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Abstract

Linear dependence is a very important and fundamental concept in linear algebra, operator theory,
and all related fields. When linear maps T1, . . . , Tn : X → Y are linearly dependent, they are necessarily
“locally linearly dependent”, which means T1x, . . . , Tnx are linearly dependent for all x ∈ X. For two
linear operators T, S : X → Y, T is said a local multiple to S, whenever T is a point-wise multiple of S,
i.e., there is a scalar-valued function c : X → F such that Tx = c(x)Sx holds for all x ∈ X. If T is a local
multiple to S, then T and S are locally linearly dependent, whereas, as we will show, the reverse of this
claim is not necessarily true. In this paper, we characterize two local multiple operators. We show T is
a local multiple to S, if and only if T is a scalar multiple to S. As a consequence, we apply our results
to bounded linear operators defined on inner product spaces.

1 Introduction

For a vector space X, a linear operator T : X → X is said to be algebraic if there exists a non-trivial
polynomial p such that p(T ) = 0. Kaplansky ([7]) has proved that for a complex vector space X the linear
operator T : X → X is algebraic if and only if for every x ∈ X, there exists a positive integer n such that
x, Tx, . . . , Tnx are linearly dependent. For a vector space X over an algebraically closed field F, Cater ([4])
proved the linear operator T : X → X is algebraic if and only if

sup
x∈X

dim span {x, Tx, T 2x, T 3x, . . .} <∞. (1)

In other words, by (1), T is algebraic if and only if there is N ∈ N such that for all x ∈ X we have
dim span{x, Tx, T 2x, T 3x, . . .} ≤ N.
Both of the equivalent conditions obtained by Kaplansky and Cater include a concept called local linear

dependence.
Linear operators T1, . . . , Tn : X → Y are said locally linearly dependent if T1x, . . . , Tnx are linearly

dependent for every x ∈ X. Local linear dependence for linear operators T1, . . . , Tn is obviously equivalent
to for every x ∈ X there is a nonzero S ∈ span{T1, . . . , Tn} such that Sx = 0. The structure of n-tuples
of locally linearly dependent has applications in ring theory, derivations, and reflexivity of operator spaces
(see, for examples [1, 2, 3, 5, 8]).
In what follows, we will discuss the concept of local multiple for two linear operators defined on a vector

space over the field F, where F denotes the real or complex numbers. In Section 2, we show for two linear
operators S, T : X → Y, S is local multiple to T , if and only if S is an scalar multiple to T. Meanwhile, we
show the local linear dependence is not equivalent to linear dependence.
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2 Local Multiplicity and Local Linear Dependence Operators

First, we define local multiplicity and local linear dependence for linear operators. In the following, we will
restrict to linear operators between vector spaces over the field F of real or complex numbers.

Definition 1 ([6, 9, 10, 12]) For n ∈ N the linear operators T1, . . . , Tn : X → Y are locally linearly
dependent, if T1x, . . . , Tnx are linearly dependent for every x ∈ X.

Linear dependence is stronger than local linear dependence. Moreover, T1, . . . , Tn are locally linearly
dependent operators if and only if there are functions c1, . . . , cn : X → F such that

(
c1(x), . . . , cn(x)

)
6= 0

and that c1(x)T1x+ · · ·+ cn(x)Tnx = 0, holds for all x ∈ X.
Local multiplicity is a special case of local linear dependence that is defined as follows:

Definition 2 Let X and Y be two vector spaces over the field F and T, S : X → Y are two linear maps.
Then T is said to be locally multiple to S if there is a function c : X → F such that Tx = c(x)Sx holds for
all x ∈ X.

For a linear map f : X → Y, ker(f) denotes the set of all vectors x ∈ X with f(x) = 0. The following
theorem is a basic tool about functionals and will be used in the following results.

Theorem 1 ([11, Lemma 3.1]) Let X be a linear space and f, g1, . . . , gn be linear functionals on X. If
∩ni=1 ker(gi) ⊆ ker(f), then f is a linear combination of g1, . . . , gn.

We note that the previous theorem is not true for arbitrary linear maps. For example, if C(R) denotes
the set of all continuous real functions on R, and T, S : C(R)→ C(R) are defined by Tf := f (the identity
operator) and Sf := g, where g is defined by g(x) := f(x+ 1), for all f ∈ C(R) and x ∈ R, then it is clear
that both T and S are one-to-one. So, we have ker(T ) = {0} ⊆ ker(S) = {0} while S is not a multiple of T.
In the following theorem, we show the two notions of local multiplicity and multiplicity are equivalent.

Theorem 2 Let T, S : X → Y be two linear maps. If T is a local multiple to S, then T is a multiple to S.

Proof. Suppose that Tx = c(x)Sx, holds for all x ∈ X. We consider the following three cases:
Case I. dim Im(S) = 0; Then it is obvious that S = T = 0.

Case II. dim Im(S) = 1; Then we have from using Theorem 1 that T = cS, for some constant c ∈ F.
Case III. dim Im(S) ≥ 2; Suppose that x, y /∈ ker(S). If Sx and Sy are linearly independent, then we

have

c(x)Sx+ c(y)Sy = Tx+ Ty

= T (x+ y)

= c(x+ y)S(x+ y)

= c(x+ y)Sx+ c(x+ y)Sy.

Therefore, (c(x+ y)− c(x))Sx+ (c(x+ y)− c(y))Sy = 0, which follows from the linear independence of Sx
and Sy that c(x+y) = c(x) and c(x+y) = c(y). Thus c(x) = c(y). Now, if Sx and Sy are linearly dependent,
then

dim span{Sx, Sy} = 1 < 2 ≤ dim Im(S). (2)

Therefore, there is z ∈ X such that the two sets {Sx, Sz} and {Sy, Sz} are independent. So, from using Case
II we have c(x) = c(y). Thus c(x) = c(y) holds for all x, y /∈ ker(S), which shows the function c : X → F is
constant on X r ker(S), with the constant value λ. Therefore, T = λS which completes the proof.

Example 1 Suppose that H is a Hilbert space, 0 6= x0 ∈ H, and θ1, θ2 ∈ H∗, where H∗ denotes the dual
of H. Let T1, T2 : H → H are both bounded linear operators which are defined as T1x = θ1(x)x0 and
T2x = θ2(x)x0, for all x ∈ H. Then we have
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(i) T1 and T2 are locally linearly dependent ((i) follows from the equality {T1x, T2x} = {θ1(x)x0, θ2(x)x0}).

(ii) T1 is a local multiple to T2 if and only if T1 is multiple to T2 (using Theorem 2).

(iii) T ∗1 and T ∗2 are not necessarily locally linearly dependent (To show (iii), using Riesz representation
theorem, there are x1, x2 ∈ H such that T1x = 〈x, x1〉x0 and T2x = 〈x, x2〉x0. Therefore, T ∗1 x =
〈x, x0〉x1 and T ∗2 x = 〈x, x0〉x2, that shows T ∗1 and T ∗2 are not necessarily locally linearly dependent
operators).

Theorem 3 Suppose T, S : X → Y are linear operators. Then the following conditions are equivalent.

(i) T and S are locally linearly dependent and ker(T ) ⊆ ker(S);

(ii) S is a multiple of T ; and

(iii) S is a local multiple to T.

Proof. (i)⇒ (ii): There are two functions c1, c2 : X → F such that

(c1(x), c2(x)) 6= 0 and c1(x)Tx+ c2(x)Sx = 0 for all x ∈ X. (3)

For any given x ∈ X we consider the following two cases:

Case 1. Sx 6= 0. Then c2(x) 6= 0, otherwise it follows from (3) that c1(x) 6= 0 and c1(x)Tx = 0. So
Tx = 0 which contradicts the assumption that ker(T ) ⊆ ker(S). Therefore, c2(x) 6= 0 which implies from (3)
that

Sx =
−c1(x)
c2(x)

Tx for all x ∈ X with Sx 6= 0. (4)

Case 2. Sx = 0. Then it is clear that

Sx = 0Tx for all x ∈ X with Sx = 0. (5)

From using (4) and (5) it follows that S is a local multiple of T. Thus, by Theorem 2, S is a multiple of T.
(ii)⇒ (i): It is obvious.
(ii)⇔ (iii): Follows from Theorem 2.
The following result is a direct consequence of Theorem 3.

Corollary 1 If T, S : X → Y are locally linearly dependent operators with ker(T ) = ker(S), then S is a
non-zero multiple of T.

Example 2 Suppose that T1, T2, T3 : R2 → R2 are defined by T1 = id, T2 =
(
0 1
1 0

)
, and T3 =

(
1 0
0 0

)
.

Then it is clear that, however, {T1, T2, T3} is independent, but it is a locally linearly dependent set. In fact

if we set c1(x) = x21, c2(x) = −x1x2, and c3(x) = x22 − x21, for each 0 6= x =

(
x1
x2

)
∈ R3 and we set

c1(0) = c2(0) = c3(0) = 1, then (c1(x), c2(x), c3(x)) 6= 0. Furthermore, c1(x)T1x+ c2(x)T2x+ c3(x)T3x = 0.

As the previous example shows, in the general case, local dependence does not necessarily follow depen-
dence. The next theorem can be proved easily and is an extension of the previous example to a more general
state.

Theorem 4 Suppose that m,n ∈ N, X and Y are two vector spaces and m = dimY < n. Then every linear
maps T1, . . . , Tn : X → Y are locally linearly dependent. In particular, every two linear functionals θ1, θ2 on
X are locally linearly dependent.



170 Local Linear Dependence and Local Multiplicity for Two Linear Operators

Theorem 5 Let X and Y be two vector spaces, Y 6= 0, and dimX ≥ n > 1. Then there are linear maps
T1, . . . , Tn : X → Y such that {T1, . . . , Tn} is locally linearly dependent but not dependent, i.e., {T1, . . . , Tn}
is independent.

Proof. Because Y 6= 0, it implies that there is y0 ∈ Y with y0 6= 0. On the other hand, from using
the assumption dimX ≥ n > 1, there are e1, . . . , en ∈ X such that B0 = {e1, . . . , en} is independent.
If B ⊆ X is an extension of B0 to some algebraic basis of X, then for each x ∈ X, there are unique
x0 = α1e1 + · · ·+ αnen ∈ span(B0) and x1 ∈ span(B r B0) such that x = x0 + x1. If we set Tkx = αky0 for
all 1 ≤ k ≤ n and x ∈ X, then it is clear that {T1, . . . , Tn} is independent. Moreover, because

dim span{T1x, . . . , Tnx} ≤ dim span{y0} = 1 < n,

it follows that {T1, . . . , Tn} is locally linearly dependent.
The next corollary is an application of Theorem 3 for operators on inner product spaces.

Corollary 2 Let X be a linear space and Y an inner product space over the field F. If T, S : X → Y are
linear maps which satisfy |〈Tx, y〉| ≤ |〈Sx, y〉|, for all x ∈ X and y ∈ Y, then T is a multiple of S.

Proof. First, we show T and S are locally linearly dependent. Because, otherwise, there is x ∈ X such that
{Tx, Sx} is an independent subset of Y. Now we consider y = Tx− 〈Tx,Sx〉‖Sx‖2 Sx. Therefore, we have

〈Tx, y〉 = 〈Tx, Tx〉 − 〈Tx, Sx〉‖Sx‖2 〈Tx, Sx〉 = ‖Tx‖
2 − |〈Tx, Sx〉|

2

‖Sx‖2 (6)

Because {Tx, Sx} is independent, the equality is not satisfies in the Cauchy-Schwarz inequality |〈Tx, Sx〉| ≤
‖Tx‖ ‖Sx‖. Therefore, from (6) and using the assumption we obtain

0 < |〈Tx, y〉| ≤ |〈Sx, y〉| = |〈Sx, Tx〉 − 〈Sx, Tx〉| = 0,

which contradicts. This contradiction shows T and S are locally linearly dependent. On the other hand, it
is clear that ker(S)⊆ker(T ). Thus from Theorem 3, T is a scalar multiple of S.
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