2022/5/19 34. Continuous functions. Det Consider J: ACR"->R". XOEA. We say f is continuous at the if 42 OCGE.OC34. 1x-xoll < S. x EA. imply 11fas - fasul < E. i. R. lim f(x) exists and equals f(x.). If I is cont. at every xo E A, then we say f is continuous (on A). 1 8-2 411 $\mathbf{\Lambda}$

Hemark, (Sequential Maracher 2ation of Continuity)

$$f \text{ cont. at } = 4$$
 $\forall \text{ seg. } x_k \ \in A$ $s.t. \lim_{k \to \infty} x_k = x_0$
we have $\lim_{k \to \infty} f(x_k) = f(x_0)$.

$$\frac{Cheoren!}{Consider f: A \subset IR^{n} \rightarrow IR^{m}} Constitution} \left(Constitution f: A \subset IR^{n} \rightarrow IR^{m}. The followings are equivalent.
(a) f is continuous (on A)
(b) f-1(W) is open (in A) for any open set U.
(c) f-1(V) is closed (in A) for any closed set V.
(d) f(W) $\subset \overline{f(W)}$ for any $W \subset A$.
(e) $\forall x_{0} \in A$. $\forall seg. \frac{1}{2}x_{k}$ in A converging to x_{0} .
we have $\lim_{k \to 0} \frac{1}{2}(k_{0}) = \frac{1}{2}(k_{0})$.
 $pf. (a) \Rightarrow (b)$. Given open set $U \subset IR^{m}$.
The case $f^{-1}(W) = \phi$ is obvious.
Consider $f^{-1}(W) \neq \phi$. Given $x \in f^{-1}(W)$ i.e. $\frac{1}{2}(w) \in U$.$$

Choose d>0 s.t. $f(B_{\delta}(x)) \subset B_{\epsilon}(f(x)) \subset U$ $\Rightarrow B_{\delta}(x) \subset f'(B_{\epsilon}(f(x))) \subset f'(u).$: f'(u) is open. (b) => (c). Criven closed set VCIA. $f'(v) = f'(R'' \setminus V^{c}) = f'(R'') \setminus f'(v^{c})$ = A \ f (ve) is closed (in A). open (c) ⇒ (d). Given WCA. f(w) is closed => f'(f(w)) is closed $W \subset f^{\dagger}(f(w)) \subset f^{\dagger}(\overline{f(w)})$ =) W c f (f(w)) since f (f(w)) i closed $\Rightarrow f(\overline{w}) \subset \overline{f(w)}$

(d)
$$\Rightarrow$$
 (e). Suppose not.
i.e. $\exists x_0 \in A$. $\exists s_{R_g}$. $\{x_k\}$ conv. to x_0 but $f(x_k)$
dues not conv. to $f(x_0)$.
 $\Rightarrow \exists E > 0$ s.t. $\forall N \in iN$. $f(x_n) \notin B_g(f(x_0))$ for some new
 $\Rightarrow \exists mbsel. \{f(x_n_k)\}_{k=1}^{\infty}$ s.t. $f(x_{n_k}) \notin B_g(f(x_0)) \forall k$.
det $W = \{x_{n_k}\}_{k=1}^{\infty}$ $\Rightarrow x_{n_k} \Rightarrow x_0$ as $k > 00$ & $x_0 \in W$.
 $\Rightarrow f(x_0) \in f(W) \subset f(W) = \{f(x_{n_k})\}_{k=1}^{\infty}$ $\xrightarrow{\mathcal{H}}$.
(e) $\Rightarrow (a)$, by Remark on seguential characterization
of continuity.
QED

$$\frac{Example}{f(x,y)} = \frac{x \log y}{\sqrt{x^2 + (y+1)^2}} \qquad (x,y) \neq (0,1)$$

$$f(x,y) = \frac{x \log y}{\sqrt{x^2 + (y+1)^2}} \qquad (0,0)$$

$$f(x,y) = \frac{1}{\sqrt{x^2 + (y+1)^2}} \qquad (0,0)$$

$$f(x,y) = \frac{1}{\sqrt{x^2 + (y+1)^2}} \qquad (0,1) \stackrel{?}{\Rightarrow} \qquad (x,y) \rightarrow (0,1) \stackrel{(\Rightarrow)}{\Rightarrow} \qquad (x,y) \rightarrow (0,1) \stackrel{(a)}{\Rightarrow} \qquad (x,y) \rightarrow (x,y) \rightarrow (x,y)$$

Theorem 2. Continuous functions map compact sets to compact sets.

pf. Given cont. function f: KCR -> 1R". K is Compact. Given any open cover {Ux} for f(K). : 1 is continuous. . f'(Ua) is open VXEI. => {f'(ux)} is an open cover for K. ·/ K is compact. : = finite subcover ? f^(u,), -, f^(u,)?. $i.e. \quad K \subset \bigcup f'(u_i).$ → f(K) c () U; , zu, -, un z is a finite subcover for fik). .: f(k) is compact.

Theorem 4. (Extreme Value Theorem)
Suppose
$$K \subset \mathbb{R}^n$$
 is compact. $f: K \rightarrow \mathbb{R}$ is
Continuous. Then inf f. sup f are finite and
 $\exists x, \overline{x} \in K$ st.
 $f(\underline{x}) = \inf f$. $f(\overline{x}) = \sup f$
 K

 \Rightarrow f(x_k) conv. to M as $k \rightarrow \infty$! K is seg. compact. (note: compact = compact) .: } Rkg has conv. mbseg. } Rk; w/ limit & EK. and f(xx;) -> M as j -> as ! I is continuous, $\therefore f(\mathfrak{P}_{K_{1}}) \rightarrow f(\bar{x}) \text{ as } \tilde{y} \rightarrow \omega.$ $\Rightarrow f(\bar{x}) = M = \sup f$, by uniquenes of limit. The proof for existence of 2 CK s.t. f(x) = inft is similar. QED