Show that $\lim _{x \rightarrow 2} x^{2}=4$
Pf: we know that $\left|x^{2}-4\right|=|x-2||x+2|$
so if we choose $|x-2|<\frac{1}{3}$, then

$$
\begin{aligned}
|x+2| & \leqslant|x-2|+|4|<4 \frac{1}{3} \\
\Rightarrow \quad\left|x^{2}-4\right| & =|x-2||x+2|<4 \frac{1}{3}|x-2|
\end{aligned}
$$

\forall given $\varepsilon>0$, let $\delta=\min \left\{\frac{1}{3}, \frac{\varepsilon}{4 \frac{1}{3}}\right\}$
then, if $|x-2|<\delta$

$$
\begin{aligned}
\Rightarrow\left|x^{2}-4\right| & =|x-2||x+2| \\
& <|x-2| 4 \frac{1}{3} \\
(\because|x-2| & \left.<\delta \leqslant \frac{1}{3} \Rightarrow|x+2| \leqslant|x-2|+4<4 \frac{1}{3}\right) \\
& <\varepsilon\left(\because|x-2|<\delta \leqslant \frac{\varepsilon}{4 \frac{1}{3}}\right)
\end{aligned}
$$

i.e. $\lim _{x \rightarrow 2} x^{2}=4$

Show that $\lim _{x \rightarrow 2} x^{2}=4$
Pf: \forall given $\varepsilon>0$,
let $\delta=\min \left\{\frac{1}{3}, \frac{\varepsilon}{4 \frac{1}{3}}\right\}$
then, if $|x-2|<\delta$

$$
\begin{aligned}
\Rightarrow\left|x^{2}-4\right| & =|x-2||x+2| \\
& <|x-2| 4 \frac{1}{3} \\
(\because|x-2| & \left.<\delta \leqslant \frac{1}{3} \Rightarrow|x+2| \leqslant|x-2|+4<4 \frac{1}{3}\right) \\
& <\varepsilon \quad\left(\because|x-2|<\delta \leqslant \frac{\varepsilon}{4 \frac{1}{3}}\right)
\end{aligned}
$$

i.e. $\lim _{x \rightarrow 2} x^{2}=4$

If you want to write only the bate minimum

