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Abstract

In this work, we show the equivalence of ideal Kuratowski convergence and Kuratowski convergence
for nested sequences of sets. We also give some results regarding I-nested sequences of sets and I-
Kuratowski limit sets.

1 Introduction

The inadequacy of pointwise limits in solving problems in multivalued analysis has led to the emergence of a
new theory of convergence. Painleve first introduced the concepts of the outer and inner limit of a sequence of
sets in 1902. On the other hand, Kuratowski [12] defined the condition that these two limits are equal to each
other as Kuratowski convergence. Afterwards, many types of set convergence entered the literature. One of
them is Hausdorff convergence, which is expressed using the concept of distance between two sets. Another is
the Wijsman convergence [18, 19], which corresponds to the pointwise convergence of the distance functions.
Recently, Apreutesei [3] proved that Wijsman convergence and Hausdorff convergence are equivalent to each
other for monotone sequences of compact sets. These convergence concepts are enriched by using different
theories. Some of these theories are the statistical convergence given by Fast [6] and Steinhaus [16] and ideal
convergence given by Kostyrko et al. [11] (see also [4, 7, 8, 13, 14]). In this sense, Nuray and Rhoades [15]
defined st-Kuratowski, st-Hausdorff and st-Wijsman convergence of a sequence of sets. While the concept
of I-Wijsman convergence was given by Ki̧si and Nuray [10], the concepts of I-Kuratowski and I-Hausdorff
convergence were given by Talo and Sever [17]. In recent times, Khan et al. [9] extended the concept of I-
Kuratowski convergence given in metric space to intuitionistic fuzzy metric spaces. Albayrak [1] showed that
I-Wijsman limit and the I-Hausdorff limit of nested sequence of sets are equivalent to each other for every
admissible ideal. Furthermore, Albayrak et al. [2] examined set-theoretic operators preserving I-Hausdorff
convergence.

2 Preliminaries

Throughout this paper, (X, ρ) denotes a metric space. We denote the family of all nonempty closed subsets
and the family of all nonempty compact subsets of X by Cl (X) and K (X), respectively. Let cl (A) be the
closure of a set A.
The distance d(x,A) from a point x ∈ X to a set A ⊆ X is defined as

d(x,A) = inf
y∈A

ρ(x, y)

(see [18]).
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The open ball with centre a ∈ X and radius r > 0 is the set

B (a; r) = {x ∈ X : ρ(a, x) < r}.

The closed ball with centre a ∈ X and radius r > 0 is the set

B [a; r] = {x ∈ X : ρ(a, x) ≤ r}.

Now, we recall some basic concepts related to the ideals and the filters (see [5, 20]).
A family I ⊆P (N) is called an ideal on N, if it satisfies the following conditions:

1. ∅ ∈ I,

2. I, J ∈ I =⇒ I ∪ J ∈ I,

3. I ∈ I and J ⊆ I =⇒ J ∈ I.

A family F ⊆P (N) is called a filter on N, if it satisfies the following conditions:

1. ∅ /∈ F ,

2. M,N ∈ F =⇒M ∩N ∈ F ,

3. M ∈ F and M ⊆ N =⇒ N ∈ F .

The ideal and the filter are dual concepts. If I is an ideal on N then the family F (I) = {N \ I : I ∈ I}
is a filter on N. Conversely, if F is a filter on N then the family I (F) = {N \M :M ∈ F} is an ideal on
N. An ideal is called proper if N /∈ I, and a proper ideal is called admissible if {n} ∈ I for each n ∈ N.
Obviously, an admissible ideal includes all finite subset of N. The ideal Ifin = {I ⊆ N : I is finite} is the
minimum admissible ideal according to the inclusion relation. Admissible ideals are expressed as: If I is a
proper ideal and I ⊇ Ifin then I is an admissible ideal.
Let I be an ideal on N. A subset M of N is called F-stationary if it has nonempty intersection with each

member of the filter F (I). Denote the collection of all F-stationary sets by F∗ (I). In brief, for an M ⊆ N,

M ∈ F∗ (I)⇐⇒M /∈ I.

The following properties are provided:

• If I1⊆ I2, then
F (I1) ⊆ F (I2) ⊆ F∗ (I2) ⊆ F∗ (I1) .

Therefore, for every admissible ideal I, we have

F (Ifin) ⊆ F (I) ⊆ F∗ (I) ⊆ F∗ (Ifin) .

• If I a maximal ideal according to the inclusion relation, then F (I) is a maximal filter (i.e., an ultrafilter)
and F (I) = F∗ (I).

Definition 1 Let (X, ρ) be a metric space. Let (xn)n∈N be a sequence in X and x0 ∈ X. Let I be any ideal
on N. If for every ε > 0

{n ∈ N : ρ (xn, x0) ≥ ε} ∈ I,

then (xn) is said to be I-convergent to x0. Then we write I − limxn = x0 ([11]).



174 On the Ideal Kuratowski Convergence of Nested Sequences of Sets

We will use the following notations for next definitions. The first notations were used in the literature.
But since these sets have filter and F-stationary counterparts, we will use the second notations.

N = F (Ifin) = {M ⊆ N : N \M is finite} ,
N# = F∗ (Ifin) = {M ⊆ N :M is infinite} ,
NI = F (I) = {M ⊆ N : N \M ∈ I} ,
N#
I = F∗ (I) = {M ⊆ N :M /∈ I} .

Definition 2 Let (An)n∈N be a sequence of closed subsets of X and A be a nonempty subset of X. Then

lim sup
n→∞

An := {x ∈ X : ∀ε > 0,∃M ∈ F∗ (Ifin) s.t. An ∩ B (x; ε) 6= ∅ for ∀n ∈M}

and
lim inf
n→∞

An := {x ∈ X : ∀ε > 0,∃M ∈ F (Ifin) s.t. An ∩ B (x; ε) 6= ∅ for ∀n ∈M}

are called the outer limit and the inner limit of the sequence (An), respectively. The sequence (An)n∈N is
said to be Kuratowski convergent to the set A if

lim sup
n→∞

An = lim inf
n→∞

An = A.

In this case, we write K-limAn = A or An
K−→ A ([12]).

lim infn→∞An and lim supn→∞An are always closed subsets of X, and thus A ∈ Cl (X) if there is a
nonempty set A such that An

K−→ A.

Definition 3 Let (An)n∈N be a sequence of closed subsets of X and A be a nonempty subset of X. Then

I- lim sup
n→∞

An := {x ∈ X : ∀ε > 0,∃M ∈ F∗ (I) s.t. An ∩ B (x; ε) 6= ∅ for ∀n ∈M}

and
I- lim inf

n→∞
An := {x ∈ X : ∀ε > 0,∃M ∈ F (I) s.t. An ∩ B (x; ε) 6= ∅ for ∀n ∈M}

are called the I-outer limit and the I-inner limit of the sequence (An), respectively. The sequence (An)n∈N
is said to be I-Kuratowski convergent to the set A if

I- lim sup
n→∞

An = I- lim inf
n→∞

An = A.

In this case, we write I-K-limAn = A or An
I-K−→ A ([17]). Here I-lim supn→∞An, I-lim infn→∞An and

A are closed subsets of X.

Lemma 1 ([17]) Let (An)n∈N be a sequence of closed subsets of X and A ∈ Cl (X). Let I be an admissible
ideal. Then we have

lim inf
n→∞

An ⊆ I- lim inf
n→∞

An ⊆ I- lim sup
n→∞

An ⊆ lim sup
n→∞

An

and
K- limAn = A =⇒ I-K- limAn = A.

Hausdorff distance of two sets is defined in three different ways: For nonempty sets A,B ⊆ X,

1.
H (A,B) = max {h (A,B) , h (B,A)}

where h (A,B) = supa∈A d (a,B) is the excess of A over B.
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2.
H (A,B) = inf {ε > 0 : A ⊆ Bε and B ⊆ Aε}

where Aε =
⋃
a∈A {x ∈ X : ρ (a, x) < ε} = {x ∈ X : d(x,A) < ε} is the ε-enlargement of A.

3.
H (A,B) = sup

x∈X
|d(x,A)− d(x,B)| .

Definition 4 A sequence (An)n∈N of nonempty subsets of X is said to be Hausdorff convergent to a set
A ⊆ X if

lim
n→∞

H(An, A) = 0.

In this case, we write An
H−→ A ([18]).

Definition 5 We say that the sequence (An)n∈N of nonempty subsets of X is I-Hausdorff convergent to the
set A if

I- limH (An, A) = 0,

i.e., for every ε > 0, we have
{n ∈ N : H (An, A) ≥ ε} ∈ I.

In this case, we write I-H-limAn = A or An
I-H−→ A ([17]).

Definition 6 We say that a sequence (An)n∈N of nonempty subsets of X is Wijsman convergent to a set
A ⊆ X if

lim
n→∞

d(x,An) = d(x,A) for each x ∈ X.

In this case, we write An
W−→ A ([18, 19]).

Definition 7 We say that a sequence (An)n∈N of nonempty subsets of X is I-Wijsman convergent to a set
A ⊆ X if

I- lim d(x,An) = d(x,A) for each x ∈ X,

i.e., for each x ∈ X we have

{n ∈ N : |d(x,An)− d(x,A)| ≥ ε} ∈ I for every ε > 0.

In this case, we write I-W − limAn = A or An
I-W−→ A ([10]).

For definitions of statistical Wijsman convergence and statistical Hausdorff convergence, the reader can
refer to [15].
From the results obtained in [3], we can give the following lemma.

Lemma 2 ([3]) Let (An)n∈N be a nested sequence where An ∈ K (X) for every n ∈ N.

1. If (An)n∈N is an increasing sequence and cl
(⋃

n∈NAn
)
∈ K (X) , then

K- limAn =W - limAn = H- limAn = cl

(⋃
n∈N

An

)
.

2. If (An)n∈N is a decreasing sequence, then

K- limAn =W - limAn = H- limAn =
⋂
n∈N

An.
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In [1], the following result was obtained.

Lemma 3 ([1]) Let (An)n∈N be a nested sequence where An ∈ K (X) for every n ∈ N.

1. If (An)n∈N is an increasing sequence and cl
(⋃

n∈NAn
)
∈ K (X), then

I-W - limAn = I-H- limAn = cl
(⋃
n∈N

An

)

for every admissible ideal I on N.

2. If (An)n∈N is a decreasing sequence then

I-W - limAn = I-H- limAn =
⋂
n∈N

An

for every admissible ideal I on N.

The condition cl
(⋃

n∈NAn
)
∈ K (X) cannot be removed in the hypothesis of Lemmas 2 and 3. Otherwise

the given equations may not be satisfied as seen in the example below.

Example 1 Let’s consider the sequence (An)n∈N defined by An = [0, n] for every n ∈ N in R. We have
An ∈ K (X) for every n ∈ N, but cl

(⋃
n∈NAn

)
= [0,∞) /∈ K (X). Even though K − limAn =W − limAn =

[0,∞), the sequence (An)n∈N is not Hausdorff convergent.

3 Main Results

First, we start by defining the concept of I-nested sequence. The results are given our results for nested
sequences and I-nested sequences of sets. We show that Kuratowski convergence and I-Kuratowski con-
vergence are equivalent for nested sequences. Finally, we give some results regarding I-Kuratowski limit
sets.

Definition 8 Let (An)n∈N be a sequence of nonempty subsets of X and I be any ideal on N. We say that
the sequence (An)n∈N is I-monotone increasing if there exist a set

M = {n1 < n2 < ... < nk < ...} ∈ F (I)

such that Ank ⊆ Ank+1 for every k ∈ N. Similarly, (An)n∈N is said to be I-monotone decreasing if there
exist a set

M = {n1 < n2 < ... < nk < ...} ∈ F (I)

such that Ank+1 ⊆ Ank for every k ∈ N. If (An)n∈N is I-monotone increasing or I-monotone decreasing,
then we say that (An)n∈N is an I-nested sequence.

Theorem 1 Let (An)n∈N be a sequence of non-empty subsets of X and I be any ideal on N. If a sequence
(An)n∈N is I-nested then there exist a nested sequence (Bn)n∈N and a sequence (Cn)n∈N such that An∪Bn =
Cn ∪Bn for every n ∈ N and {n ∈ N : Cn 6= ∅} ∈ I.

Proof. The proof is given for I-monotone increasing sequences. Another case is similar.
Let (An)n∈N be I-monotone increasing. Then there is a set

M = {n1 < n2 < ... < nk < ...} ∈ F (I)
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such that (An)n∈M is monotone increasing, i.e., Ank ⊆ Ank+1 for every k ∈ N. Let’s define the sets Bn and
Cn for each n ∈ N as follows:

Bn =

 An if n ∈M,
An1 if n < n1,
Ank+1 if nk < n < nk+1,

(k ∈ N) and Cn = An \Bn.

Then the sequence (Bn)n∈N is monotone increasing. Also, it’s easy to see that An ∪Bn = Cn ∪Bn for every
n ∈ N. Finally, for each n ∈M we have Cn = An \Bn = An \An = ∅. Hence we get

{n ∈ N : Cn 6= ∅} ⊆ N \M ∈ I and {n ∈ N : Cn 6= ∅} ∈ I.

Theorem 2 Let (An)n∈N be a nested sequence of closed subsets of X, A ∈ Cl (X) and I be an admissible
ideal on N. Then we have:

An
K−→ A⇐⇒ An

I-K−→ A. (1)

Proof. (=⇒) : It was given in Lemma 1.
(⇐=) : Assume that An

I-K−→ A, that is,

I- lim inf
n→∞

An = I- lim sup
n→∞

An = A. (2)

From Lemma 1, we can write
lim inf
n→∞

An ⊆ A ⊆ lim sup
n→∞

An. (3)

We will continue the proof in two parts according to whether the sequence (An)n∈N is increasing or decreasing.

(1) Let (An)n∈N be an increasing sequence such that An ⊆ An+1 for every n ∈ N.
Firstly, we show that An ⊆ A for every n ∈ N. Let’s fix n ∈ N and let u ∈ An. Since (An) is increasing,

we have u ∈ Am for every m ≥ n. Then, for every m ≥ n and every ε > 0

Am ∩ B (u; ε) 6= ∅.

Since
N \ {1, 2, ..., n− 1} ∈ F (Ifin) ⊆ F (I) ,

we get u ∈ I-lim infn→∞An = A. So we get An ⊆ A for every n ∈ N.
Let x ∈ lim supn→∞An and ε > 0. Then there is an infinite set M (x, ε) ∈ N such that An ∩ B (x; ε) 6= ∅

for every n ∈M (x, ε). Since An ⊆ A, we get

A ∩ B (x; ε) 6= ∅

for each ε > 0. From the closedness of A, we have x ∈ A. Therefore we get

lim sup
n→∞

An = A.

Now we show that lim infn→∞An = A. Let x ∈ A and ε > 0. Since x ∈ I-lim infn→∞An, there is a set
N (x, ε) ∈ F (I) such that An ∩ B (x; ε) 6= ∅ for every n ∈ N (x, ε). Let n0 = n0 (x, ε) := minN (x, ε). Since
(An) is increasing, for every n ≥ n0 we get An0 ⊆ An and so

∅ 6= An0 ∩ B (x; ε) ⊆ An ∩ B (x; ε) .

Hence, for each ε > 0 there is an n0 (x, ε) ∈ N such that

An ∩ B (x; ε) 6= ∅ for every n ≥ n0.
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So we get x ∈ lim infn→∞An. This implies that A ⊆ lim infn→∞An. From (3), we have lim infn→∞An = A.

Consequently, we obtain An
K−→ A.

(2) Let (An)n∈N be a decreasing sequence such that An+1 ⊆ An for every n ∈ N.
Firstly, we show that A ⊆ An for every n ∈ N. Let’s fix n ∈ N and let u ∈ A. Since A = I-lim infn→∞An,

for every ε > 0 there is an M (u, ε) ∈ F (I) such that

Am ∩ B (u; ε) 6= ∅ for every m ∈M (u, ε) .

Since M (u, ε)’s are infinite sets, for each ε > 0 we can choose an mε ∈ M (u, ε) such that mε ≥ n. Since
(An) is decreasing, we have Amε

⊆ An and

∅ 6= Amε ∩ B (u; ε) ⊆ An ∩ B (u; ε) .

Thus we have An ∩ B (u; ε) 6= ∅ for every ε > 0. From the closedness of An, we get u ∈ An. So we get
An ⊆ A for every n ∈ N.

Let x ∈ A and ε > 0. For every n ∈ N we have x ∈ An and so An ∩ B (x; ε) 6= ∅. Thus, we get
x ∈ lim infn→∞An and so

lim inf
n→∞

An = A.

Now we show that lim supn→∞An = A. Let x ∈ lim supn→∞An and ε > 0. Then there is an

N (x, ε) ∈ F∗ (Ifin)

such that An ∩ B (x; ε) 6= ∅ for every n ∈ N (x, ε). Fix n ∈ N.
Hence there is an nε ∈ N (x, ε) such that nε ≥ n. Since (An) is decreasing, we have Anε ⊆ An and

∅ 6= Anε ∩ B (x; ε) ⊆ An ∩ B (x; ε) .

Then we get An ∩ B (x; ε) 6= ∅ for every n ∈ N. Thus we obtain x ∈ I-lim supn→∞An = A. This implies
that lim supn→∞An = A.

Consequently, we obtain An
K−→ A.

Combining the Theorem 2, Lemma 2 and Lemma 3, we can give the following corollary.

Corollary 1 Let (An)n∈N be a nested sequence where An ∈ K (X) for every n ∈ N.

1. If (An)n∈N is an increasing sequence and cl
(⋃

n∈NAn
)
∈ K (X) , then

I-K- limAn = I-W - limAn = I-H- limAn = cl
(⋃
n∈N

An

)

for every admissible ideal I on N.

2. If (An)n∈N is a decreasing sequence, then

I-K- limAn = I-W - limAn = I-H- limAn =
⋂
n∈N

An

for every admissible ideal I on N.

Definition 9 A set A is said to be an ideal Kuratowski limit set (briefly, I-K-limit set) of a sequence
(An)n∈N if there exists an

M = {n1 < n2 < ... < nk < ...} ∈ F∗ (I)
such that K-limk→∞Ank = A. We will denote by I-K-LIMAn the collection of all I-K-limit sets of the
sequence (An).
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Lemma 4 Let (An)n∈N be a sequence of closed subsets of X and A ∈ Cl (X). Let I be an admissible ideal
on N. If A is an I-K-limit set of a sequence (An)n∈N , then

I- lim inf
n→∞

An ⊆ A ⊆ I- lim sup
n→∞

An.

Proof. Let’s assume that A is an I-K-limit set of a sequence (An)n∈N. In this case, there exists an

M = {n1 < n2 < ... < nk < ...} ∈ F∗ (I)

such that K-limk→∞Ank = A.

• Firstly, we show that A ⊆ I-lim supn→∞An. Let x ∈ A. Take ε > 0. Then there exits a k0 ∈ N such
that Ank ∩ B (x; ε) 6= ∅ for every k ≥ k0. Let

N (x, ε) :=M \ {n1, n2, ..., nk0} ∈ F∗ (I) .

So we get
An ∩ B (x; ε) 6= ∅

for every n ∈ N . Hence we obtain x ∈ I-lim supn→∞An.

• Now, we show that I-lim infn→∞An ⊆ A. Let x ∈ I-lim infn→∞An. Take ε > 0. Then there exists an
N (x, ε) ∈ F (I) such that An ∩ B (x; ε) 6= ∅ for every n ∈ N . Since M ∩N ∈ F∗ (I) , the set M ∩N
is an infinite set. Therefore, we get

An ∩ B (x; ε) 6= ∅
for every n ∈ M ∩ N . That is, we have Ank ∩ B (x; ε) 6= ∅ for infinitely many k. Hence we obtain
x ∈ lim supk→∞Ank = A.

Theorem 3 Let (An)n∈N be any sequence where An ∈ K (X) for every n ∈ N. Let I be an admissible ideal
on N. If I-K-LIMAn = {B1, B2, ..., Bm} is finite such that (An)n∈Mi

K−→ Bi for each i ∈ {1, 2, ...,m} where
Mi ∈ F∗ (I) (i ∈ {1, 2, ...,m}) and M =

⋃m
i=1Mi ∈ F (I) , then we get

I- lim sup
n→∞

An =

m⋃
i=1

Bi

and

I- lim inf
n→∞

An =
m⋂
i=1

Bi.

Proof. From Lemma 4, it is clear that
m⋃
i=1

Bi ⊆ I- lim sup
n→∞

An

and

I- lim inf
n→∞

An ⊆
m⋂
i=1

Bi.

For the first equality, let’s take an arbitrary x ∈ I-lim supn→∞An. Assume that x /∈
m⋃
i=1

Bi. In this case, for

each i ∈ {1, 2, ...,m} there exists εi > 0 such that An ∩ B (x; εi) = ∅ for all but finitely many n ∈ Mi. Let
ε = min {ε1, ε2, ..., εm}. Then we have

An ∩ B (x; ε) = ∅ for all but finitely many n ∈M =

m⋃
i=1

Mi. (4)
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From x ∈ I-lim supn→∞An, there exists N (x, ε) ∈ F∗ (I) such that

An ∩ B (x; ε) 6= ∅ for every n ∈ N (x, ε) . (5)

We have M ∩N (x, ε) ∈ F∗ (I) and therefore M ∩N (x, ε) has infinite elements. Hence, statements (4) and
(5) contradict each other. So, we get x ∈

m⋃
i=1

Bi.

For the second equality, let x ∈
m⋂
i=1

Bi and ε > 0. Then for each i ∈ {1, 2, ...,m} there is a finite set Li (x, ε)

such that An ∩ B (x; ε) 6= ∅ for all n ∈Mi \ Li. Let L (x, ε) =
⋃m
i=1 Li and

M∗ (x, ε) =

m⋃
i=1

Mi \ L =M \ L ∈ F (I) .

Then we get An ∩ B (x; ε) 6= ∅ for all n ∈M∗. Thus we get x ∈ I − lim infn→∞An.

Example 2 The family I(an) =
{
I ⊆ N :

∑
n∈I an < +∞

}
is an admissible ideal on N and is called a

summable ideal, where (an)n∈N is a sequence of positive real numbers such that
∑

n∈N an = +∞. Let’s take
the sequence (an)n∈N = (1/n)n∈N specifically. In this case, we have

F∗(1/n)

(
I(1/n)

)
= {M ⊆ N :

∑
n∈M

(1/n) = +∞}.

Now, on the Euclidean space R let’s define a sequence (An)n∈N by

An =


[
−1 + 1

2n
, 2 +

1

2n

]
, if n is odd,[

−2− 1
n
, 1− 1

n

]
, if n is even,

for each n ∈ N. Since M1 = {2k − 1 : k ∈ N} and M2 = {2k : k ∈ N} belong to F∗(1/n)

(
I(1/n)

)
, it is easy to

see that the sets A = [−1, 2] and B = [−2, 1] are I-K-limit sets of the sequence (An)n∈N. Additionally, we
get

I- lim sup
n→∞

An = A ∪B = [−2, 2] and I- lim inf
n→∞

An = A ∩B = [−1, 1] .

If the family I-K-limAn is infinite, Theorem 3 may not be satisfied, as seen in the example below.

Example 3 Let’s consider the ideal I(1/n) =
{
I ⊆ N :

∑
n∈I (1/n) < +∞

}
again. On the Euclidean space

R let’s define a sequence (An)n∈N by

An =

{
1

k

}
if n ∈Mk

for each n ∈ N where

Mk := 2
k−1 (2N− 1) =

{
2k−1, 3 · 2k−1, 5 · 2k−1, ..., (2n− 1) 2k−1, ...

}
for each k ∈ N. For each k ∈ N, since

∑
n∈Mk

1
n =

1
2k−1

∑
n∈N

1
2n−1 = +∞, we have Mk ∈ F∗(1/n)

(
I(1/n)

)
.

Then we get I-K-LIMAn =
{{

1
k

}
: k ∈ N

}
,

I- lim inf
n→∞

An =
⋂

A∈I-K- LIMAn

A = ∅ and
⋃

A∈I-K- LIMAn

A =

{
1,
1

2
,
1

3
, ...,

1

k
, ...

}
but

I − lim sup
n→∞

An =

{
1,
1

2
,
1

3
, ...,

1

k
, ...

}
∪ {0} .



Albayrak et al. 181

The following theorem is easily obtained from Lemma 2.

Theorem 4 Let An ∈ K (X) for every n ∈ N and let M = {n1 < n2 < ... < nk < ...} ∈ F∗ (I) where I is
an admissible ideal.

1. If the subsequence (Ank)k∈N of (An)n∈N is monotone increasing and cl
(⋃

k∈NAnk
)
∈ K (X). Then the

set cl
(⋃

k∈NAnk
)
is an I-K-limit set of (An)n∈N.

2. If the subsequence (Ank)k∈N of (An)n∈N is monotone decreasing. Then the set
⋂
k∈NAnk is an I-K-

limit set of (An)n∈N.
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