightarrow \infty} f(x)-1 \cdot x=\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)}{x}=0
\end{aligned}
$$

\therefore the oblique asymptote is $y=x$, which is correct!

