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Abstract

Let G be a graph with no isolated vertices. A k-coupon coloring of G is an assignment of colors from
[k] ={1,2,...,k} to the vertices of G such that the neighborhood of every vertex of G contains vertices
of all colors from [k]. The maximum k for which a k-coupon coloring exists is called the coupon coloring
number of G, and is denoted by x.(G). In this paper, we investigate the coupon coloring of graphs
generated by applying various unary operations on various graph classes.

1 Introduction

All graphs we considered are finite, simple and undirected. Let G = (V| E) be a graph with vertex set V(G)
and edge set E(G). The neighbourhood of the vertex x € V(G) is the set of all vertices that are adjacent to
2. The degree of a vertex = in a graph is the number of vertices adjacent to z. The minimum degree of a
graph is denoted as §(G). A pendant vertex is a vertex with degree 1 and a universal vertex is a vertex that
is adjacent to all other vertices of the graph. For standard graph terminology, we in general follow [1, 13].
Graph coloring is one of the important and fertile areas in the field of Graph Theory. Apart from various
coloring problems like list coloring, star coloring, acyclic coloring, Chen et al. [2] introduced coupon coloring
in the year 2015. Let G be a graph with no isolated vertices. A k-coupon coloring of GG is an assignment of
colors from [k] = {1,2,..., k} to the vertices of G such that the neighborhood of every vertex of G contains
vertices of all colors from [k]. The maximum k for which a k-coupon coloring exists is called the coupon
coloring number of G, and is denoted by x.(G) [2]. Clearly, x.(G) < 6(G) for any graph G. An example
of coupon coloring is shown in Figure 1. In a k-coloring ¢, a vertex v is considered to be a bad vertex if its
neighborhood lacks vertices of every color from [k] and it is clear that there are no bad vertices in a coupon
coloring. A vertex v is said to have a property S if there are two different colors in the neighborhood of v
[10]. Let G be a graph with no isolated vertices. In [15], Cockayne et al. introduced the concept of the total
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Figure 1: An example of coupon coloring.

domatic number of graphs. A subset S of the vertex set V(G) of a graph G is a total dominating set if every
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vertex of G is adjacent to at least one vertex from S. The maximum number of disjoint total dominating sets
is called the total domatic number. In coupon coloring, every color class must be a total dominating set in
the graph. Thus, the coupon coloring number is also referred to as the total domatic number [8]. The coupon
coloring numbers of wheels, cycles, unicyclic and bicyclic graphs, complete graphs, and complete k-partite
graphs were determined by Shi et al. [10]. Additionally, coupon coloring has been examined in [12, 3] and [8].
The coupon coloring number of a few binary products, including the lexicographic and Cartesian products is
studied in [6, 11, 9]. Also, in [16], the authors have demonstrated that for every k > 3, it is NP-complete to
decide whether d;(G) > k, where G is a split graph. Considering the literature survey on coupon coloring,
is it possible to find the coupon coloring number for other graph classes, as well as for unary operations in
graphs? This motivated us to explore the coupon coloring of graphs generated by applying various unary
operations on them.

In Section 2, we explore the coupon coloring number for friendship graphs and split graphs, and in Section
3, we examine the impact of coupon coloring after unary operations on graphs.

2 Coupon Coloring Number of Split Graphs
The following observation and lemma will be helpful to prove our main results.
Observation 1 Let G be a graph having a pendant vertex. Then x.(G) = 1.

Lemma 1 ([10]) Let G be a cycle on n vertices. Then

/2 ifn=0 (mod4),
Xe(G) _{ 1 otherwise.

Definition 1 A split graph is one whose vertex set can be partitioned as the disjoint union of an independent
set and a clique [7].

Definition 2 A complete split graph CS(n,q), is a graph on n vertices consisting of a clique on n — «
vertices and an independent set on the remaining a(1l < o < m—1) wvertices in which each vertex of the clique
is adjacent to each vertex of the independent set [5].

Theorem 1 Let G = CS(m+n,n) be a complete split graph having m vertices in the clique and n vertices
in the independent set. Then
m+n m > n,
XC(G) — {L 2 J -
m m < n.

Proof. Let G = CS(m + n,n) be a complete split graph having m vertices in the clique and n vertices in
the independent set. Let {v1,va,..., v} be the vertices in the clique and {vy,41, V2, - - -, Um+tn} be the
vertices in the independent part.

Case 1: m > n. Since each color should appear atleast twice it follows that x.(G) < [242]. Now we
prove xc(G) > | ™42 by providing a | ™+ |-coupon coloring. Define ¢ : V(G) — [| 242 ]] by

c(v) =i fori=1,2,..., Lm;nj
and n
m+n
C(ULMT“JH):i fori=1,2,...,| 5 |
The remaining vertices can be colored using any colors from {1,2,..., |52 |}. Clearly ¢ is a coupon coloring

of G. Therefore x.(G) = | ™42 ].

Case 2: m < n. Since 6(G) = m, there does not exist an m + 1-coupon coloring. Let ¢ : V(G) — [m]
such that ¢(v;) = for i = 1,2, ..., m. Remaining there are n vertices in the graph uncolored. Assign colors
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in such a way that ¢(v;,4;) = i for all¢ = 1,2,...,m and the remaining vertices can be colored using any
colors from {1,2,...,m}. Since m < n, such a coloring is possible. Thus m-coupon coloring exists. Therefore
Xe(G)=m. m

Theorem 2 Let G be a split graph having m vertices in the clique and n vertices in the independent set
such that diam(G) is 3. Then x.(G) < [F].

Proof. Let G be a split graph having m vertices in the clique and n vertices in the independent set such
that diam(G) is 3. Suppose {v1,v9,..., v} are the vertices of clique and {v; 41, Um+2, - - - Umtn t are the
vertices of independent set. We prove that §(G) < [%]. Suppose §(G) = k > |%]. We know that
deg(Vm+i1) < deg(vp) for alll =1,2,...,nand h=1,2,...,m. So §(G) = deg(vm4;) for some I. Let vp,yy
be an arbitrary vertex such that deg(vy,4;) = k. Thus v,,4; is adjacent to k vertices in clique. Remaining
there are m — k vertices in clique, not adjacent to vp,1;. Also m —k < [F]|. Consider another arbitrary
vertex v, . Suppose there exist an edge joining v,,4; and any of k vertices that is adjacent to vy,4;. Then
diam(G) = 2. Hence there is no edge joining vp,4; and neighbours of vy,4;. Now deg(vimy;) < m — k. Thus
deg(vm+j) < k. From this we get deg(vmy;) < deg(vm4i), a contradiction since deg(vm+;) = d(G). Thus
0(G) < |%]. We know that x.(G) < §(G), thus x.(G) < [F]. =

Definition 3 Friendship graph F,, for n > 2 is a graph constructed by joining n copies of the cycle graph
Cs with a common vertex [14].

U3 V4
V9 Us
Vo (2)
U1 ( U6

Figure 2: An example for friendship graph.

Theorem 3 Let G = F,, be a friendship graph with 2n + 1 vertices and 3n edges. Then x.(G) = 1.

Proof. Let G be the friendship graph with 2n + 1 vertices and 3n edges. We know that x.(G) < §(G).
Therefore x.(G) < 2. Let {vg,v1,...,v2,} be the vertices of G and let vy be the universal vertex. Now
the remaining vertices along with vy form n Cs cycles such as vyv1v2v9, VoU3V4V0, VoUsVEVH, VoUTUSVQ,- - -
VQU2n—1V2,Vg- Assume that there exists a 2-coupon coloring. Now consider the cycle vgvive. Assign colors
to vg and vy such that the neighbors of v; will be assigned with 2 colors. Let c¢(vg) =1 and ¢(v2) = 2. Now
consider the vertex vq, the neighbors are vy and v;. Since ¢(vg) = 1, we see that c(vy) = 2. Similarly, all
other vertices have the color 2. Also the neighbors of vy are v; where 1 < i < 2n. All the neighbors of vy are
colored with 2. Thus vy does not have a neighbor with color 1. Hence 2-coupon coloring is not possible. So
all vertices can be colored using 1 color. m

3 Unary Operations

Unary operations create a new graph from a single initial graph. Here we consider two operations such as
total graph and subdivision operation.

3.1 Total Graph 7T'(G)

Definition 4 The total graph T(G) of the graph G whose set of vertices is the union of the set of vertices
and set of edges of G, with two vertices of T(G) being adjacent if and only if the corresponding elements of
G are adjacent or incident [4].
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Figure 3: Total graph of Cj.

For example consider the cycle graph on 3 vertices Cj.
Theorem 4 Let G be a cycle on n vertices. Then

2 if n is even,

X(T(G)) = { 1 ifn is odd.

Proof. Let G be a cycle on n vertices and suppose v1vs...v,v1 be the cycle. Now in T(G) label the
newly added vertices in such a way that the vertex that is adjacent to v; and v;41 is denoted as v,4; for
i =1,2,...,n — 1 and label the vertex that is adjacent with v, and vy as ve,. Here 6(T(G)) = 2. Thus
xe(T(G)) <2.

Case 1: If n is even. Assign colors ¢ : V(G) — [2] such that ¢(v;) = 1 when i is odd and ¢(v;) = 2 when
i is even, where i = 1,2,...,2n. Thus 2-coupon coloring exists. Therefore x.(T(G)) = 2.

Case 2: If n isodd. Suppose 2-coupon coloring is possible. Consider the vertex vy, 41, N (vnt1) = {v1, v2}.
Let ¢ : V(G) — [2] such that c¢(v;) = a € {1,2} and c¢(va) = b € {1,2}, a # b. Without loss of generality
assume that c¢(v1) = 1 and ¢(vz) = 2. Similarly, consider v, 42. Since ¢(v2) = 2, we have ¢(vs) = 1. In this
way we get ¢(v;) = 1 when ¢ is odd and ¢(v;) = 2 when i is even, for i = 1,2, ...,n. Thus c(v1) = ¢(vy,) = 1.
Consider the vertex vq,, that is adjacent with v; and v,,. Here arises a contradiction. Thus x.(T(G))=1. =

Theorem 5 Let G be a path on n vertices. Then x.(T(G)) = 1.

Proof. Let G be a path with vertex set V(G) = {v1,ve,...,v,} and let v1vs ... v, be the path. In T(G)
label the newly add vertices in such a way that the vertex adjacent with v; and v;4; is denoted as v, 4;. Here
d(T(G)) = 2. Thus x.(T(G)) < 2. Suppose 2-coupon coloring is possible. Consider the vertex v, 41 and the
neighbors of v,41 are v; and ve. Let ¢ : V(G) — [2] such that c¢(v;) = a € {1,2} and c(v2) = b € {1,2},
a # b. Without loss of generality, let ¢(v1) = 1 and c¢(v2) = 2. Similarly consider v,42. Since c(v2) = 2,
we get c¢(vs) = 1. In this way we get c(v;) = 1 when ¢ is odd and ¢(v;) = 2 when ¢ is even. Consider
the neighbors of v;. We get ¢(v,+1) = 1. Now the neighbors of the vertex vy are vy, v3, Vpt1, Unt2. Since
c(v1) = c(vp41) = c(v3) = 1, ¢(vp42) = 2. From this it follows that c(v,+;) = 1 when 4 is odd and ¢(vp4i) = 2
when i is even. Suppose n is even, then c¢(v,) = 2, ¢(v,—1) = 1 and ¢(vy4n—1) = 1. Since neighbors of ¢,
colored with the same color, 2-coupon coloring is not possible. Similarly in the case when n is odd. Thus
(T(G) = 1. m

Theorem 6 Let G = K, », be a complete bipartite graph, where m,n > 2. Then x.(T(G)) = 2.

Proof. Let G be a complete bipartite graph with V(G) = V1 |J V2 such that there are m vertices in V5 and n
vertices in Va. Since §(T(G)) = 2, x.(T(G)) < 2. Without loss of generality assume m < n. Now, label the
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vertices of Vi as v;, 1 < i < m and the vertices of V3 as v;, m +1 < j < m +n. Consider the newly added
vertices and label the vertex sharing edges with v; and v; as vpi4;. Now we prove that 2-coupon coloring
is possible. Define ¢ : V(G) — [2] in such a way that c¢(v;) = 1 for all ¢ € {1,2,---,m} and c(v;) = 2 for
all je {m+1,m+2,---,m+n}. Hence every newly added vertex satisfy the property S. Now for every
vertex vpi44, where 1 <i<m, m+1<j <m+n,

(Oniss) = 2 ifi4 jis even,
M1 if i 4 g is odd.

Case 1: i+ j is even. Then ¢ and j have the same parity. Suppose ¢ and j are odd. Thus ¢(vniy;) = 2.
Consider the vertices v; and v;, v; and vp4; are neighbouring vertices of v;, thus c(v;) = 1 and ¢(vni4;) = 2.
Now let j =m +k, 1 < k < n. Since G is complete bipartite, v; is adjacent to vy,4+ for all k =1,2,... n.
Thus v; is adjacent to either vy,4x—1 Or vy4k+1 or both. Let v; = vy4k—1 OF Vmiks1- In both cases [ is
even and ¢ is odd. So the vertex adjacent to both v; and v; will get the color 1. That is ¢(vniqi) = 1. v;
and vy;4; are neighboring vertices of v; and ¢(vj) = 2, ¢(vns4;) = 1. Thus in this case 2-coupon coloring is
possible. Similarly we can prove 2-coupon coloring is possible in the case when ¢ and j are even.

Case 2: i+ j is odd. Either one among i or j is odd. Thus ¢(v,;4;) = 1. Also ¢(v;) = 2. Thus neighbors
of v; has 2 colors. Similarly as Case 1. wv; is connected to either v,,1x—1 Or vytgr4+1 or both. In this

case ¢(Uni+j) = 2. Hence neighboring vertices v; has 2 colors. Thus 2-coupon coloring is possible. Hence
X(T(G)=2. =m

Theorem 7 Let G be a graph of order n having a universal vertex. Then x.(T(G)) = 1.

Proof. Let G be a graph with n vertices having a universal vertex and let {v1, v, ..., v,} be the vertices of
G. Suppose v; is the universal vertex. After adding a vertex to each edge and connecting the end vertices
of that edge, we label those vertices joining v; and v; as v,4;—1 where ¢ = 2,3, ..., n. Remaining additional
vertices (if exists) can be labelled as van44, ¢ =0,1,.... Since 6(T(G)) = 2, x(T(G)) < 2. Suppose there
exists a 2-coupon coloring, ¢ : V(G) — [2]. Consider the vertex v,41, which shares edges with v; and vs.
Also its neighbors are v; and ve then c(v;) = a € {1,2} and c(v2) = b € {1,2}, a # b. Without loss of
generality, assume that c(v;) = 2 and ¢(v2) = 1. Consider v, 42, v1 and vs are its neighbors. Since c(vy) = 2,
we get ¢(vs) = 1 such that neighbors of v, 42 is assigned with 2 colors. Similarly,

c(vg) = c(vg) =+ =c(vy) = 1.

Let v; and vg be two arbitrary vertices such that i, k # 1.

Case 1 : Suppose there exists an edge joining v; and vy in G. Then there exists a vertex van44, Where g €
{0,1,.. @}, that shares edges with v; and wvg. Since ¢(v;) = ¢(vg) = 1, a 2-coupon coloring is not
possible.

Case 2 : Suppose there exist no edge joining v; and v,. Consider the vertex that shares edges with v; and
v;. That is, vp4i—1. We have c¢(v1) = 2, ¢(v;) = 1 where v; and v,4;—1 are the neighboring vertices of v;.
Thus, ¢(vp4i—1) = 1 for all ¢ = 2,3,...,n. Similarly, this holds for all other vertices. The neighbors of vy
are not assigned with 2 colors. Hence, a 2-coupon coloring does not exist. Therefore, x.(T(G)) =1. =

Corollary 1 Let G be a split graph having diameter 2. Then x.(T(G)) = 1.

Proof. Split graph having diameter 2 has at least one universal vertex. Then by Theorem 7, x.(T(G)) = 1.
[

3.2 Subdivision Operation S(G)
Definition 5 S(G) is obtained by splitting each edge of G by introducing a new vertex [13].

For example, consider a cycle graph on 3 vertices.
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Figure 4: S(C3).

Theorem 8 Let G be a cycle on n vertices. Then

2 ifn is even,

Xe(5(G)) = { 1 ifn is odd.

Proof. Let G = C,, be a cycle on n vertices. Splitting of each edge will result again in cycle on 2n vertices.
That is, xc(S(Chr)) = xc(C2yn). From Lemma 1 we have x.(S(G)) = 2 when n is even and x.(S(G)) =1
when n is odd. =

Theorem 9 Let G be a path on n vertices. Then x.S((G)) = 1.

Proof. Let G = P, be a path on n vertices. Splitting of an edge into two edges by adding a vertex in
between them results on a path with 2n — 1 vertices. That is, xc(S(Pn)) = xc(P2n—1). ®

Theorem 10 Let G be a complete bipartite graph with m vertices in one set and n vertices in another set
such that m,n > 1. Then x.(S(Q)) = 2.

Proof. The proof of this theorem is similar to that of Theorem 6. m

Theorem 11 Let G be any graph of order n having a universal vertex. Then x.(S(G)) = 1.
Proof. The proof of this theorem is similar to that of Theorem 7. m

Corollary 2 Let G be a split graph having diameter 2. Then x.(S(G)) = 1.

Proof. By Theorem 11, x.(S(G)) =1. =

4 Conclusion

In this paper, we explored coupon-coloring of friendship graphs and split graphs. Also we have investigated
the coupon coloring of graphs generated after applying unary operations on various graph classes.

Acknowledgment. The first author expresses her gratitude to Vellore Institute of technology for pro-
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Graph class V(&) VT (GE)LIVIS@)I] xe(G) Xe(T Xe(5(G))
. . on, {2 n= (0 mod 4) {2 n iseven
1 otherwise 1 n isodd

P, n 2n—1 1 1

W, n 3n—2 2 1

K, n mlr) L 5] 1

Kin n+1 2n+1 1

Kpn (m,n>1) | m+n mn+1)+n mm{m, n} 2

Table 1: Impact of Total graph operation and Subdivision operation on Coupon coloring number of standard
graph classes.
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