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Coupon Coloring Of Some Classes Of Graphs∗

Mithra Remadevi†, Ragukumar Pandurangan‡

Abstract

Let G be a graph with no isolated vertices. A k-coupon coloring of G is an assignment of colors from
[k] = {1, 2, . . . , k} to the vertices of G such that the neighborhood of every vertex of G contains vertices
of all colors from [k]. The maximum k for which a k-coupon coloring exists is called the coupon coloring
number of G, and is denoted by χc(G). In this paper, we investigate the coupon coloring of graphs
generated by applying various unary operations on various graph classes.

1 Introduction

All graphs we considered are finite, simple and undirected. Let G = (V, E) be a graph with vertex set V (G)
and edge set E(G). The neighbourhood of the vertex x ∈ V (G) is the set of all vertices that are adjacent to
x. The degree of a vertex x in a graph is the number of vertices adjacent to x. The minimum degree of a
graph is denoted as δ(G). A pendant vertex is a vertex with degree 1 and a universal vertex is a vertex that
is adjacent to all other vertices of the graph. For standard graph terminology, we in general follow [1, 13].
Graph coloring is one of the important and fertile areas in the field of Graph Theory. Apart from various
coloring problems like list coloring, star coloring, acyclic coloring, Chen et al. [2] introduced coupon coloring
in the year 2015. Let G be a graph with no isolated vertices. A k-coupon coloring of G is an assignment of
colors from [k] = {1, 2, . . . , k} to the vertices of G such that the neighborhood of every vertex of G contains
vertices of all colors from [k]. The maximum k for which a k-coupon coloring exists is called the coupon
coloring number of G, and is denoted by χc(G) [2]. Clearly, χc(G) ≤ δ(G) for any graph G. An example
of coupon coloring is shown in Figure 1. In a k-coloring c, a vertex v is considered to be a bad vertex if its
neighborhood lacks vertices of every color from [k] and it is clear that there are no bad vertices in a coupon
coloring. A vertex v is said to have a property S if there are two different colors in the neighborhood of v

[10]. Let G be a graph with no isolated vertices. In [15], Cockayne et al. introduced the concept of the total
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Figure 1: An example of coupon coloring.

domatic number of graphs. A subset S of the vertex set V (G) of a graph G is a total dominating set if every
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vertex of G is adjacent to at least one vertex from S. The maximum number of disjoint total dominating sets
is called the total domatic number. In coupon coloring, every color class must be a total dominating set in
the graph. Thus, the coupon coloring number is also referred to as the total domatic number [8]. The coupon
coloring numbers of wheels, cycles, unicyclic and bicyclic graphs, complete graphs, and complete k-partite
graphs were determined by Shi et al. [10]. Additionally, coupon coloring has been examined in [12, 3] and [8].
The coupon coloring number of a few binary products, including the lexicographic and Cartesian products is
studied in [6, 11, 9]. Also, in [16], the authors have demonstrated that for every k ≥ 3, it is NP-complete to
decide whether dt(G) ≥ k, where G is a split graph. Considering the literature survey on coupon coloring,
is it possible to find the coupon coloring number for other graph classes, as well as for unary operations in
graphs? This motivated us to explore the coupon coloring of graphs generated by applying various unary
operations on them.

In Section 2, we explore the coupon coloring number for friendship graphs and split graphs, and in Section
3, we examine the impact of coupon coloring after unary operations on graphs.

2 Coupon Coloring Number of Split Graphs

The following observation and lemma will be helpful to prove our main results.

Observation 1 Let G be a graph having a pendant vertex. Then χc(G) = 1.

Lemma 1 ([10]) Let G be a cycle on n vertices. Then

χc(G) =

{

2 if n ≡ 0 (mod4),
1 otherwise.

Definition 1 A split graph is one whose vertex set can be partitioned as the disjoint union of an independent
set and a clique [7].

Definition 2 A complete split graph CS(n, α), is a graph on n vertices consisting of a clique on n − α

vertices and an independent set on the remaining α(1 ≤ α ≤ n−1) vertices in which each vertex of the clique
is adjacent to each vertex of the independent set [5].

Theorem 1 Let G = CS(m + n, n) be a complete split graph having m vertices in the clique and n vertices
in the independent set. Then

χc(G) =

{

bm+n
2

c m ≥ n,

m m < n.

Proof. Let G = CS(m + n, n) be a complete split graph having m vertices in the clique and n vertices in
the independent set. Let {v1, v2, . . . , vm} be the vertices in the clique and {vm+1, vm+2 , . . . , vm+n} be the
vertices in the independent part.

Case 1: m ≥ n. Since each color should appear atleast twice it follows that χc(G) ≤ bm+n
2

c. Now we
prove χc(G) ≥ bm+n

2
c by providing a bm+n

2
c-coupon coloring. Define c : V (G) → [bm+n

2
c] by

c(vi) = i for i = 1, 2, . . . , b
m + n

2
c

and

c(vbm+n

2
c+i) = i for i = 1, 2, . . . , b

m + n

2
c.

The remaining vertices can be colored using any colors from {1, 2, . . . , bm+n
2

c}. Clearly c is a coupon coloring
of G. Therefore χc(G) = bm+n

2 c.

Case 2: m < n. Since δ(G) = m, there does not exist an m + 1-coupon coloring. Let c : V (G) → [m]
such that c(vi) = i for i = 1, 2, . . . , m. Remaining there are n vertices in the graph uncolored. Assign colors



R. Mithra and P. Ragukumar 179

in such a way that c(vm+i) = i for all i = 1, 2, . . . , m and the remaining vertices can be colored using any
colors from {1, 2, . . . , m}. Since m < n, such a coloring is possible. Thus m-coupon coloring exists. Therefore
χc(G) = m.

Theorem 2 Let G be a split graph having m vertices in the clique and n vertices in the independent set
such that diam(G) is 3. Then χc(G) ≤ bm

2 c.

Proof. Let G be a split graph having m vertices in the clique and n vertices in the independent set such
that diam(G) is 3. Suppose {v1, v2, . . . , vm} are the vertices of clique and {vm+1 , vm+2, . . . , vm+n} are the
vertices of independent set. We prove that δ(G) ≤ bm

2 c. Suppose δ(G) = k > bm
2 c. We know that

deg(vm+l) < deg(vh) for all l = 1, 2, . . . , n and h = 1, 2, . . . , m. So δ(G) = deg(vm+l) for some l. Let vm+i

be an arbitrary vertex such that deg(vm+i) = k. Thus vm+i is adjacent to k vertices in clique. Remaining
there are m − k vertices in clique, not adjacent to vm+i. Also m − k ≤ bm

2 c. Consider another arbitrary
vertex vm+j . Suppose there exist an edge joining vm+j and any of k vertices that is adjacent to vm+i. Then
diam(G) = 2. Hence there is no edge joining vm+j and neighbours of vm+i. Now deg(vm+j ) ≤ m− k. Thus
deg(vm+j ) < k. From this we get deg(vm+j ) < deg(vm+i), a contradiction since deg(vm+i) = δ(G). Thus
δ(G) ≤ bm

2 c. We know that χc(G) ≤ δ(G), thus χc(G) ≤ bm
2 c.

Definition 3 Friendship graph Fn for n ≥ 2 is a graph constructed by joining n copies of the cycle graph
C3 with a common vertex [14].
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Figure 2: An example for friendship graph.

Theorem 3 Let G = Fn be a friendship graph with 2n + 1 vertices and 3n edges. Then χc(G) = 1.

Proof. Let G be the friendship graph with 2n + 1 vertices and 3n edges. We know that χc(G) ≤ δ(G).
Therefore χc(G) ≤ 2. Let {v0, v1, . . . , v2n} be the vertices of G and let v0 be the universal vertex. Now
the remaining vertices along with v0 form n C3 cycles such as v0v1v2v0, v0v3v4v0, v0v5v6v0, v0v7v8v0,. . . ,
v0v2n−1v2nv0. Assume that there exists a 2-coupon coloring. Now consider the cycle v0v1v2. Assign colors
to v0 and v2 such that the neighbors of v1 will be assigned with 2 colors. Let c(v0) = 1 and c(v2) = 2. Now
consider the vertex v2, the neighbors are v0 and v1. Since c(v0) = 1, we see that c(v1) = 2. Similarly, all
other vertices have the color 2. Also the neighbors of v0 are vi where 1 ≤ i ≤ 2n. All the neighbors of v0 are
colored with 2. Thus v0 does not have a neighbor with color 1. Hence 2-coupon coloring is not possible. So
all vertices can be colored using 1 color.

3 Unary Operations

Unary operations create a new graph from a single initial graph. Here we consider two operations such as
total graph and subdivision operation.

3.1 Total Graph T (G)

Definition 4 The total graph T (G) of the graph G whose set of vertices is the union of the set of vertices
and set of edges of G, with two vertices of T (G) being adjacent if and only if the corresponding elements of
G are adjacent or incident [4].
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Figure 3: Total graph of C3.

For example consider the cycle graph on 3 vertices C3.

Theorem 4 Let G be a cycle on n vertices. Then

χc(T (G)) =

{

2 if n is even,
1 if n is odd.

Proof. Let G be a cycle on n vertices and suppose v1v2 . . . vnv1 be the cycle. Now in T (G) label the
newly added vertices in such a way that the vertex that is adjacent to vi and vi+1 is denoted as vn+i for
i = 1, 2, . . . , n − 1 and label the vertex that is adjacent with vn and v1 as v2n. Here δ(T (G)) = 2. Thus
χc(T (G)) ≤ 2.

Case 1: If n is even. Assign colors c : V (G) → [2] such that c(vi) = 1 when i is odd and c(vi) = 2 when
i is even, where i = 1, 2, . . . , 2n. Thus 2-coupon coloring exists. Therefore χc(T (G)) = 2.

Case 2: If n is odd. Suppose 2-coupon coloring is possible. Consider the vertex vn+1, N (vn+1) = {v1, v2}.
Let c : V (G) → [2] such that c(vi) = a ∈ {1, 2} and c(v2) = b ∈ {1, 2}, a 6= b. Without loss of generality
assume that c(v1) = 1 and c(v2) = 2. Similarly, consider vn+2. Since c(v2) = 2, we have c(v3) = 1. In this
way we get c(vi) = 1 when i is odd and c(vi) = 2 when i is even, for i = 1, 2, ..., n. Thus c(v1) = c(vn) = 1.
Consider the vertex v2n that is adjacent with v1 and vn. Here arises a contradiction. Thus χc(T (G)) = 1.

Theorem 5 Let G be a path on n vertices. Then χc(T (G)) = 1.

Proof. Let G be a path with vertex set V (G) = {v1, v2, . . . , vn} and let v1v2 . . . vn be the path. In T (G)
label the newly add vertices in such a way that the vertex adjacent with vi and vi+1 is denoted as vn+i. Here
δ(T (G)) = 2. Thus χc(T (G)) ≤ 2. Suppose 2-coupon coloring is possible. Consider the vertex vn+1 and the
neighbors of vn+1 are v1 and v2. Let c : V (G) → [2] such that c(vi) = a ∈ {1, 2} and c(v2) = b ∈ {1, 2},
a 6= b. Without loss of generality, let c(v1) = 1 and c(v2) = 2. Similarly consider vn+2. Since c(v2) = 2,
we get c(v3) = 1. In this way we get c(vi) = 1 when i is odd and c(vi) = 2 when i is even. Consider
the neighbors of v1. We get c(vn+1) = 1. Now the neighbors of the vertex v2 are v1, v3, vn+1, vn+2. Since
c(v1) = c(vn+1) = c(v3) = 1, c(vn+2) = 2. From this it follows that c(vn+i) = 1 when i is odd and c(vn+i) = 2
when i is even. Suppose n is even, then c(vn) = 2, c(vn−1) = 1 and c(vn+n−1) = 1. Since neighbors of cn

colored with the same color, 2-coupon coloring is not possible. Similarly in the case when n is odd. Thus
χc(T (G)) = 1.

Theorem 6 Let G = Km,n be a complete bipartite graph, where m, n ≥ 2. Then χc(T (G)) = 2.

Proof. Let G be a complete bipartite graph with V (G) = V1

⋃

V2 such that there are m vertices in V1 and n

vertices in V2. Since δ(T (G)) = 2, χc(T (G)) ≤ 2. Without loss of generality assume m ≤ n. Now, label the
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vertices of V1 as vi, 1 ≤ i ≤ m and the vertices of V2 as vj , m + 1 ≤ j ≤ m + n. Consider the newly added
vertices and label the vertex sharing edges with vi and vj as vni+j . Now we prove that 2-coupon coloring
is possible. Define c : V (G) → [2] in such a way that c(vi) = 1 for all i ∈ {1, 2, · · · , m} and c(vj) = 2 for
all j ∈ {m + 1, m + 2, · · · , m + n}. Hence every newly added vertex satisfy the property S. Now for every
vertex vni+j, where 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n,

c(vni+j) =

{

2 if i + j is even,
1 if i + j is odd.

Case 1: i + j is even. Then i and j have the same parity. Suppose i and j are odd. Thus c(vni+j) = 2.
Consider the vertices vi and vj, vi and vni+j are neighbouring vertices of vj , thus c(vi) = 1 and c(vni+j) = 2.
Now let j = m + k, 1 ≤ k ≤ n. Since G is complete bipartite, vi is adjacent to vm+k for all k = 1, 2, . . . , n.
Thus vi is adjacent to either vm+k−1 or vm+k+1 or both. Let vl = vm+k−1 or vm+k+1 . In both cases l is
even and i is odd. So the vertex adjacent to both vi and vl will get the color 1. That is c(vni+l) = 1. vj

and vni+l are neighboring vertices of vi and c(vj) = 2, c(vni+j) = 1. Thus in this case 2-coupon coloring is
possible. Similarly we can prove 2-coupon coloring is possible in the case when i and j are even.

Case 2: i + j is odd. Either one among i or j is odd. Thus c(vni+j) = 1. Also c(vj) = 2. Thus neighbors
of vi has 2 colors. Similarly as Case 1. vi is connected to either vm+k−1 or vm+k+1 or both. In this
case c(vni+j) = 2. Hence neighboring vertices vj has 2 colors. Thus 2-coupon coloring is possible. Hence
χc(T (G)) = 2.

Theorem 7 Let G be a graph of order n having a universal vertex. Then χc(T (G)) = 1.

Proof. Let G be a graph with n vertices having a universal vertex and let {v1, v2, . . . , vn} be the vertices of
G. Suppose v1 is the universal vertex. After adding a vertex to each edge and connecting the end vertices
of that edge, we label those vertices joining v1 and vi as vn+i−1 where i = 2, 3, . . . , n. Remaining additional
vertices (if exists) can be labelled as v2n+g, g = 0, 1, . . .. Since δ(T (G)) = 2, χc(T (G)) ≤ 2. Suppose there
exists a 2-coupon coloring, c : V (G) → [2]. Consider the vertex vn+1, which shares edges with v1 and v2.
Also its neighbors are v1 and v2 then c(vi) = a ∈ {1, 2} and c(v2) = b ∈ {1, 2}, a 6= b. Without loss of
generality, assume that c(v1) = 2 and c(v2) = 1. Consider vn+2, v1 and v3 are its neighbors. Since c(v1) = 2,
we get c(v3) = 1 such that neighbors of vn+2 is assigned with 2 colors. Similarly,

c(v2) = c(v3) = · · · = c(vn) = 1.

Let vi and vk be two arbitrary vertices such that i, k 6= 1.

Case 1 : Suppose there exists an edge joining vi and vk in G. Then there exists a vertex v2n+g, where g ∈

{0, 1, . . .
n(n−3)

2 }, that shares edges with vi and vk. Since c(vi) = c(vk) = 1, a 2-coupon coloring is not
possible.

Case 2 : Suppose there exist no edge joining vi and vk. Consider the vertex that shares edges with v1 and
vi. That is, vn+i−1. We have c(v1) = 2, c(vi) = 1 where v1 and vn+i−1 are the neighboring vertices of vi.
Thus, c(vn+i−1) = 1 for all i = 2, 3, . . . , n. Similarly, this holds for all other vertices. The neighbors of v1

are not assigned with 2 colors. Hence, a 2-coupon coloring does not exist. Therefore, χc(T (G)) = 1.

Corollary 1 Let G be a split graph having diameter 2. Then χc(T (G)) = 1.

Proof. Split graph having diameter 2 has at least one universal vertex. Then by Theorem 7, χc(T (G)) = 1.

3.2 Subdivision Operation S(G)

Definition 5 S(G) is obtained by splitting each edge of G by introducing a new vertex [13].

For example, consider a cycle graph on 3 vertices.
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Figure 4: S(C3).

Theorem 8 Let G be a cycle on n vertices. Then

χc(S(G)) =

{

2 if n is even,
1 if n is odd.

Proof. Let G = Cn be a cycle on n vertices. Splitting of each edge will result again in cycle on 2n vertices.
That is, χc(S(Cn)) = χc(C2n). From Lemma 1 we have χc(S(G)) = 2 when n is even and χc(S(G)) = 1
when n is odd.

Theorem 9 Let G be a path on n vertices. Then χcS((G)) = 1.

Proof. Let G = Pn be a path on n vertices. Splitting of an edge into two edges by adding a vertex in
between them results on a path with 2n − 1 vertices. That is, χc(S(Pn)) = χc(P2n−1).

Theorem 10 Let G be a complete bipartite graph with m vertices in one set and n vertices in another set
such that m, n > 1. Then χc(S(G)) = 2.

Proof. The proof of this theorem is similar to that of Theorem 6.

Theorem 11 Let G be any graph of order n having a universal vertex. Then χc(S(G)) = 1.

Proof. The proof of this theorem is similar to that of Theorem 7.

Corollary 2 Let G be a split graph having diameter 2. Then χc(S(G)) = 1.

Proof. By Theorem 11, χc(S(G)) = 1.

4 Conclusion

In this paper, we explored coupon-coloring of friendship graphs and split graphs. Also we have investigated
the coupon coloring of graphs generated after applying unary operations on various graph classes.

Acknowledgment. The first author expresses her gratitude to Vellore Institute of technology for pro-
viding financial support that enabled her to perform the research work.
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Graph class |V (G)| |V (T (G))|,|V (S(G))| χc(G) χc(T (G)), χc(S(G))

Cn n 2n

{

2 n ≡ (0 mod 4)

1 otherwise

{

2 n iseven

1 n isodd

Pn n 2n − 1 1 1
Wn n 3n − 2 2 1

Kn n
n(n+1)

2 b n
2 c 1

K1,n n + 1 2n + 1 1 1

Km,n (m, n > 1) m + n m(n + 1) + n min{m, n} 2

Table 1: Impact of Total graph operation and Subdivision operation on Coupon coloring number of standard
graph classes.
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