
ON THE BARYCENTER OF THE TENT MAP

KUO-CHANG CHEN AND XUN DONG

Abstract. It is well known that the average position or barycenter of generic
orbits for the standard tent map is 0.5. Periodic orbits are exceptional orbits

in the sense that most of them have barycenters different from 0.5. In this

paper we prove that for any positive integer n, there exist n distinct periodic
orbits for the standard tent map with the same barycenter. We also provide

some patterns of periodic orbits with the same barycenter.

1. Introduction

Let T : [0, 1]→ [0, 1] be the standard (full) tent map defined by T (x) = 1−|2x−1|
or

T (x) =
{

2x when x ∈ [0, 1
2 ]

2(1− x) when x ∈ [ 12 , 1].
This map is often introduced as one of the first examples of chaotic maps in typical
textbooks for dynamical systems. Its dynamics exhibit various features that are
commonly used to identify chaotic systems (see for instance [1]).

The n-th iterate of T is given by

Tn(x) =

{
2n
(
x− 2m

2n

)
when x ∈ [ 2m

2n ,
2m+1

2n ]

2n
( 2(m+1)

2n − x
)

when x ∈ [ 2m+1
2n , 2(m+1)

2n ]

for m ∈ {0, 1, · · · , 2n−1 − 1}. Fixed points of Tn, or n-periodic points of T , are
clearly of the form 2m

2n−1 or 2m
2n+1 . Given an n-periodic point x ∈ (0, 1), the average

x̄ =
1
n

(
x+ T (x) + · · ·+ Tn−1(x)

)
over its orbit is clearly the ergodic average (or time average) of T at x. It is also
called the barycenter, centroid, or mass center of the orbit. By ergodic average
of f ∈ L1[0, 1] at x ∈ [0, 1] we mean the limit value, if exists, of 1

n

∑n−1
k=0 f(T ix)

as n → ∞. Since the Lebesgue measure is an ergodic invariant measure, by the
Birkhoff ergodic theorem we know that for almost every x (in the sense of Lebesgue)
the mass center of its orbit is 0.5, same as the space average of T . It is not difficult
to prove that the set of all barycenters is [0, 2/3].

In [2] Misiurewicz noted that two cycles with mirror itineraries have the same
barycenter. He then raised an interesting question: Can there be three different
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cycles with the same barycenter? The answer is affirmative as can be easily verified
from the distinct orbits of

166
4095

,
202
4095

,
278
4095

,
418
4095

;

or the distinct orbits of
42

4097
,

54
4097

,
134
4097

,
190
4097

.

The orbits of
2250
16385

,
2266
16385

,
2446
16385

,
2490
16385

,
2510
16385

are also distinct but with the same barycenter, and so are the orbits of
1510
65535

,
1658
65535

,
2270
65535

,
3566
65535

,
3830
65535

,
3938
65535

.

As the denominator increases there are more and more examples of distinct cycles
with the same barycenter. The search for n distinct cycles with the same barycenter
becomes a challenging task when n is large. In this paper we prove that

Theorem 1.1. For any positive integer n, there exist n distinct cycles for the
standard tent map with the same barycenter.

As another incentive for our work, we remark here that for baker maps B(x) =
kx mod 1 (in particular the most standard case k = 2) one can very easily check
that many periodic orbits share the same barycenter, but intriguingly this is by no
means obvious for the tent map.

In section 2 we provide a sufficient condition for two periodic orbits to have the
same barycenter. Section 3 is devoted to the proof of Theorem 1.1. Some other
patterns of periodic orbits with the same barycenter are given in sections 4. Final
remarks and related problems are put into section 5.

2. Binary representations and the trace vector

In this section we introduce the concept of trace vector and establish a sufficient
condition for periodic orbits of certain type to have the same barycenter.

Throughout this and the next section we consider n-periodic points (n is not
necessarily the minimum period) of the form x = 2m

2n−1 , because other n-periodic

points 2m
2n+1 can be expressed in the same form 2m(2n−1)

22n−1 . The numerator 2m of x
can be uniquely written as

a12n−1 + a22n−2 + · · ·+ an−121

with ai ∈ {0, 1} for all i. For convenience we add the term an20 with coefficient
an = 0 and write the numerator as a vector in (Z/2Z)n:

2m = [a1, a2, · · · , an].

The tent map T acts on the vector as a cyclic left-shift when a1 = 0, while 0’s and
1’s are swapped after a cyclic left-shift when a1 = 1. More precisely, the tent map
induces a map T∗ from {0, 1, 2, · · · , 2n − 1} to {0, 2, 4, · · · , 2n−1 − 2} given by

T∗[a1, a2, · · · , an] =
{

[a2, a3, · · · , an, a1] if a1 = 0
[1− a2, 1− a3, · · · , 1− an, 1− a1] if a1 = 1.

= [a2, a3, · · · , an, a1] + [a1, a1, · · · , a1, a1]
= [a1, a2, · · · , an−1, an]EF,
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where E,F ∈Mn×n(Z/2Z):

E =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 , F = In +


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
1 1 · · · 1 1

 .
Note that the last entry of T∗[a1, a2, · · · , an] is always zero. Therefore,

T k
∗ [a1, a2, · · · , an]

= [a1, a2, · · · , an](EF )k

= [a1, a2, · · · , an]Ek(E1−kFEk−1)(E2−kFEk−2) · · · (E−1FE1)F
= [ak+1, · · · , an, a1, · · · , ak] + [ak, ak, · · · , ak].

The last identity holds because

[a1, a2, · · · , an]Ek = [ak+1, · · · , an, a1, · · · , ak]

and the collected effect of

(E1−kFEk−1)(E2−kFEk−2) · · · (E−1FE1)F

is adding a vector [c, c, · · · , c] to [ak+1, · · · , an, a1, · · · , ak]. Since the last entry of
T k
∗ [a1, a2, · · · , an] is zero, c must be equal to ak.

The orbit of x is encoded in the n by n matrix A(x) ∈Mn×n(Z/2Z):

A(x) =


a1, a2, · · · , an

T∗[a1, a2, · · · , an]
T 2
∗ [a1, a2, · · · , an]

...
Tn−1
∗ [a1, a2, · · · , an]



=


a1 a2 · · · an−1 an

a2 a3 · · · an a1

...
...

. . .
...

...
an a1 · · · an−2 an−1

+


an an · · · an

a1 a1 · · · a1

...
...

. . .
...

an−1 an−1 · · · an−1


=

[
α,E−1α, · · · , E1−nα

]
+ [Eα,Eα, · · · , Eα] ,

where α = [a1, a2, · · · , an]T . Let β = α+ Eα and

Ck = I + E−1 + · · ·+ E−k.

Then

E−kα+ Eα = (I + E−1 + · · ·+ E−k)(α+ Eα) = Ckβ.(2.1)

Therefore

A(x) = [β,C1β, · · · , Cn−1β] .

The last column of A(x) is zero. Since all entries of the matrix Cn−1 are 1, we
conclude that the number of 1’s in β must be even. Also note that the first column
β = α + Eα of A(x) is exactly the itinerary of x = 2m

2n−1 (this follows from the
definition of A(x)); that is, βi = χ[ 12 ,1](T i−1(x)) for each i.
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Note that 2m
2n−1 and 2k

2n−1 can not have the same itinerary unless m = k. Since
there are 2n−1 vectors of the form [a1, · · · , an−1, 0] and 2n−1 possible itineraries β
(which must have even number of 1’s), the correspondence between x = 2m

2n−1 and
β is necessarily bijective.

Let sj(β) = sj be the number of 1’s in the j-th column Cj−1β of A(x). We call

s(β) = (s1, s2, · · · , sn) ∈ Zn

the trace vector of x. If follows easily from (2.1) that sn = 0 and each sj is even.
Since

Cn−k−1β = E1−(n−k)α+ Eα = E1+kα+ Eα = Ek(Eα+ E1−kα) = EkCk−1β

we also have

sn−k = sk for k = 1, · · · , n− 1.(2.2)

WriteA(x) = [bij ] with indices i and j ranging from 1 to n, then bij =
∑j−1

r=0 βi+r ∈
Z/2Z. It is understood that the subindex i+ r of each βi+r is in Z/nZ. The orbit
of x has barycenter

x̄ =
1

(2n − 1)n

n∑
i,j=1

2n−jbij =
1

(2n − 1)n

n∑
j=1

2n−jsj .(2.3)

Thus for two n-periodic points x = 2m
2n−1 and y = 2k

2n−1 , a sufficient condition for
x̄ = ȳ is that they have the same trace vector.

Let β and γ denote respectively the itineraries of n-periodic points x and y. As
explained earlier, x = y if and only if β = γ. It follows that x and y are in the
same cycle if and only if γ = Ekβ for some k, in which case we will say that β and
γ are equivalent.

Let

D =


0 · · · 0 0 1
0 · · · 0 1 0
...

...
0 1 0 · · · 0
1 0 0 · · · 0

 .
Then D and E generate a dihedral group of order 2n with relations

En = D2 = (ED)2 = In.(2.4)

Observe that
CkE = ECk, CkD = DEkCk

for all k.
If γ = Eβ, then Ckγ = CkEβ = ECkβ for all k. Thus A(x) and A(y) have the

same trace vector as expected.
If γ = Dβ, then Ckγ = CkDβ = DEkCkβ for all k. Thus A(x) and A(y) have

the same trace vector. Note that γ is the mirror image of β. In this case x and
y belong to different cycles except when β = DEkβ for some k. For instance, the
point x = 26

127 has itinerary

β = [0, 0, 1, 0, 1, 1, 1]T .

The itinerary of y = 88
127 is β reversed. These two points x and y belong to two

different cycles with the same barycenter 72
127 .
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One might attempt to look for other permutation matrices P with the nice
property that s(β) = s(Pβ) for all itineraries β. Unfortunately there are no such
permutation matrices other than those in the dihedral group generated by D and
E. In order to find three or more different cycles with the same barycenter, we
need more explicit constructions, as to be shown in the next section.

3. A family of cycles with the same barycenter

In order to construct n distinct cycles with the same barycenter, we will find
n (8n)-periodic points such that their itineraries β(1), · · ·β(n) have the same trace
vector, yet β(i) and β(j) are non-equivalent when i 6= j. The “n” in this section is
not to be confused with the “n” in the previous section, which is replaced by “8n”
here for convenience.

For each 1 ≤ m ≤ n, let

β(m) = [β(m)
1 , β

(m)
2 , · · · , β(m)

8n ]T(3.1)

be defined by the following conditions

β
(m)
i + β

(m)
4n+i = 1 for i = 1, 2, · · · , 4n,

β
(m)
i =

{
1 if i ∈ {2m, 2m+ 1}
0 if i ∈ {1, 2, · · · , 4n} \ {2m, 2m+ 1}.

It is easy to see that these conditions uniquely determine β(m). It is understood
that the subindex i of each β(m)

i is in Z/8nZ. For instance, when n = 3, the β(m)’s
are

β(1) = [0, 1 | 1, 0 | 0, 0 | 0, 0 | 0, 0 | 0, 0 | 1, 0 | 0, 1 | 1, 1 | 1, 1 | 1, 1 | 1, 1]T

β(2) = [0, 0 | 0, 1 | 1, 0 | 0, 0 | 0, 0 | 0, 0 | 1, 1 | 1, 0 | 0, 1 | 1, 1 | 1, 1 | 1, 1]T(3.2)

β(3) = [0, 0 | 0, 0 | 0, 1 | 1, 0 | 0, 0 | 0, 0 | 1, 1 | 1, 1 | 1, 0 | 0, 1 | 1, 1 | 1, 1]T

The vertical bars are inserted to the vectors above to improve readability.
By (2.2), we only need to show that sk(β(m)) is independent of m for 1 ≤ k ≤ 4n

because of the symmetry of the trace vector.
If k is odd, then for each i ∈ Z/8nZ we have

b
(m)
i,k + b

(m)
4n+i,k =

k−1∑
j=0

β
(m)
i+j +

k−1∑
j=0

β
(m)
4n+i+j = k ≡ 1 mod 2.

Hence there are as many 1’s as 0’s in [b(m)
1,k b

(m)
2,k · · · b

(m)
8n,k]T , and therefore sk(β(m)) =

4n when k is odd.
Next we note that

b
(m)
i,4n =

4n−1∑
j=0

β
(m)
i+j = b

(m)
i+1,4n + β

(m)
i − β(m)

4n+i = b
(m)
i+1,4n + 1.

Hence there are as many 1’s as 0’s in [b(m)
1,4n b

(m)
2,4n · · · b

(m)
8n,4n]T , and therefore s4n(β(m)) =

4n.
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We now assume that k = 2r where 1 ≤ r < 2n. Note that

β
(m)
2i−1 + β

(m)
2i =

{
1 when i ∈ {m,m+ 1, 2n+m, 2n+m+ 1},
0 otherwise,

β
(m)
2i + β

(m)
2i+1 =

{
1 when i ∈ {0, 2n},
0 otherwise.

It follows that

b
(m)
2i−1,2r =

r−1∑
j=0

(
β

(m)
2i+2j−1 + β

(m)
2i+2j

)
=

{
1 if i ∈ {m+ 1,m− r + 1, 2n+m+ 1, 2n+m− r + 1},
0 otherwise,

and

b
(m)
2i,2r =

r−1∑
j=0

(
β

(m)
2i+2j + β

(m)
2i+2j+1

)
=

{
1 if either {0, 1} or {4n, 4n+ 1} ⊂ {2i, 2i+ 1, · · · , 2i+ 2r − 1},
0 otherwise.

There are four 1’s in the first case and 2r 1’s in the second case. Hence sk(β(m)) =
2r + 4 = k + 4.

It remains to show that if i 6= j then β(i) and β(j) are not equivalent; that is,
β(i) can not be obtained from β(j) by a cyclic rotation. This follows from the fact
that if we write β(m) around a circle, then the length of the longest substring of
consecutive 0’s is 4n−2m−1. Thus the β(m)’s are itineraries of points in n distinct
cycles with the same barycenter. The proof of Theorem 1.1 is now concluded.

Remark 3.1. It is easy to see that the definition of β(m) can be extended to all
1 ≤ m < 2n. In fact, all these 2n − 1 itineraries are pairwise non-equivalent.
Moreover there is another itinerary with the same trace vector, making a total of
2n distinct (8n)-cycles with the same barycenter.

Replacing 2n by n, we may construct n distinct (4n)-cycles with the same
barycenter as follows. For each 0 ≤ m < n, let

γ(m) = [γ(m)
1 , γ

(m)
2 , · · · , γ(m)

4n ]T ∈ (Z/2Z)4n(3.3)

where γ(m)
i + γ

(m)
2n+i = 1 for i = 1, 2, · · · , 2n. For m = 0 define

γ
(0)
i =

{
1 if i ∈ {1, 3}
0 if i ∈ {1, 2, · · · , 2n} \ {1, 3}

and for 1 ≤ m < n define

γ
(m)
i =

{
1 if i ∈ {2m, 2m+ 1}
0 if i ∈ {1, 2, · · · , 2n} \ {2m, 2m+ 1}.

Then a similar calculation shows that s(γ(m)) is independent of m, with s2r−1 =
s2n = 2n and s2r = 2r+4 for r = 1, · · · , n. It is also not hard to verify that if i 6= j
then γ(i) and γ(j) are not equivalent. Therefore we obtain n distinct (4n)-cycles
with the same barycenter.
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Remark 3.2. Let x(m) denote the (4n)-periodic point with itinerary γ(m) for 0 ≤
m < n. Then it can be calculated that

x(0) =
2

3(22n + 1)
+

3 · 24n−2 − 22n−2

24n − 1
;

x(m) =
2

3(22n + 1)
+

22n−2m

22n − 1
for m = 1, · · · , n− 1.

Using equations (2.2), (2.3) and the common trace vector of x(m)’s, one can
calculate the common mass center of their orbits:

x̄ =
1

4n(24n − 1)

22ns2n +
4n−1∑

j=1
j is odd

24n−jsj +
2n−2∑

j=2
j is even

24n−jsj +
4n−2∑

j=2n+2
j is even

24n−jsj


=

1
4n(24n − 1)

[
2n

(
22n +

2n−1∑
r=0

22r+1

)

+
n−1∑
r=1

(
(2r + 4)24n−2r + (2n− 2r + 4)22n−2r

)]

=
1
3

+
5

9n
− 13

9n(22n + 1)
− 2
n(24n − 1)

.

If we replace n by 2n in these formulas, then we obtain the (8n)-periodic points
with itineraries β(m) and the common barycenter of their orbits.

4. Further examples of cycles with the same barycenter

There are several patterns of itineraries that can be suitably permuted without
altering their trace vectors. We will discuss one of them to which β(1) and γ(1) in
section 3 belong.

To simplify our notations, we will denote itineraries by row vectors instead of
column vectors in this section. For any string u = [u1, · · · , uk] consisting of 0’s and
1’s, u−1 denotes the string obtained by reversing the order of ui’s in u, and |u|
denotes the sum of ui’s over Z/2Z. All itineraries are treated as cyclic vectors.

Proposition 4.1. Let β be an itinerary of the form

β = [0,p, 0,q, 1,p−1, 1, r]

where p = [p1, · · · , pj ], q = [q1, · · · , qk] and r = [r1, · · · , rk] are subject to condi-
tions

q = q−1, r = r−1, |q| = |r|.(4.1)

Then the trace vector of β does not change if p and p−1 are switched; that is,
s(β) = s(γ), where

γ = [0,p−1, 0,q, 1,p, 1, r].

Note that the presence of the two 0’s and 1’s implies that γ is in general not in
the orbit of β under the action of the dihedral group (2.4). We will call the two 0’s
and 1’s the four corners of β and γ.
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Proof. Let n = 2j + 2k+ 4 denote the length of β. By (2.2), we only need to show
that sl(β) = sl(γ) for 1 ≤ l ≤ n/2. Let us fix such an l. Define

β′ = [0,p−1, 0, r, 1,p, 1,q], γ′ = [0,p, 0, r, 1,p−1, 1,q],
β′′ = [1,p, 1,q, 0,p−1, 0, r], γ′′ = [1,p−1, 1,q, 0,p, 0, r],
β′′′ = [1,p−1, 1, r, 0,p, 0,q], γ′′′ = [1,p, 1, r, 0,p−1, 0,q].

Then β′, β′′ and β′′′ are in the same orbit of β under the action of the dihedral
group (2.4), so they all have the same trace vector. Similarly γ′, γ′′ and γ′′′ are in
the same orbit of γ, so they all have the same trace vector as well. For a cyclic
vector x = [x1, · · · , xn], let x̂ = [xi, · · · , xi+l−1] where it is understood that the
subindices are in Z/nZ. Since l ≤ n/2, the substring β̂ covers at most two corners
of β.

Case 1: β̂ covers zero corners. If β̂ covers nothing of p and p−1, then note
that γ,γ′,γ′′ and γ′′′ are obtained from β,β′,β′′ and β′′′ by switching p and p−1.
If β̂ covers nothing of q and r, then note that γ,γ′,γ′′ and γ′′′ are obtained from
β′,β,β′′′ and β′′ by switching q and r. In either case we have {|β̂|, |β̂′|, |β̂′′|, |β̂′′′|}
and {|γ̂|, |γ̂′|, |γ̂′′|, |γ̂′′′|} are the same as multisets.

Case 2: β̂ covers one corner. Notice that if we switch 0 and 1 in the four corners,
then β becomes β′′ and β′ becomes β′′′. Therefore as multisets {|β̂|, |β̂′|, |β̂′′|, |β̂′′′|} =
{0, 0, 1, 1}. For similar reason we also have {|γ̂|, |γ̂′|, |γ̂′′|, |γ̂′′′|} = {0, 0, 1, 1}.

Case 3: β̂ covers two corners. The argument here is similar to Case 1. If β̂
covers a complete p (or p−1), then it covers nothing of p−1 (or p) since l ≤ n/2. In
this case switch p and p−1. If β̂ covers a complete q (or r), then it covers nothing
of r (or q). In this case switch q and r. Since |p−1| = |p| and |q| = |r|, in either
case we have {|β̂|, |β̂′|, |β̂′′|, |β̂′′′|} = {|γ̂|, |γ̂′|, |γ̂′′|, |γ̂′′′|}.

Now let i run through {1, · · · , n}, then we have 4sl(β) = 4sl(γ). �

Remark 4.2. Same arguments can be applied to itineraries of the form

β = [0,p, 1,q, 0,p−1, 1, r]

where p = [p1, · · · , pj ], q = [q1, · · · , qk] and r = [r1, · · · , rk] are subject to condi-
tions (4.1).

Example 4.3. Both the β(1) in (3.1) and γ(1) in (3.3) have the structure described
in Proposition 4.1. For instance, the β(1) in (3.2) as a cyclic vector can be written

β(1) = [0, 1, 0︸︷︷︸
p

, 0, 1, 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
q

, 1, 0, 1︸︷︷︸
p−1

, 1, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
r

].

By Proposition 4.1, the itinerary

β(0) = [0, 0, 1︸︷︷︸
p−1

, 0, 1, 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
q

, 1, 1, 0︸︷︷︸
p

, 1, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
r

]

has the same trace vector as β(1). Their trace vector is

(12, 6, 12, 8, 12, 10, 12, 12, 12, 14, 12, 12, 12, 14, 12, 12, 12, 10, 12, 8, 12, 6, 12, 0).

Proposition 4.1 also gives another reason why the γ(0) and γ(1) in (3.3) have the
same trace vector.
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Example 4.4. Ideally, one would hope to have itineraries where Proposition 4.1
could be applied multiple times to produce many distinct cycles. Here we present
such an interesting example for the case n = 20. Unfortunately it is unclear how
to generalize it to general n. Let

β(0) = [0, 0, 0, 0, 1, 1, 0︸ ︷︷ ︸
p

, 0, 0, 0︸︷︷︸
q

, 1, 0, 1, 1, 0, 0, 0︸ ︷︷ ︸
p−1

, 1, 1, 1︸︷︷︸
r

]

After reversing pi’s and shifting the cyclic vector, the new itinerary β(1) also has
the pattern studied in Proposition 4.1. By repeating this process, we obtain

β(1) = [0, 1, 0, 0︸ ︷︷ ︸
p

, 0, 1, 1, 0, 1, 1︸ ︷︷ ︸
q

, 1, 0, 0, 1︸ ︷︷ ︸
p−1

, 1, 0, 0, 0, 0, 0︸ ︷︷ ︸
r

]

β(2) = [0, 1, 0︸︷︷︸
p

, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
q

, 1, 0, 1︸︷︷︸
p−1

, 1, 0, 1, 1, 1, 1, 0︸ ︷︷ ︸
r

]

β(3) = [0, 0, 0, 0, 1, 1︸ ︷︷ ︸
p

, 0, 1, 0, 1︸ ︷︷ ︸
q

, 1, 1, 1, 0, 0, 0︸ ︷︷ ︸
p−1

, 1, 0, 0, 0︸ ︷︷ ︸
r

].

We resume β(0) by reversing the pi’s in β(3). It is easy to see that these itineraries
and their mirror itineraries are all different, yielding eight distinct cycles with the
same barycenter. In the order of β(0), · · · , β(3) followed by their mirror itineraries,
they correspond respectively to

33658
1048575

,
504896
1048575

,
523412
1048575

,
39664

1048575
,

776224
1048575

,
17852

1048575
,

337916
1048575

,
125728
1048575

.

Their common trace vector is

(8, 8, 8, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 10, 10, 10, 8, 8, 8, 0),

and their common barycenter is 2170804
5242875 ≈ 0.414048.

Example 4.5. There are patterns of itineraries that allow many more distinct
cycles with the same barycenters than the one constructed in section 3. However
it is unclear how to generalize these patterns. The following itineraries along with
their mirror itineraries correspond 16 cycles of period 24 with the same barycenter.

β(0) = [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1]

β(1) = [0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1]

β(2) = [0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1]

β(3) = [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1]

β(4) = [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1]

β(5) = [0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1]

β(6) = [0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1]

β(7) = [0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1].

From β(0) to β(7), they are respectively itineraries of
183958

16777215
,

300446
16777215

,
309014

16777215
,

343334
16777215

,

398774
16777215

,
547438

16777215
,

596602
16777215

,
900526

16777215
.
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The mirror itineraries of β(0), · · · , β(7) correspond respectively to

13821568
16777215

,
15946304
16777215

,
13752896
16777215

,
13203776
16777215

,

14373056
16777215

,
15512608
16777215

,
12366112
16777215

,
15432544
16777215

.

Their common trace vector is

(12, 12, 10, 14, 12, 12, 12, 10, 14, 12, 12, 16, 12, 12, 14, 10, 12, 12, 12, 14, 10, 12, 12, 0),

and their common barycenter is 24897599
50331645 ≈ 0.494671.

Example 4.6. The criterion in section 2 for two distinct cycles to have the same
barycenter is sufficient but not necessary. For example, the fractions 5414

131071 and
10090
131071 are points of period 17 with itineraries

β = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1]
γ = [0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1].

Their trace vectors are respectively

s(β) = (10, 8, 8, 8, 10, 8, 6, 8, 8, 6, 8, 10, 8, 8, 8, 10, 0)
s(γ) = (10, 8, 8, 8, 6, 14, 8, 10, 10, 8, 14, 6, 8, 8, 8, 10, 0).

One can easily check that 1185588
2228207 ≈ 0.532082 is their common barycenter.

Example 4.7. Cycles of different lengths may have the same barycenter. For
instance, the orbit of 46

275 has length 20 and the orbit of 1158
7735 has length 24. One

can easily verify that their barycenters are both equal to 3
5 .

We have mentioned in section 1 that, by the Birkhoff ergodic theorem, the
barycenter of generic orbits is 1

2 , the space average or integral of the tent map.
Periodic orbits are exceptional but there are actually examples of cycles where the
barycenter is also 1

2 . For instance,

19
18564

,
17

14460
,

13
4820

,
151

55692

are all 24-periodic points and 1
2 is the common barycenter of their orbits.

5. Some Remarks and Related Problems

The discussions presented so far are focused on periodic points of the form 2m
2n−1 .

As we mentioned earlier, they are also applicable to periodic points of the form 2m
2n+1

because 2m
2n+1 = 2m(2n−1)

22n−1 . We say an n-cycle is of the first type if it is generated
by points of the form 2m

2n−1 and can’t be reduced to points of the form 2m
2n+1 , and it

is of the second type if otherwise. Two of the examples in the introduction are of
the second type.

Let c(n) denotes the maximum number of distinct first type n-cycles with the
same barycenter, and d(n) denotes the same number for second type n-cycles.
Exhaustive search by computer shows that c(n) and d(n) are
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n ≤ 6 7 8 9 10 11 12 13 14 15 16 17 18
c(n) 1 2 2 2 2 2 4 4 4 4 6 6 6
d(n) 1 2 2 2 2 2 4 4 5 4 4 4 8

n 19 20 21 22 23 24 25 26 27 28 29 30 31
c(n) 8 8 8 8 8 16 10 10 14 38 16 24 10
d(n) 4 8 8 6 8 10 8 10 14 12 16 24 10

Let e(n) be the maximum number of distinct n-cycles of either type with the
same barycenter. It turns out that e(n) = max{c(n), d(n)} for n ≤ 31. Also note
that in our notation n-cycles include all cycles whose lengths are divisors of n. If
we only consider cycles whose lengths are exactly n, then the values of c(n), d(n)
and e(n) remain the same for n ≤ 31. We don’t know if it is true for all n.

Another interesting question about cycles with the same barycenter is how fast
e(n) grows. From section 3 we know that e(4n) ≥ n. Is e(n) of order O(n) as n
goes to infinity? If so, what are the values of lim infn→∞

e(n)
n and lim supn→∞

e(n)
n ?

Intuitively e(n) grows faster on composite numbers because itineraries of n-cycles
with prime n seems to admit fewer possible trace-invariant permutations. Note
that the values of e(29) and e(31) are respectively less than half of e(28) and e(30).
Each of e(17) and e(19) is attained at only one example where not all of the distinct
cycles have the same trace vector. These observations suggest that e(n) grows much
slower on prime numbers.
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