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Abstract: We compute the Riemannian volume of the moduli space of flat connections
on a nonorientable 2-manifold, for a natural class of metrics. We also show that Witten’s
volume formula for these moduli spaces may be derived using Haar measure, and we
give a new proof of Witten’s volume formula for the moduli space of flat connections
on a 2-manifold using Haar measure.

1. Introduction

In [W] Witten defined and computed a volume on the moduli space of gauge equivalence
classes of flat connections on a 2-manifold, using Reidemeister-Ray-Singer torsion (see
e.g. [Fr]). When the 2-manifold is orientable, Witten proved that this volume is equal
to the symplectic volume on the moduli space. However, when the 2-manifold is not
orientable the moduli space does not have a symplectic form, so the interpretation of
this volume has been unclear.

The moduli space of gauge equivalence classes of flat connections on a nonorient-
able 2-manifold turns out to be a Lagrangian submanifold of the moduli space of gauge
equivalence classes of flat connections on the orientable double cover. In this article we
compute its Riemannian volume for a natural class of metrics on the 2-manifold. The
dependence on the choice of metric is discussed in Remarks 1 and 2 below.

The layout of this article is as follows. In Sect. 2 we compute the Riemannian volume
of the moduli space of flat connections on a nonorientable 2-manifold (exhibited as the
connected sum of a Riemann surface with either one or two copies of RP 2) using a
metric derived from a particular class of metrics on RP 2 − {disc}. In Sect. 3 we give a
new proof that Witten’s formula for the volume of the moduli space of flat connections
on 2-manifolds (for nonorientable surfaces with no boundary and orientable surfaces
with one boundary component) arises from Haar measure.

� The first author was partially supported by grants from OGS and OGSST
�� The second author was partially supported by a grant from NSERC
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2. Metrics on the Moduli Space

2.1. Preliminaries. By the classification of 2-manifolds [Ma], all nonorientable 2-man-
ifolds are obtained as the connected sum of a Riemann surface with either one copy of
the real projective plane RP 2 (denoted P ) or two copies of P (which is equivalent to
the connected sum with a Klein bottle K).

Given a Riemannian metric on the Möbius strip P \D, we obtain a Riemannian metric
on the connected sum �#P or �#P #P , where � is an oriented 2-manifold equipped with
a Riemannian metric. We assume that a Riemannian metric has been chosen on � \ D.

We view P \ D as formed by gluing together two sides of equal length of a triangle
�. We define a metric on P \ D by endowing � with a Riemannian metric in which
two sides are of equal length and using geodesic polar coordinates about one vertex of
the triangle. In such coordinates (ρ, σ ) (where ρ is the arc length from p and σ is the
angular variable) the metric takes the form ([dC] Sect. 4.6)

ds2 = dρ2 + g22(ρ, σ )dσ 2. (1)

We now assume that the triangle � is a geodesic triangle. In geodesic polar coordi-
nates, the Hodge star operator is then

∗dρ = √
g22dσ, (2)

∗dσ = − 1√
g22

dρ.

We make the assumption that g22 = g22(ρ) depends only on ρ and is independent of σ .
This assumption is satisfied by the three important examples of metrics with constant
scalar curvature:

(1) Spherical metric with scalar curvature +1: g22(ρ) = sin2(ρ),
(2) Euclidean metric (with scalar curvature 0): g22(ρ) = ρ2,
(3) Hyperbolic metric with scalar curvature −1: g22(ρ) = sinh2(ρ).

We can consider two triangles shown in Fig. 1. We use geodesic polar coordinates at
the vertex x0. The curves γ1 and γ2 are radial geodesics with constant σ . The curve γ3 is
the geodesic joining the two vertices x1 and x2. The curve C1 is the curve ρ = constant
between x1 and x2; it is not a geodesic. The triangle � is bounded by γ1, γ2, γ3; it is a
geodesic triangle. The triangle �0 is bounded by γ1, γ2, C1. We can find the integral over
the triangle �0 bounded by γ1, γ2, C1, where C1 is the curve specified by the equation
ρ = L = constant.

Let G be a compact connected Lie group; the moduli space of flat connections on �
modulo based gauge transformations (i.e. gauge transformations which take the value
identity on the three vertices) can be identified with G × G. The moduli space of flat
connections on P \ D modulo gauge transformations which are trivial at one point on
the boundary (corresponding to the vertices of the geodesic triangle) is equivalent to the
subspace of the moduli space of flat connections on the geodesic triangle (modulo based
gauge transformations) which correspond under an orientation reversing map which
identifies two sides of the triangle . This is Hom(π, G), where π = π1(P \ D), in other
words

Hom(π, G) = {(u, v) ∈ G × G | uv2 = 1} ∼= G.

Here v is the holonomy along γ1 and −γ2, while u is the holonomy along γ3.
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Fig. 1. Triangles � and �0

On the space of flat connections on �, there is a metric

< a, b >=
∫

�
Tr(a ∧ ∗b), (3)

where ∗ is the Hodge star operator on differential forms over �. We will study the corre-
sponding metric on G×G. Define the metric <, > at a flat connection A corresponding
to a point p in G × G to be

< dAξ, dAη >=:
∫

�
Tr(dAξ ∧ ∗dAη),

where ξ(·) and η(·) are g-valued functions on �, so dAξ and dAη represent elements of
the tangent space to G × G at p. Here, Tr(·) represents the ad-invariant inner product
on the Lie algebra.

In the case when G is abelian, the holonomy of dξ along γ1 is

Holγ1dξ = exp
∫

γ1

dξ = exp(ξ(ρ = L1, σ = 0) − ξ(ρ = 0, σ = 0)), (4)

and its holonomy along γ2 is

Holγ2dξ = exp
∫

γ2

dξ = exp(ξ(ρ = L2, σ = 0) − ξ(ρ = 0, σ = φ)). (5)

We will study these holonomies once we have determined ξ .
From now on, we only consider the inner product at A = 0. The reason is that the

metric < a, b >= ∫
Tr(a ∧ ∗b) is ad-invariant (where ∗ denotes the Hodge star opera-

tor), and since the gauge action at the infinitesimal level is the adjoint action, this metric
is invariant under the action of the gauge group and in particular under the action of
the based gauge group. Since the space � is contractible, any flat connection is gauge
equivalent to the trivial connection on a triangle. In other words all infinitesimal flat
connections – elements of the tangent space of the space of flat connections modulo
based gauge transformations – can be expressed as dξ for some infinitesimal gauge
transformation ξ : � → g. So we need only consider the inner product at A = 0.
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We want to associate a norm < dξ, dξ >, where ξ ∈ 
0(P \ D) ⊗ g. This will be
done by defining

< dξ, dξ >=:
∫

�
Tr(dξ ∧ ∗dξ). (6)

Using Stokes’ theorem, this can be converted to a line integral around the boundary of
the triangle if we have d ∗ dξ = 0: this follows because∫

�
Tr(dξ ∧ ∗dξ) =

∫
�

Tr[d(ξ ∧ ∗dξ) − ξd ∗ dξ ]

=
∫

∂�
Trξ ∗ dξ −

∫
�

Trξd ∗ dξ.

In fact, we may assume ξ satisfies

d ∗ dξ = 0. (7)

This condition represents a transversal to the orbit of the based gauge group; our pro-
cedure is analogous to identifying de Rham cohomology classes with harmonic forms
(forms α satisfying dα = 0 and d ∗ α = 0). Note that the space G × G is isomorphic
to the space of flat connections on � modulo based gauge transformations (i.e. gauge
transformations which take the value 1 at the vertices). Each equivalence class may be
written as dξ for some ξ : � → g (which does not take value 1 at all the vertices, unless
one wishes to represent the trivial flat connection).

To solve Eq. (7), first, let us recall some geometry. Recall that our Riemannian metric
in geodesic polar coordinates is

ds2 = dρ2 + g22(ρ)dσ 2,

where ρ is the distance from a chosen point x0 and σ is the polar angle with respect to
this point. Let ∗ denote the Hodge star operator on the 2-manifold; the star operator with
respect to these polar coordinates is

∗dρ =
√

g22(ρ)dσ, ∗ dσ = −1√
g22(ρ)

dρ.

We use the substitution

u(ρ) =
∫ ρ 1√

g22(t)
dt (8)

and define

τ(ρ) = exp u(ρ).

The equations for the Hodge star operator become

∗du = dσ, (9)

∗dσ = −du.

We now have to solve the equation

d(∗dξ) = 0.
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We have

dξ = ∂ξ

∂u
du + ∂ξ

∂σ
dσ

so

d(∗dξ) = d

(
∂ξ

∂u
dσ − ∂ξ

∂σ
du

)
=

(
∂2ξ

∂σ 2 + ∂2ξ

∂u2

)
du ∧ dσ

= (ξσσ + ξuu)du ∧ dσ.

So the equation we need to solve is

ξσσ + ξuu = 0. (10)

Let us take a Fourier decomposition of ξ in the σ variable:

ξ(u, σ ) =
∫

R

ξ̂ (u, k)eikσ dk.

So (10) becomes

∂2

∂u2 ξ̂ (u, k) − k2ξ̂ (u, k) = 0. (11)

This Eq. (11) has the following solutions:

ξ̂ (u, k) = C+(k)τ k + C−(k)τ−k.

Recall that we had defined τ = exp(u). Imposing the condition that ξ̂ (u, k) is finite at
u = 0, we get

ξ̂ (u, k) = C+(k)τ k

when k > 0, and

ξ̂ (u, k) = C−(k)τ |k|

when k < 0. Recall that φ is the polar angle of the geodesic triangle. Let us impose the
additional constraint that ξ(u, σ ) attains its maximum on two edges of the triangle (γ1

which is σ = 0 and γ2 which is σ = φ), in other words ∂
∂σ

ξ(ρ, σ ) = 0 when σ = 0
and σ = φ. This leads to

ξ(u, σ ) = Yτk cos kσ,

where Y ∈ g is a constant and

k = π/φ. (12)

We compute that
∫

C1

Tr(ξ ∧ ∗dξ) =
∫ φ

0
< ξ, ∂ξ/∂u > dσ

= < Y, Y > k exp ku(L)

∫ φ

0
cos2 kσdσ

= < Y, Y > π/2 exp ku(L). (13)
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Note that writing ξ in terms of its Fourier decomposition accomplishes the same
thing as solving the equation d ∗ dξ = 0 by the method of separation of variables. We
solved this equation in the previous subsection. Thus we obtain

ξ(ρ, σ ) = Yτ(ρ)k cos kσ, k = π/φ (14)

so that the maximum of |ξ | is achieved on the edges σ = 0 and σ = φ and Y ∈ g is
a variable we choose so that we can get the desired holonomy along the boundary. The
holonomies were specified by Eq. (4) and (5).

∫
C1

Tr(ξ ∧ ∗dξ) = < Y, Y > k
[
τ(

L

2
)
]2k

∫ φ

0
dσ cos2 kσ

= < Y, Y >
[
τ(

L

2
)
]2k π

2∫
γ1

Tr(ξ ∧ ∗dξ) =
∫

γ2

Tr(ξ ∧ ∗dξ) = 0. (15)

Thus (referring to Fig. 1) the integral over the geodesic triangle � bounded by
γ1, γ2, γ3 is the integral over the triangle �0 bounded by γ1, γ2, C1 minus the integral
over the region D:∫

�
Tr(dξ ∧ ∗dξ) =

∫
�0

Tr(dξ ∧ ∗dξ) −
∫
D

Tr(dξ ∧ ∗dξ). (16)

This leads to ∫
�

Tr(dξ ∧ ∗dξ) =
∫

C1

Tr(ξ ∧ ∗dξ) −
∫
D

Tr(dξ ∧ ∗dξ), (17)

The integral over D is given as follows:
∫
D

Tr(dξ ∧ ∗dξ) =
∫
D

< Y, Y > k2τ 2k

(
cos2 kσ

τ
+ sin2 kσ

τ

)
dτ ∧ dσ

=
∫
D

< Y, Y > k2τ 2k 1

τ
dτ ∧ dσ

= < Y, Y > k2
∫ φ

0
dσ

∫ τ(C1(σ ))

τ (γ3(σ ))

τ 2k dτ

τ

= < Y, Y > k2
∫ φ

0

(
τ 2k(C1(σ ))

2k
− τ 2k(γ3(σ ))

2k

)
dσ, (18)

where τ(C1(σ )) is a constant independent of σ .

Remark 1. If g is a Riemannian metric on � then the quantity

< dξ, dξ >g

(associated to the metricg) is equal to the quantity< dξ, dξ >gew , wherew : P \D → R

is a C∞ function. In other words our definition of the metric < dξ, dξ >g is invariant
under conformal transformations on �. To see this, we write the metric as

g =
[

g11 g12
g21 g22

]
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with inverse

g−1 =
[

g11 g12

g21 g22

]
.

We observe that the Hodge star operator is unchanged under g 
→ gew (where w : � →
R), since det g transforms to (det g)e2w while g11 transforms to g11e−w. The Hodge
star operator for coordinates x1, x2 is

∗dx1 = g11
√

det gdx2.

Hence g11√det g is unchanged. Thus the norm (denoted by �) on dξ computed using
metrics of the form

ds2 = dρ2 + g22(ρ)dσ 2. (19)

also gives the norm for metrics g conformally equivalent to those of the form (19).

Remark 2. In fact in dimension 2 every Riemannian metric is locally diffeomorphic
to one which is conformally equivalent to a metric of constant curvature (see [d’H]
Sect. 3.3). This shows that all metrics on P \ D are conformally equivalent to a metric
of constant curvature, one of the three listed in (2.1), for which the norm (6) may be
computed as in (16). The values of the norms are different for the three different choices
of constant curvature metrics.

Remark 3. The volume of the moduli space defined using Reidemeister-Ray-Singer tor-
sion is independent of the choice of metric on the 2-manifold either orientable or non-
orientable. The Riemannian volume, however, is a different story. For an orientable
2-manifold, the moduli space of flat connections is a Kähler manifold, so the Riemann-
ian volume equals the symplectic volume, and is thus independent of the choice of
metric. For a nonorientable surface, Witten remarks in [W] (p. 163) that the Riemannian
volume does depend on the metric. According to [W] (2.38) the torsion volume and the
Riemannian volume differ (in this case) by a ratio of determinants of elliptic operators
(generalized Laplacians on Lie algebra-valued differential forms). Our results are con-
sistent with this observation, and at the same time provide an evaluation of this ratio of
determinants.

2.2. Hyperbolic metric on the geodesic triangle. We explore the hyperbolic case first.
Note that if � has genus ≥ 2 then by the uniformization theorem it is equipped with a
unique metric of constant scalar curvature −1 (in other words a hyperbolic metric). This
is one motivation for choosing a hyperbolic metric on P \ D, although such a metric
will be singular at one point.

A Riemann surface with one boundary component and genus ≥ 1 always has a hyper-
bolic metric with constant curvature −1 [B]. For this reason we construct a metric on
P \ D for which the boundary is a geodesic and which is hyperbolic with constant cur-
vature −1 at all but one point. We do this by gluing the edges of an isosceles geodesic
hyperbolic triangle using an orientation reversing map: this process identifies all three
vertices of the triangle, and the vertex becomes the point where the metric does not have
constant curvature −1 (indeed, the metric is singular at this point).



8 N.-K. Ho, L.C. Jeffrey

Remark 4. The reason why this procedure gives a natural metric on the 2-manifold
formed by taking the connected sum of a Riemann surface of genus � > 0 with P is
that a Riemann surface of genus � > 0 with one or two boundary components always
has a hyperbolic metric with constant curvature for which the boundary components
are geodesics. This metric can be obtained from a pants decomposition of the Riemann
surface, where each pair of pants is equipped with a hyperbolic metric for which the
boundary components are geodesics. See [B].

Hence the connected sum of a Riemann surface with P has a metric which is hyper-
bolic at all but one point, and the connected sum of a Riemann surface with two copies of
P has a metric which is hyperbolic at all but 2 points. To form P with one disc removed,
we recall that the two edges of the triangle are identified using an orientation reversing
map. In Fig. 1 this corresponds to identifying γ1 with γ2 using an orientation reversing
map which maps x1 ∈ γ1 to x0 ∈ γ2 and maps x0 ∈ γ1 to x2 ∈ γ2. It turns out that the
metric on the based moduli space on P with one disc removed is singular at the vertex.

We have introduced a geodesic triangle � in the upper half plane (see Fig. 2). As
shown in Fig. 2, the geodesic triangle has one distinguished vertex x0 (which serves
as the origin for geodesic polar coordinates). The sides γ1, γ2, γ3 are geodesics. We
introduce geodesic polar coordinates (ρ, σ ) (using the hyperbolic metric on the upper
half plane, which is assumed to contain the triangle) with x0 as the origin: here ρ is the
distance from a chosen point x0 and σ is the polar angle. It is assumed that the geodesic
γ1 is defined by the equation σ = 0, and γ2 is defined by σ = φ (where φ is the angle at
x0). The curves γ1 and γ2 have lengths L1 and L2 which are the same here. The geodesic
γ3 is specified by Coxeter’s equation

coth ρ = cos(σ − σ0)

�
, see [Cox] p.376, (20)

where �, σ0 are constants determined by the geodesic γ3. Also,

coth ρ = cosh ρ

sinh ρ
= cosh2(ρ/2) + sinh2(ρ/2)

2 sinh(ρ/2) cosh(ρ/2)
= 1

2

(
τ + 1

τ

)

x0

x1 x2

γ1 γ2

γ3

φ

Fig. 2. Hyperbolic geodesic triangle
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for τ = tanh(ρ/2). Thus
(

1 − cos(σ − σ0)

�τ

)
dτ = − sin(σ − σ0)

�
dσ.

By (20), it is clear that since ρ(σ = 0) must be equal to ρ(σ = φ) for a hyperbolic
geodesic triangle two sides of which will be identified to form P \D, we need σ0 = φ/2
in (20).

Now the equation for γ3 is (see Eq. (20))

cos(σ − φ/2) tanh ρ = cos(φ/2) tanh L

and

tanh ρ = 2τ

1 + τ 2 .

So we have

τ(γ3(σ )) = cos(σ − φ/2)

l
−

√
(
cos(σ − φ/2)

l
)2 − 1, l = cos(φ/2) tanh L. (21)

Thus by (18)
∫
D

Tr(dξ ∧ ∗dξ) = kφ

2
< Y, Y >

[
tanh(

L

2
)
]2k

−k

2
< Y, Y >

∫ φ

0

[cos(σ − φ/2)

l
−

√
(
cos(σ − φ/2)

l
)2 − 1

]2k

dσ.

Let x = cos(σ − φ/2);
∫
D

Tr(dξ ∧ ∗dξ) = kφ

2
< Y, Y >

[
tanh(L/2)

]2k

−k

2
< Y, Y >

[∫ 1

cos(φ/2)

(x

l
−

√
(
x

l
)2 − 1

)2k dx√
1 − x2

−
∫ cos(φ/2)

1

(x

l
−

√
(
x

l
)2 − 1

)2k dx√
1 − x2

]

= < Y, Y >
kφ

2

[
tanh(L/2)

]2k − k < Y, Y >

×
∫ 1

cos(φ/2)

(x

l
−

√
(
x

l
)2 − 1

)2k dx√
1 − x2

. (22)

Consider a more specific geodesic triangle, the triangle with two sides of equal length
L. This means σ is fixed on those two sides and the third side is determined by Coxeter’s
equation (20), where (ρ, σ ) are the polar coordinates as defined above. By (14) we have

ξ(ρ, σ ) = Y (exp u(ρ))k cos kσ,

where in the notation of (8), u = tanh(ρ/2) in the case of a hyperbolic metric.
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We recall from (17) that
∫

�
Tr(dξ ∧ ∗dξ) =

∫
C1

Tr(ξ ∧ ∗dξ) −
∫
D

Tr(dξ ∧ ∗dξ)

= k < Y, Y >

∫ 1

cos(φ/2)

(
x

l
−

√
(
x

l
)2 − 1 )2k dx√

1 − x2
. (23)

We will compute this integral in Appendix A.
We denote the integral (23) by k < Y, Y > h(φ) because although it depends on two

parameters φ and L, there is a relation between these two. We can see this as follows.
Assume the length of γ3 is fixed (since γ3 will be glued to the boundary of a Riemann
surface); denote this length by b. We have

cosh2 L = sinh2 b

2(cosh b − 1)
+ (cosh b − 1)

2

(1 + cos φ)2

1 − cos2 φ

2(cosh b − cos φ)(cosh b − 1)(cos φ + 1)

2(cosh b − 1)(1 − cos2 φ)

= cosh b − cos φ

1 − cos φ
. (24)

This is the relation between φ and L once b is fixed.
If τ(L) = tanh L/2, then the relation between τ(L) and φ is

τ 2(φ) = τ 2(L(φ)) =
√

cosh b−cos φ
1−cos φ

− 1√
cosh b−cos φ

1−cos φ
+ 1

; (25)

thus h is a function of the top angle φ only.
Thus from (23) we have

< dξ, dξ >= k < Y, Y > h(φ). (26)

If we choose an orthonormal basis e1, e2, · · · , en for Lie(G), then the volume ele-
ment of this moduli space using the metric � is

√
det�, and

det� = (kh(φ))n, using (26),

where n is the dimension of Lie(G) i.e. g.

2.3. Euclidean metric on the geodesic triangle. The only smooth constant curvature
metric on P \ D for which the boundary is a geodesic is the Euclidean metric. For the
geodesic triangle � equipped with the Euclidean metric, we get

u =
∫ ρ dρ

ρ
= ln ρ

so τ = ρ and

ξ = Yρk cos kσ.
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The geodesic γ3 is given by

ρ cos(σ − φ/2) = L

so we have ∫
C1

Tr(ξ ∧ ∗dξ) = π

2
< Y, Y > L2k, (27)

and from (16) and (18),∫
D

Tr(dξ ∧ ∗dξ) = π

2
< Y, Y > L2k − k

2
< Y, Y >

∫
ρ cos(σ−φ/2)=L

ρ2kdσ

= π

2
< Y, Y > L2k − k < Y, Y > L2k

∫ φ/2

0
sec2k(σ )dσ. (28)

Thus the norm
∫
D Tr(dξ ∧∗dξ) is given by k < Y, Y > h(φ) for an appropriate function

h(φ) which depends on the angle φ and on the choice of Euclidean metric.

2.4. Spherical metric on the geodesic triangle. For a spherical metric on the geodesic
triangle, we get

u =
∫ ρ dx

sin x
= ln tan(ρ/2) (29)

so τ = tan(ρ/2). We then get that∫
C1

Tr(ξ ∧ ∗dξ) = π

2
< Y, Y > (tan(L/2))2k. (30)

Hence we get that
∫
D

Tr(dξ ∧ ∗dξ) =< Y, Y >

{
π

2
(tan L/2)2k − k

2

∫
γ3

(tan ρ/2)2kdσ

}
. (31)

Here, γ3 is the segment of the great circle connecting the points x1 = (ρ = L, σ = 0)

and x2 = (ρ = L, σ = φ). The length of this geodesic and the angles at the ver-
tices x1, x2 can be determined using spherical trigonometry [Weis]. Thus when � is
equipped with a spherical metric of constant curvature, the norm < dξ, dξ > is given
by k < Y, Y > h(φ) for an appropriate function h(φ) which depends on φ and on the
choice of spherical metric.

2.5. � is the connected sum of a Riemann surface with P . To consider the volume of
the moduli space of the connected sum of a Riemann surface with P , first, let us examine
the following lemmas:

Lemma 5. Let E be a Riemannian manifold with metric �. Let f : E → R be a smooth
function for which dfm �= 0 for any m ∈ E. Then

V ol(E) =
∫

R

V olf −1(t)

df (v(t))
dt,

where v(t) is the unit normal vector to f −1(t).
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Proof. The volume form on TmE is e∗
1 ∧ · · · ∧ e∗

n, where {ej } is an orthonormal basis of
tangent vectors, i.e. �(ej , ek) = δjk and e∗

i are the dual basis vectors for T ∗
mE for any

m ∈ E. Choose e1, · · · , en−1 ∈ Tm(f −1(t)) so e∗
1 ∧ · · · ∧ e∗

n−1 is the volume form on

Tm(f −1(t)). Then e∗
n = df

df (v(t))
since v(t) is the unit vector normal to f −1(t). Thus

V ol(E) =
∫

E

(e∗
1 ∧ · · · ∧ e∗

n−1) ∧ e∗
n

=
∫

E

(e∗
1 ∧ · · · ∧ e∗

n−1) ∧ df

df (v(t))

=
∫

t∈R

dt

∫
f −1(t)

(dvol)

df (v(t))

=
∫

R

V ol(f −1(t))

df (v(t))
dt.

�
Similarly, we have the following lemma,

Lemma 6. Let E be a Riemannian manifold with metric �, and suppose f : E → G is
a smooth map for which df has maximal rank at generic points in E. Then

V ol(E) =
∫

g∈G

V ol(f −1(g))

dg(∧N
j=1df (vj ))

dg,

where dg is the volume element given by a Riemannian metric on G and v1, · · · , vN are
unit normal vectors to f −1(g) with N =dim G.

Now let us return to our particular situation.1 We have a nonorientable surface �

which is the connected sum of a Riemann surface �1 with a nonorientable surface �2
(either one or two copies of the projective plane P ). Denote E1 = Hom(π1(�1), G),
where �1 is a Riemann surface of genus � with one boundary component, and E2 =
Hom(π1(�2), G), where in this section �2 = P with one disc removed. Here π1(�2) =
{x, y|x = y2} ∼= Z so Hom(π1(�2), G) ∼= G. Define maps fi : Ei → G for i = 1, 2
by sending a representation to its value on the loop around the boundary. Let

E = {(m1, m2) ∈ E1 × E2 | f1(m1) = f2(m2)}.
Now we use Lemma 6 with E2 ∼= G and let f : E → G = E2 be the map (m1, m2) 
→
m2. Notice that in this case the hypothesis of f having maximal rank is valid generically
because this reduces to df1 : T E1 → g being surjective, and it was proved by Goldman
[Go1] (Prop. 3.7) that the image of df1 at a point A = (a1, . . . , a�, b1, . . . , b�) ∈ E1 =
G2� is z(A)⊥ (the orthocomplement of the Lie algebra of the stabilizer of A under the
adjoint action), and z(A) = 0 for generic A.

We have

V ol(E) =
∫

G

V ol(f −1(g))

dg(∧j df (vj ))
dg.

1 For other approaches to measures on moduli spaces, see [Fine,Fo,Liu and BeSe,Se1,Se2,Se3].
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Note that the metric on E is π∗
1 h1 + π∗

2 h2, where h1 is the metric on E1 and h2 the
metric on E2 which are given by Eq. (26) i.e. (Haar measure) ×(kh(φ))n/2. Thus we
can choose an orthonormal basis {vj } in g and dg(∧j df (vj )) = 1. Thus we have
V ol(f −1(g)) = V ol(f −1

1 (g2))V ol(f −1
2 (g2)) because f −1(g) = f −1

1 (g2)× f −1
2 (g2).

It follows that

V ol(E) =
∫

g∈G

V ol(f −1
1 (g2))V ol(f −1

2 (g2))dg,

where our moduli space is M = E/G. Thus we have V ol(E) = V ol(M)V ol(G).
Notice that the moduli space of gauge equivalence classes of flat connections on

a Riemann surface with one boundary component about which the holonomy is con-
strained to take a fixed value (in other words the moduli space of parabolic bundles)
is a Kähler manifold (see for instance [AB]) so its symplectic volume (as specified by
Witten’s formula) is equal to its Riemannian volume (for a metric derived from any
metric on the Riemann surface). Hence our procedure will give the Riemannian volume
on the moduli space of gauge equivalence classes of flat connections on the connected
sum.

We know from [W] the volume formula [W](4.114) for a moduli space of flat con-
nections on a compact orientable surface �� of genus � with one boundary component:2

For s ∈ G, we define

M(��, s) = {(a1, . . . , a2�) ∈ G2� |
�∏

j=1

a2j−1a2j a
−1
2j−1a

−1
2j ∈ C(s)}/G

= {ρ ∈ Hom(π1(�� − D), G) | ρ([∂(�� − D)]) ∈ C(s)}/G, (32)

where C(s) is the conjugacy class of s. We also define

R(��, s) = {(a1, . . . , a2�) ∈ G2� |
�∏

j=1

a2j−1a2j a
−1
2j−1a

−1
2j = s}

= {ρ ∈ Hom(π1(�� − D), G) | ρ([∂(�� − D)]) = s} (33)

so that

M(��, s) = GR(��, s)/G.

It follows that

V olM(��, s) = V olR(��, s)
V olC(s)

V olG
. (34)

If s ∈ G, then Witten’s formula reads

V ol(M(��, s)) = C1

∑
α

1

(dimα)2�−1 χα(s)
√

F(s), (35)

where α runs over all isomorphism classes of irreducible representations of G, the rep-
resentation α has character χα , and the constant C1 is

C1 = �Z(G)V ol(G)2�−2+1

(2π)dimM(��,s)V ol(T )
(36)

2 In Sect. 3.1 we give a new proof of this formula.
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and

dimM(��, s) = (2� − 2) | G | + | G | − | T |,
where |G| denotes the dimension of G and |T | denotes the dimension of the maximal
torus T . Note also that F(s) is the Riemannian volume of the conjugacy class C(s)

through s as defined in [W](4.53)

v = V ol(G)

V ol(T )
v0F(s).

(See Chapter 7, [BGV].) The Liouville volume of C(s) is
√

F(s)volG/volT (37)

(see [AMW], Prop. 3.6.) Here v represents the measure on T/W obtained by pushing
down the Haar measure on G (under the natural map from a group element to its conju-
gacy class) and v0 represents the measure on T/W obtained by restricting the metric on
g to Lie(T ) and then identifying Lie(T ) with the tangent space to T/W . A more detailed
explanation of F(s) is given in the next section.

So (34) is equivalent to

V olM(��, s) = V olR(��, s)

√
F(s)

V olT
, (38)

and (35) is equivalent to

V olR(��, s) = C1V olT
∑
α

1

(dimα)2�−1 χα(s). (39)

Thus the volume of the moduli space of flat connections on the connected sum of a
Riemann surface with a projective plane is

V ol(R(�)) = V ol(R(���P ))

=
∫

s∈G

V ol(R(��, s))V ol(R(P, s)) ds. (40)

Denote by R the map G → G,

R : g 
→ g2. (41)

Weyl’s integral formula

|W |
∫

G

f (g)dg =
∫

T

[F(t)

∫
G

f (gtg−1)dg]dt

gives us that
∫

G

f (g)dg =
∫

T/W

F(s)f (s)
V ol(G)

V ol(T )
ds,

when f is conjugation invariant.
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Thus

V ol(R(�)) =
∫

G

C1V olT
∑
α

1

(dim(α))2�−1 χα(g)R∗(
√

det�dg)

= C1V ol(T )
∑
α

1

(dim(α))2�−1

∫
G

χα(g2)
√

det�dg.

The above is true because S2 − D − D is the double cover of P \ D; the space of flat
connections on S2 − D − D (modulo based gauge transformations) is isomorphic to G,
so we pull back the integral to G under the covering map. We get

V ol(R(�)) = C1V olT
∑
α

1

(dim(α))2�−1 fαV ol(G)(kh(φ))|G|/2

by using
∫

G

χα(g2)dg = fαV ol(G) (42)

(cf:[W] (2.70)) where fα = 1, −1, 0 depending on whether the representation α admits a
symmetric invariant bilinear form, an antisymmetric bilinear form, or no invariant bilin-
ear form at all. Here dim(α) is the dimension of the representation α, and its character
is denoted by χα .

We get

V ol(R(�)) = �Z(G)V ol(G)2�

(2π)(2�−1)|G|−|T | H(φ)
∑
α

fα

(dim(α))2�−1 ,

where H(φ) = (kh(φ))|G|/2 and k = π/φ. Here h is a real-valued function of the angle
φ which depends on the choice of metric on the Möbius strip.

We compare our result to Witten’s formula [W](4.93)

V ol(R(�)) = �Z(G)V ol(G)2�

(2π)(2�−1)|G|
∑
α

fα

(dim(α))2�−1 .

Our formula differs from Witten’s by a multiplicative factor of H(φ) (2π)|T |. The
factor (2π)|T | is due to Witten’s choice of a different normalization. The factor H(φ)

results from our choice of a metric on the nonorientable part of the surface (the projective
plane). Note Witten did not choose a metric on P . On the other hand our formula for
V ol(M) is a function of the angle φ for a fixed surface.

2.6. � is a connected sum of a Riemann surface with two projective planes. We know
from [W] the volume formula for a moduli space of flat connections on a compact orient-
able surface of genus � with two boundary components [W] (4.114) (where s1, s2 ∈ G

and the holonomies around the two boundary components are fixed at s1 and s2): in this
case Witten’s formula [W] (4.114) reads as follows:

V ol(M(��, s1, s2)) = C2

∑
α

1

(dim(α))2�
χα(s1)

√
F(s1)χα(s2)

√
F(s2), (43)



16 N.-K. Ho, L.C. Jeffrey

where the constant C2 is

�Z(G)V ol(G)2�

(2π)dimM(��,s1,s2)V ol(T )2
,

and

dimM(��, s1, s2) = (2� − 2) | G | +2 | G | −2 | T | .

Again we define

R(��, s1, s2) = {ρ ∈ Hom(π1(�� − D1 − D2), G) | ρ([∂D1] = s1, ρ([∂D2] = s2}.
Here we have chosen representatives [∂Dj ] for the elements of the fundamental group
represented by the loops around the j th boundary component, by connecting the base-
point to some point on the boundary. Thus

M(��, s1, s2) = (G × G)R(��, s1, s2)/G × G,

where (g1, g2) ∈ G × G acts on Hom(π1(�� − D1 − D2), G) so that if the value of
the representation of the loop around the j th boundary component is sj , then this value
becomes gj sj g

−1
j . Following (34) and (37) above, we have

V olM(��, s1, s2) = V olR(��, s1, s2)
V olC(s1)V olC(s2)

(V olG)2

= V olR(��, s1, s2)

√
F(s1)

√
F(s2)

(V olT )2 . (44)

Equivalently, Witten’s formula is

V ol(R(��, s1, s2)) = C2(V ol(T ))2
∑
α

1

(dim(α))2�
χα(s1)χα(s2).

Thus the volume of the moduli space of flat connections on the connected sum of a
Riemann surface with two projective planes (equivalently, the connected sum with one
Klein bottle) is

V ol(R(�)) = V ol(R(���P �P ))

=
∫

G×G

ds1ds2V ol(R(��, s1, s2))V ol(R(P, s1))V ol(R(P, s2)).

Let
√

det�1 and
√

det�2 denote the volume elements on the two copies of P \D respec-
tively. We have

V ol(R(�)) =
∫

G×G

V ol(R(��, g1, g2))R∗(
√

det �1dg1)R∗(
√

det �2dg2)

= C2(V olT )2
∑
α

1

(dim(α))2�

×
∫

G×G

χα(g1)χα(g2)R∗(
√

det�1dg1)R∗(
√

det�2dg2)

= C2(V olT )2
∑
α

1

(dim(α))2�

√
det�1

√
det�2

(∫
G

χα(g2)dg

)2

,(45)
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where R was defined by (41). We use Eq. (42) and thus the volume becomes

V ol(R(�)) = �Z(G)V ol(G)2�−1

(2π)(2�)|G|−2|T |
∑
α

1

(dim(α))2l
f 2

α H(φ1)H(φ2)V ol(G)2,

where H(φi) = (kih(φi))
|G|/2, the angles φ1 and φ2 are the top angles of the two tri-

angles respectively, ki = π/φi , and fα is defined as in Sect. 2.5. Note that f 2
α = 1 if

α = ᾱ and f 2
α = 0 otherwise. We get the final formula

V ol(R(�)) = �Z(G)V ol(G)2�+1

(2π)(2�)|G|−2|T | H(φ1)H(φ2)
∑
α=ᾱ

1

(dim(α))2�
.

We compare this with Witten’s formula [W](4.77)

V ol(R(�)) = �Z(G)V ol(G)2�+1

(2π)(2�)|G|
∑
α=ᾱ

1

(dim(α))2�
.

Our formula differs from Witten’s formula by a multiplicative factor of H(φ1) H(φ2)

(2π)2(|T |). The factor (2π)2(|T |) is due to Witten’s choice of a different normalization.
The factors H(φi) result from our choice of a metric on the two projective planes.

Notice that there are two factors H(φi) (in contrast to the case when the manifold is
a connected sum of a Riemann surface with one copy of P , when there is only one such
factor). Thus V ol(M) is a function of the angles φ1, φ2 for a fixed surface �l .

We may summarize our conclusions as follows. When we take the connected sum of
a Riemann surface with a real projective plane formed by identifying two sides of length
L of a geodesic triangle with polar angle φ, the volume we have obtained is a function
of the angle φ since the length L of the side of the triangle is determined once the length
of the third edge of the triangle is given. A pair (L, φ) gives a conformal structure on the
triangle. Once we fix a conformal structure, we obtain a volume for the moduli space
determined by this structure. The situation is similar for the connected sum of a Riemann
surface with two projective planes.

3. Witten’s Volume Formula and Haar Measure

In this section, we will consider Witten’s volume formula for the moduli space of flat
connections on a 2-manifold, and give a new proof of these formulas using Haar mea-
sure. Notice that Witten did not give a proof exclusively using Haar measure to compute
the volume of the moduli space. Witten gave three arguments for the formula in [W]:

• In Sect. 2, Witten used results of Migdal [Mi] involving lattice gauge theories to
compute theYang-Mills partition function in two dimensions. Migdal’s result only
makes sense when the Yang-Mills partition function has been regularized, giving
a result which reduces to the volume of the moduli space when the regularization
parameter tends to 0.

• In Sect. 3, Witten deduced the result from the Verlinde formula, which is a formula
for the Riemann-Roch number of the prequantum line bundle of the moduli space
M of flat connections on a 2-manifold, RR(M, Lk). Since the cohomology class of
the symplectic form ω is the first Chern class of L, we may expect that the leading
order term in the Riemann-Roch number (as a polynomial in k) is kdim M/2V ol(M).
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• In Sect. 4, Witten characterized the volume of the moduli space using Reidemeister-
Ray-Singer torsion. He used the fact that Reidemeister torsion is multiplicative: If
M is the union of two submanifolds M1 and M2 with boundary N , glued along the
boundary, then

τ(M) = τ(M1)τ (M2)/τ(N),

where the torsion is viewed as a ratio of determinants of elliptic operators and
the above quotient makes sense in terms of the Mayer-Vietoris sequence which
computes the cohomology groups of M from those of M1, M2 and N .

Since the moduli space can be identified with the space of representations of a sur-
face group (in other words Hom(π1(�), G)/G) and a compact Lie group has a natural
Riemannian measure, the Haar measure, we can try to understand Witten’s formula for
the moduli space by pushing forward the Haar measure on G.3

We will use the following two facts to show our argument.
• Weyl’s integral formula (cf. [BD](4.1.11))

|W |
∫

G

f (g)dg =
∫

T

[F(t)

∫
G

f (gtg−1)dg]dt.

If f is conjugation invariant, the formula becomes

|W |
∫

G

f (g)dg =
∫

T

F (t)f (t)
V ol(G)

V ol(T )
dt

= |W |
∫

T/W

i∗(F (t))f (i−1(t))
V ol(G)

V ol(T )
i∗dt

= |W |
∫

s∈T/W

F(i−1(s))f (i−1(s))
V ol(G)

V ol(T )
ds.

Here i : T → T/W is the local isomorphism with i∗dt =: ds.
Thus we have ∫

G

f (g)dg =
∫

s∈T/W

F(s)f (s)
V ol(G)

V ol(T )
ds.

Recall that F(s) = F(i−1(s)) is the volume of the conjugacy class containing s as
defined for example in [W](4.53):

v = V ol(G)

V ol(T )
v0F(s),

where v represents the measure on T/W obtained by pushing down the Haar measure on
G (under the natural map from a group element to its conjugacy class) and v0 represents
the measure on T/W obtained by restricting the metric on g to Lie(T ) (which determines
a Haar measure on T ) and then identifying Lie(T ) with the tangent space to T/W . This
is as in the picture shown below:

T G

T/W

ui
�

�
��

�
�

��

3 For a related treatment of the role of Haar measure in determining volumes, see [AMM and AMW].
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with v = u∗dg, and v0 = i∗dt , where dg and dt are the Haar measures on G and T

respectively. Here i : T → T/W is the local isomorphism and u : G → T/W is the
map which maps g to its conjugacy class.

Explicitly we have

F(s) = detR(1 − Ad(s)) (46)

or for s = exp λ for λ ∈ Lie(T ) such that α(λ) �= 0 for any root α, we have

F(exp λ) =
∏
α>0

4 sin2 α(λ),

where we assume s ∈ T and view Ad(s) as an endomorphism of the orthocomplement
of the Lie algebra of T .

• Pushforward of volume under a surjective map: Suppose p : M → N is a surjective
map, f : N → R is a map, and VM and VN are volume forms for M and N respectively.
Then a function h characterizing the pushforward is defined by∫

M

f (p(x))VM =
∫

N

f (y)h(y)VN, where p∗(VM)(y) = h(y)VN .

Roughly speaking, h(y) = V ol(p−1(y)).

3.1. � is a one punctured Riemann surface of genus �+1. The following picture shows
the relations between the pushforwards.

[G × G]� G × G

G

T/W

R

π

Q
�

�
��

�
�

��

�

where Q(A1, · · · , A�, B1, · · · , B�) =
�∏

i=1

AiBiA
−1
i B−1

i ,

and R(g1, g2) = hg1g2g
−1
1 g−1

2 , (47)

where h ∈ G is the holonomy around the boundary.
The volume formula for a moduli space of flat connections on a compact orientable

surface with one boundary component [W](4.114) is as follows. For an element s ∈ G,

V ol(R(��, s)) = �Z(G)V ol(G)2�−1

(2π)(2�−1)|G|−|T |
∑
α

1

(dim(α))2�−1 χα(s). (48)

We want to show that Witten’s formula [W] (4.114) is the pushforward of the Haar
measure on G, i.e. prove Eq. (48) by induction on � (assuming that Eq. (48) is true for
genus �, we prove it for genus �+1). The induction hypothesis is valid for � = 0 because
by [W] (2.43) we have
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Fig. 3. Connected sum of �� with �1 − D

∑
α

(dim α)χα(s) = δ(s − 1) (49)

and the space R(�0, s) is one point if s = 1 and empty otherwise, so its volume is
δ(s − 1).

Consider a torus �1 with one boundary component. If �1 − D is glued to �� along
the boundary of D, we obtain ��+1. (See Fig. 3.)

Let h ∈ G be the holonomy around the boundary component of �1 (which becomes
the boundary component of ��+1 after gluing to ��). We have

V ol(R(��+1, h)) = V ol(R(����1, h))

=
∫

s∈G

V ol(R(��, s))V ol(R(�1, s, h))ds.

Also, by definition of the pushforward we have

R∗(dg1 ∧ dg2) = V ol(R(�1, s, h))ds. (50)

Thus we have

V ol(R(��+1, h))

=
∫

G

V ol(R(��, s))V ol(R(�1, s, h))ds

= �Z(G)V ol(G)2�

(2π)(2�−1)|G|−|T |
∑
α

1

(dim(α))2�−1

∫
G

χα(g)R∗(dg1 ∧ dg2)

= �Z(G)V ol(G)2�

(2π)(2�−1)|G|−|T |
∑
α

1

(dim(α))2�−1

∫
G×G

χα(hg1g2g
−1
1 g−1

2 )dg1dg2

= �Z(G)V ol(G)2�

(2π)(2�−1)|G|−|T |
∑
α

1

(dim(α))2�−1

∫
G

χα(hg1)χα(g−1
1 )dg1

V ol(G)

dim(α)
,
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where we have used4 (cf:[W](2.50))

∫
G

χα(AuBu−1)du = V ol(G)

dim(α)
χα(A)χα(B) (51)

and R was defined by (47).
Now we use (cf:[W](2.48))

∫
G

χα(hg)χα(g−1)dg = V ol(G)

dim(α)
χα(h) (52)

to get our final formula for h ∈ G,

V ol(R(��+1, h)) = �Z(G)V ol(G)2�+1

(2π)(2�+1)|G|−|T |
∑
α

χα(h)

(dim(α))2�+1 . (53)

We note that the final formula (53) is invariant under conjugation: V ol(M(��+1, h) =
V ol(M(��+1, khk−1) for any k ∈ G. So this formula only depends on the conjugacy
class of h.

Note that Witten [W] (4.114) gives the following formula for the volume for genus
� + 1 with h ∈ G,

V ol(R(��+1, h)) = �Z(G)V ol(G)2�+1

(2π)(2�+1)|G|−|T |
∑
α

χα(h)

(dim(α))2�+1 .

This agrees with our result.
Our calculation shows us that Witten’s formula (4.114) can be understood in terms

of the pushforward of Haar measure on G.

3.2. � is the connected sum of a Riemann surface of genus � with P . We know from
[W] the volume formula for a moduli space of flat connections on a compact orientable
surface with one boundary component [W](4.114), where s ∈ G and the holonomy
around the boundary is constrained to be s:

V ol(R(��, s)) = C1V olT
∑
α

1

(dim(α))2�−1 χα(s),

where the constant C1 is given by Eq. (36).

4 The equations [W] (2.43), (2.48), (2.50), (2.70) and (4.50) are standard facts from the representation
theory of compact Lie groups, and follow from the orthogonality relations. See also [BD].
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The following picture shows the relations between the pushforwards.

[G × G]� G

G

T/W

R

π

Q
�

�
��

�
�

��

�

where

Q(A1, · · · , A�, B1, · · · , B�) =
�∏

i=1

AiBiA
−1
i B−1

i (54)

and

R(g) = g2. (55)

By definition of the pushforward,

V ol(R(P, g))dg = R∗(dg). (56)

Thus

V ol(R(�)) = V ol(R(���P )) =
∫

s∈G

V ol(R(��, s))V ol(R(P, s))ds

=
∫

G

C1V olT
∑
α

1

(dim(α))2�−1 χα(g)R∗(dg)

= C1V olT
∑
α

1

(dim(α))2�−1

∫
G

χα(g2)dg

= �Z(G)V ol(G)2�

(2π)(2�−1)|G|−|T |
∑
α

1

(dim(α))2�−1 fα,

where we have used Eq. (42) and fα is defined in Sect. 2.5.
We get our final formula

V ol(R(�)) = �Z(G)V ol(G)2�

(2π)(2�−1)|G|−|T |
∑
α

fα

(dim(α))2�−1 .

Note that Witten’s formula [W](4.93) is

V ol(R(�)) = �Z(G)V ol(G)2�

(2π)(2�−1)|G|
∑
α

fα

(dim(α))2�−1 .

Our formula differs from Witten’s by a multiplicative factor of (2π)|T | because Witten
chose a different normalization.
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3.3. � is the connected sum of a Riemann surface of genus � with the Klein bottle.
Again, the following picture shows the relations between the pushforwards. (Note that
we will have a similar calculation if we use [W] (4.114) with two boundary components
instead. It will be like the calculation in Sect. 2.6.)

[G × G]� G × G

G

T/W

R

π

Q
�

�
��

�
�

��

�

where

Q(A1, · · · , A�, B1, · · · , B�) =
�∏

i=1

AiBiA
−1
i B−1

i

and R(g1, g2) = g1g2g
−1
1 g2. We have that the volume of the moduli space of flat con-

nections on a once punctured Klein bottle with holonomy around the puncture given by
s is (by definition of the pushforward)

V ol(R(K, g))dg = R∗(dg1 ∧ dg2). (57)

Moreover

V ol(R(�)) = V ol(R(���K)) =
∫

s∈G

dsV ol(R(��, s))V ol(R(K, s)).

Here we have used Lemma 6, which is again justified by [Go1] Prop. 3.7.
Thus we have

V ol(R(�)) =
∫

G

C1V olT
∑
α

1

(dim(α))2�−1 χα(g)R∗(dg1 ∧ dg2)

= C1V olT
∑
α

1

(dim(α))2�−1

∫
G×G

χα(g1g2g1g
−1
2 )dg1dg2

= �Z(G)V ol(G)2�

(2π)(2�−1)|G|−|T |
∑
α

1

(dim(α))2�−1

1

dim(α)

∫
G

χα(g1)χα(g1)dg1,

where we have used Eq. (51). Thus

V ol(R(�)) = �Z(G)V ol(G)2�+1

(2π)(2�−1)|G|−|T |
∑
α=ᾱ

1

(dim(α))2�
,
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where we have used (cf:[W](4.50))

∫
G

χα(g)χα(g)dg =
{

0 if α �= ᾱ

V ol(G) if α = ᾱ
. (58)

Thus our final formula is

V ol(R(�)) = �Z(G)V ol(G)2�+1

(2π)(2�−1)|G|−|T |
∑
α=ᾱ

1

(dim(α))2�
.

We compare our result with Witten’s formula [W](4.77):

V ol(R(�)) = �Z(G)V ol(G)2�+1

(2π)(2�)|G|
∑
α=ᾱ

1

(dim(α))2�
.

Our formula differs from Witten’s by a multiplicative factor of (2π)|G|+|T | because
Witten chose a different normalization.

This gives us a better idea of the geometric meaning of Witten’s volume [W]. It is
the integral of the measure derived from the symplectic volume on the moduli space
of flat connections on an orientable surface and the pushforward volume of the Haar
measure on products of G. Since the symplectic volume of the orientable part can also
be explained as the Haar measure of the Lie group model (as we did in Sect. 3.1), this
explains why the Haar measure on products of Lie groups gives Witten’s formula for the
volume on the moduli space of flat connections on a nonorientable 2-manifold.

Appendix A. Evaluation of an Integral

In this appendix we compute the integral (23). We assume k is a positive integer, so

∫ 1

cos(φ/2)

(
x

l
−

√
(
x

l
)2 − 1

)2k
dx√

1 − x2
= S1 + S2, (59)

where

S1 =
k∑

s=1

(2k)!

(2s)!(2k − 2s)!

∫ 1

cos(φ/2)

(x

l

)2s
((x

l

)2 − 1

)k−s
dx√

1 − x2
(60)

and

S2 = −
k−1∑
s=0

(2k)!

(2s + 1)!(2k − 2s − 1)!

∫ 1

cos φ/2
(
x

l
)2s+1

(
(
x

l
)2 − 1

)k−s−1

×
√

(
x

l
)2 − 1

dx√
1 − x2

. (61)
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We can use the trigonometric substitution x = cos θ for the integral (60). This yields

∫ 1

cos(φ/2)

k∑
s=1

(
x2s

l2s

) (
(
x

l
)2 − 1

)k−s dx√
1 − x2

=
∫ φ/2

0

k∑
s=1

(cos2 θ)s

l2s
(
cos2 θ

l2 − 1)k−sdθ

=
k∑

s=1

k−s∑
r=0

1

l2(s+r)
(−1)k−s−r (k − s)!

r!(k − s − r)!

∫ φ/2

0
(cos2 θ)s+rdθ

=
k∑

s=1

k−s∑
r=0

1

l2(s+r)

(k − s)!(−1)k−s−r

r!(k − s − r)!

[
1

2s+r

(2s + 2r)!

(s + r)!(s + r)!
φ/2

+ 1

22(s+r)−1

s+r−1∑
p=0

(2s + 2r)!

p!(2s + 2r − 2p)!

sin(s + r − p)φ

2(s + r − p)

]
.

The integral (61) can be obtained by the substitution y = √
1 − x2. Introducing

m2 = 1 − l2 and y = mz, this gives

∫ 1

cos(φ/2)

k−1∑
s=0

(2k)!

(2s + 1)!(2k − 2s − 1)!
(
x

l
)2s+1((

x

l
)2 − 1)k−s−1

√
(
x

l
)2 − 1

dx√
1 − x2

=
k−1∑
s=0

s∑
t=0

∫ (1/m) sin(φ/2)

0

1

l2k

s!

t!(s − t)!

×(−m2z2)tm2(k−s−1)(1 − z2)k−s−1m2
√

1 − z2dz.

Now let z = sin θ , and we obtain

k−1∑
s=0

s∑
t=0

t∑
r=0

m2(k−s+t)

(1 − m2)k
(−1)t+r s!

r!(t − r)!(s − t)!

∫ sin−1[(1/m) sin(φ/2)]

0
(cos2 θ)k−s+rdθ

=
k−1∑
s=0

s∑
t=0

t∑
r=0

m2(k−(s−t))

(1 − m2)k
(−1)t+r s!

r!(t − r)!(s − t)!

×
[

1

22(k−(s−r))

[2(k − s + r)]!

(k − s + r)!(k − s + r)!
θm

+ 1

22(k−s+r)−1

k−s+r−1∑
p=0

[2(k − s + r)]!

p!(2[k − s + r] − p)!

sin{2θm(k − s + r − p)}
2(k − s + r − p)

]
,

where θm = arcsin(1/m sin(φ/2)).
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