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Abstract

In the present article, we use the q-Bernoulli polynomial and define two certain families S∗Σ(q;x) and
CΣ(q;x) of normalized holomorphic and bi-univalent functions which are defined in the open unit disk
U. We establish upper bounds for the initial Taylor-Maclaurin coeffi cients and the Fekete-Szegö type
inequalities of functions in these families.

1 Introduction

Denote by A the collection of all analytic functions in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

having the following normalized form:

f(z) = z +

∞∑
n=2

anz
n. (1)

Further, assume that S stands for the sub-collection of the set A consisting of functions which are also
univalent in U.
A function f ∈ S is called starlike of order γ(0 ≤ γ < 1) if

<
(
zf ′(z)

f(z)

)
> γ, (z ∈ U)

and a function f ∈ S is called convex of order γ(0 ≤ γ < 1) if

<
(
zf ′′(z)

f ′(z)
+ 1

)
> γ, (z ∈ U).

We denote by S∗(γ) and C(γ) the families of functions which are starlike of order γ and convex of order γ
in U, respectively.
According to the Koebe one-quarter theorem [6], every function f ∈ S has an inverse f−1 defined by

f−1
(
f(z)

)
= z (z ∈ U)

and

f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) = 1

4

)
,

∗Mathematics Subject Classifications: Primary 30C45; Secondary 30C50, 33C05.
†Department of Mathematics, College of Science,University of Al-Qadisiyah, Al Diwaniyah 58001, Al-Qadisiyah, Iraq
‡Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

105



106 Coeffi cient Bounds and Fekete-Szegö Inequalities

where
g(w) = f−1(w) = w − a2w

2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

For f ∈ A, if both f and it inverse f−1 are univalent in U, we say that f is a bi-univalent function in
U. We indicate by Σ the family of all bi-univalent functions in U given by (1). For a brief historical account
and for several interesting examples of functions in the family Σ, one may see the pioneering work on this
subject by Srivastava et al. [47]. In a considerably large number of sequels to the aforementioned work
of Srivastava et al. [47], very large number of works related to bi-univalent functions were introduced and
studied for several different subfamilies analogously by many authors (see, for example, [1, 5, 11, 21, 29, 30,
31, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52]). From the work of Srivastava et al. [47], we choose to recall the
following examples of functions in the family Σ :

z

1− z , − log(1− z) and
1

2
log

(
1 + z

1− z

)
.

We notice that the family Σ is not empty. However, the Koebe function is not a member of Σ.
The problem to find the general coeffi cient bounds on the Taylor-Maclaurin coeffi cients

|an| (n ∈ N; n = 3)

for functions f ∈ Σ is still not completely addressed for many of the subfamilies of the bi-univalent function
family Σ.
The Fekete-Szegö functional

∣∣a3 − µa2
2

∣∣ for f ∈ S is well known for its rich history in the field of Geometric
Function Theory. Its origin was in the disproof by Fekete and Szegö [8] of the Littlewood-Paley conjecture
that the coeffi cients of odd univalent functions are bounded by unity. The functional has since received great
attention, particularly in the study of many subfamilies of the family of univalent functions. This topic has
become of considerable interest among researchers in Geometric Function Theory of Complex Analysis.
With a view to recalling the principle of subordination between holomorphic functions, let the functions

f and g be holomorphic in U. We say that the function f is subordinate to g, if there exists a Schwarz
function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U),

such that
f(z) = g

(
ω(z)

)
.

This subordination is denoted by

f ≺ g or f(z) ≺ g(z) (z ∈ U).

It is well known that, if the function g is univalent in U, then (see [25])

f ≺ g (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊆ g(U).

For 0 < q < 1, the q-factorial denoted by [n]q! is defined by (see [14])

[n]q! =

{
[n]q[n− 1]q · · · [2]q[1]q, if n = 1, 2, 3, ...,

1, if n = 0,

where [n]q, called the q-analogue of n ∈ N, is given by

[n]q =
1− qn
1− q for n ∈ N.

Jackson [13, 14] introduced the q-derivative operator Dq of a function f as follows:

Dqf(z) =
f(z)− f(qz)

(1− q)z (0 < q < 1; z 6= 0) .



A. K. Wanas and S. C. Khachi 107

It is clear that
lim
q→1−

Dqf(z) = f ′(z) and Dqf(0) = f ′(0).

For more conceptual details on the q-derivative operator Dq, see [7, 9, 10].
For a function f ∈ A defined by (1), we deduce that

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1,

As q −→ 1−, then we have [n]q −→ n and [0]q = 0.
The q-exponential function eq is defined by the power series expansion (see [20])

eq(z) =

∞∑
n=0

zn

[n]q!
, (z ∈ U).

We note that

e(z) = lim
q→1−

eq(z) =

∞∑
n=0

zn

n!
.

The q-exponential function eq is a unique function that satisfies the condition

Dqe(z)

Dqz
=

∞∑
n=0

Dqz
n

[n]q!
=

∞∑
n=1

[n]qz
n−1

[n]q!
=

∞∑
n=1

zn−1

[n− 1]q!
=

∞∑
n=0

zn

[n]q!
= eq(z), (z ∈ U).

In recent years, several authors studied many applications of the q-calculus associated with various
families of analytic and univalent (or multivalent) functions (see, for example, [4, 12, 15, 16, 17, 22, 26,
27, 28, 32, 34, 35, 36, 39, 54]). In his recently-published survey-cum-expository review article, Srivastava
[37] explored the mathematical applications of the q-calculus, the fractional q-calculus and the fractional
q-derivative operators in Geometric Function Theory of Complex Analysis. Srivastava [37] also exposed the
not-yet-widely-understood fact that the so-called (p, q)-variation of the classical q-calculus a rather trivial
and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or
superfluous (see, for details, [37, p. 340]).
The q-Bernoulli polynomials Bq,n(x) in Geometric Function Theory of Complex Analysis are given by

the following linear homogeneous recurrence relation remains true(see, for instance, [3, 24]):

Bq,n(x) = qn

(
x− 1

q[2]q

)
Bq,n−1(x)− 1

[n]q

n−2∑
j=0

(
n

j

)
q

qj−1bn−j,qBn,q(x), (3)

with

Bq,0(x) = 1, Bq,1(x) =
[2]qx− q

[2]q
, and Bq,2(x) = x(x− 1) +

q

[2]q[3]q
.

The generating function of the q-Bernoulli polynomials Bq,n(x) is given as follows (see [3]):

Bq(x, h) =
h

eq(h)− 1
eq(hx) =

∞∑
n=0

Bq,n(x)
hn

[n]q!
, |h| < 2π. (4)

The families of orthogonal polynomials and other special functions and specific polynomials, as well
as their extensions and generalizations, are potentially useful in a variety of disciplines in many branches
of science, especially in the mathematical, statistical and physical sciences. The relationship between bi-
univalent functions and orthogonal polynomials has recently come under the scrutiny of various authors (see,
for example, [2, 18, 19, 21, 40, 41, 53]).
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2 Main Results

Using the q-Bernoulli polynomials, we now define the following the families S∗Σ(q;x) and CΣ(q;x) of holo-
morphic bi-starlike and bi-convex functions.

Definition 1 A function f ∈ Σ is said to be in the family S∗Σ(q;x) if it fulfills the following subordination
conditions:

zf ′(z)

f(z)
≺ Bq(x, z)

and
wg′(w)

g(w)
≺ Bq(x,w),

where z, w ∈ U , x ∈ [−π, π] and the function g = f−1 is given by (2).

Definition 2 A function f ∈ Σ is said to be in the family CΣ(q;x) if it fulfills the following subordination
conditions:

1 +
zf ′′(z)

f ′(z)
≺ Bq(x, z)

and

1 +
wg′′(w)

g′(w)
≺ Bq(x,w),

where z, w ∈ U , x ∈ [−π, π] and the function g = f−1 is given by (2).

Theorem 1 Let f ∈ A be in the family S∗Σ(q;x). Then

|a2| 5 min

{√
|[2]qx− q|

[2]q
,

|[2]qx− q|
√
|[2]qx− q|

[2]q

√∣∣∣([2]q − 1)x2 + (1− 2q)x+
q(q[3]q−1)

[2]q [3]q

∣∣∣
}

and

|a3| 5 min

{
3 |[2]qx− q|

2[2]q
+
|x(x− 1)|

[2]q
+

q

[2]2q[3]q
,
|[2]qx− q|

2[2]q
+

([2]qx− q)2

[2]2q

}
.

Proof. Suppose that f ∈ S∗Σ(q;x). Then there are two holomorphic functions u, v : U −→ U given by

u(z) = u1z + u2z
2 + u3z

3 + · · · (z ∈ U) (5)

and
v(w) = v1w + v2w

2 + v3w
3 + · · · (w ∈ U), (6)

with
u(0) = v(0) = 0 and max {|u(z)| , |v(w)|} < 1 (z, w ∈ U),

such that
zf ′(z)

f(z)
= Bq(x, u(z))

and
wg′(w)

g(w)
= Bq(x, v(w)),

or, equivalently, that
zf ′(z)

f(z)
= 1 +Bq,1(x)u(z) +

1

[2]q
Bq,2(x)u2(z) + · · · (7)
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and
wg′(w)

g(w)
= 1 +Bq,1(x)v(w) +

1

[2]q
Bq,2(x)v2(w) + · · · . (8)

Combining (5), (6), (7) and (8), we find that

zf ′(z)

f(z)
= 1 +Bq,1(x)u1z +

[
Bq,1(x)u2 +

1

[2]q
Bq,2(x)u2

1

]
z2 + · · · (9)

and
wg′(w)

g(w)
= 1 +Bq,1(x)v1w +

[
Bq,1(x)v2 +

1

[2]q
Bq,2(x)v2

1

]
w2 + · · · . (10)

It is well-known that, if
max {|u(z)| , |v(w)|} < 1 (z, w ∈ U),

then
|uj | 5 1 and |vj | 5 1 (∀ j ∈ N). (11)

Now, by comparing the corresponding coeffi cients in (9) and (10), and after some simplification, we have

a2 = Bq,1(x)u1, (12)

2a3 − a2
2 = Bq,1(x)u2 +

1

[2]q
Bq,2(x)u2

1, (13)

− a2 = Bq,1(x)v1 (14)

and (
3a2

2 − 2a3

)
= Bq,1(x)v2 +

1

[2]q
Bq,2(x)v2

1 . (15)

It follows from (12) and (14) that
u1 = −v1 (16)

and
2a2

2 = B2
q,1(x)(u2

1 + v2
1). (17)

If we add (13) to (15), we find that

2a2
2 = Bq,1(x)(u2 + v2) +

1

[2]q
Bq,2(x)(u2

1 + v2
1). (18)

Upon substituting the value of u2
1 + v2

1 from (17) into the right-hand side of (18), we deduce that

a2
2 =

B3
q,1(x)(u2 + v2)

2
[
B2
q,1(x)− 1

[2]q
Bq,2(x)

] . (19)

By further computations using (3), (11), (17) and (19), we obtain

|a2| 5
√
|[2]qx− q|

[2]q
, |a2| 5

|[2]qx− q|
√
|[2]qx− q|

[2]q

√∣∣∣([2]q − 1)x2 + (1− 2q)x+
q(q[3]q−1)

[2]q [3]q

∣∣∣ .
Next, if we subtract (15) from (13), we can easily see that

4
(
a3 − a2

2

)
= Bq,1(x)(u2 − v2) +

1

[2]q
Bq,2(x)(u2

1 − v2
1). (20)
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In view of (16) and substituting the value of a2
2 from (17) into (20), we find that

a3 =
Bq,1(x)(u2 − v2)

4
+
B2
q,1(x)(u2

1 + v2
1)

2
.

Thus, by applying (3), we obtain

|a3| 5
|[2]qx− q|

2[2]q
+

([2]qx− q)2

[2]2q
.

In addition, substituting the value of a2
2 from (18) into (20), we deduce that

a3 =
Bq,1(x)(u2 − v2)

4
+
Bq,1(x)(u2 + v2)

2
+
Bq,2(x)(u2

1 + v2
1)

2[2]q
,

and we have

|a3| 5
3 |[2]qx− q|

2[2]q
+
|x(x− 1)|

[2]q
+

q

[2]2q[3]q
.

This completes the proof of Theorem 1.

Theorem 2 Let f ∈ A be in the family CΣ(q;x). Then

|a2| 5 min

{
1

2

√
|[2]qx− q|

[2]q
,

|[2]qx− q|
√
|[2]qx− q|

[2]q

√
2
∣∣∣([2]q − 2)x2 + 2(1− q)x+

q(q[3]q−2)
[2]q [3]q

∣∣∣
}

and

|a3| 5 min

{
2 |[2]qx− q|

3[2]q
+
|x(x− 1)|

2[2]q
+

q

2[2]2q[3]q
,
|[2]qx− q|

6[2]q
+

([2]qx− q)2

4[2]2q

}
.

Proof. Suppose that f ∈ CΣ(q;x). Then there are two holomorphic functions u, v : U −→ U such that

1 +
zf ′′(z)

f ′(z)
= Bq(x, u(z))

and

1 +
wg′′(w)

g′(w)
= Bq(x, v(w)),

where u and v have the forms (5) and (6). We have

1 +
zf ′′(z)

f ′(z)
= 1 +Bq,1(x)u(z) +

1

[2]q
Bq,2(x)u2(z) + · · · (21)

and

1 +
wg′′(w)

g′(w)
= 1 +Bq,1(x)v(w) +

1

[2]q
Bq,2(x)v2(w) + · · · . (22)

From (21) and (22), we deduce that

1 +
zf ′′(z)

f ′(z)
= 1 +Bq,1(x)u1z +

[
Bq,1(x)u2 +

1

[2]q
Bq,2(x)u2

1

]
z2 + · · · (23)

and

1 +
wg′′(w)

g′(w)
= 1 +Bq,1(x)v1w +

[
Bq,1(x)v2 +

1

[2]q
Bq,2(x)v2

1

]
w2 + · · · . (24)
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Now, by comparing the corresponding coeffi cients in (23) and (24), and after some simplification, we have

2a2 = Bq,1(x)u1, (25)

6a3 − 4a2
2 = Bq,1(x)u2 +

1

[2]q
Bq,2(x)u2

1, (26)

− 2a2 = Bq,1(x)v1 (27)

and
8a2

2 − 6a3 = Bq,1(x)v2 +
1

[2]q
Bq,2(x)v2

1 . (28)

It follows from (25) and (27) that
u1 = −v1 (29)

and
8a2

2 = B2
q,1(x)(u2

1 + v2
1). (30)

If we add (26) to (28), we find that

4a2
2 = Bq,1(x)(u2 + v2) +

1

[2]q
Bq,2(x)(u2

1 + v2
1). (31)

Upon substituting the value of u2
1 + v2

1 from (30) into the right-hand side of (31), we deduce that

a2
2 =

B3
q,1(x)(u2 + v2)

4
[
B2
q,1(x)− 2

[2]q
Bq,2(x)

] . (32)

By further computations using (3), (11), (30) and (32), we obtain

|a2| 5
1

2

√
|[2]qx− q|

[2]q
, |a2| 5

|[2]qx− q|
√
|[2]qx− q|

[2]q

√
2
∣∣∣([2]q − 2)x2 + 2(1− q)x+

q(q[3]q−2)
[2]q [3]q

∣∣∣ .
Next, if we subtract (28) from (26), we can easily see that

12
(
a3 − a2

2

)
= Bq,1(x)(u2 − v2) +

1

[2]q
Bq,2(x)(u2

1 − v2
1). (33)

In view of (29) and substituting the value of a2
2 from (30) into (33), we find that

a3 =
Bq,1(x)(u2 − v2)

12
+
B2
q,1(x)(u2

1 + v2
1)

8
.

Thus, by applying (3), we obtain

|a3| 5
|[2]qx− q|

6[2]q
+

([2]qx− q)2

4[2]2q
.

In addition, substituting the value of a2
2 from (31) into (33), we deduce that

a3 =
Bq,1(x)(u2 − v2)

12
+
Bq,1(x)(u2 + v2)

4
+
Bq,2(x)(u2

1 + v2
1)

4[2]q
,

and we have

|a3| 5
2 |[2]qx− q|

3[2]q
+
|x(x− 1)|

2[2]q
+

q

2[2]2q[3]q
.

This completes the proof of Theorem 2.

In the next theorems, we present the Fekete-Szegö type inequalities for the families S∗Σ(q;x) and CΣ(q;x).
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Theorem 3 For µ ∈ R, let f ∈ A be in the family S∗Σ(q;x). Then

∣∣a3 − µa2
2

∣∣ 5



|[2]qx−q|
2[2]q

;

|ϕ− 1| 5
[2]2q

∣∣∣∣([2]q−1)x2+(1−2q)x+
q(q[3]q−1)
[2]q [3]q

∣∣∣∣
2([2]qx−q)2

,

|[2]qx−q|3|µ−1|

[2]3q

∣∣∣∣([2]q−1)x2+(1−2q)x+
q(q[3]q−1)
[2]q [3]q

∣∣∣∣ ;

|ϕ− 1| =
[2]2q

∣∣∣∣([2]q−1)x2+(1−2q)x+
q(q[3]q−1)
[2]q [3]q

∣∣∣∣
2([2]qx−q)2

.

Proof. It follows from (19) and (20) that

a3 − µa2
2 =

Bq,1(x)(u2 − v2)

4
+ (1− µ) a2

2

=
Bq,1(x)(u2 − v2)

4
+
B3
q,1(x)(u2 + v2) (1− µ)

2
[
B2
q,1(x)− 1

[2]q
Bq,2(x)

]
=
Bq,1(x)

2

[(
ϕ(µ, x) +

1

2

)
u2 +

(
ϕ(µ, x)− 1

2

)
v2

]
,

where

ϕ(µ, x) =
B2
q,1 (1− µ)

B2
q,1(x)− 1

[2]q
Bq,2(x)

.

Thus, according to (3), we have

∣∣a3 − µa2
2

∣∣ 5

|[2]qx−q|

2[2]q
, 0 5 |ϕ(µ, x)| 5 1

2 ,

|[2]qx−q|.|ϕ(µ,x)|
[2]q

, |ϕ(µ, x)| = 1
2 .

After simple computation, we deduce that

∣∣a3 − µa2
2

∣∣ 5



|[2]qx−q|
2[2]q

;

|ϕ− 1| 5
[2]2q

∣∣∣∣([2]q−1)x2+(1−2q)x+
q(q[3]q−1)
[2]q [3]q

∣∣∣∣
2([2]qx−q)2

,

|[2]qx−q|3|µ−1|

[2]3q

∣∣∣∣([2]q−1)x2+(1−2q)x+
q(q[3]q−1)
[2]q [3]q

∣∣∣∣ ;

|ϕ− 1| =
[2]2q

∣∣∣∣([2]q−1)x2+(1−2q)x+
q(q[3]q−1)
[2]q [3]q

∣∣∣∣
2([2]qx−q)2

.

This completes the proof of Theorem 3.

By putting µ = 1 in Theorem 3, we obtain the following result.

Corollary 1 If f ∈ A be in the family S∗Σ(q;x), then

∣∣a3 − a2
2

∣∣ 5 |[2]qx− q|
2[2]q

.
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Theorem 4 For µ ∈ R, let f ∈ A be in the family CΣ(q;x). Then

∣∣a3 − µa2
2

∣∣ 5



|[2]qx−q|
6[2]q

;

|ψ − 1| 5
[2]2q

∣∣∣∣([2]q−2)x2+2(1−q)x+
q(q[3]q−2)
[2]q [3]q

∣∣∣∣
3([2]qx−q)2

,

|[2]qx−q|3|µ−1|

2[2]3q

∣∣∣∣([2]q−2)x2+2(1−q)x+
q(q[3]q−2)
[2]q [3]q

∣∣∣∣ ;

|ψ − 1| =
[2]2q

∣∣∣∣([2]q−2)x2+2(1−q)x+
q(q[3]q−2)
[2]q [3]q

∣∣∣∣
3([2]qx−q)2

.

Proof. It follows from (32) and (33) that

a3 − µa2
2 =

Bq,1(x)(u2 − v2)

12
+ (1− µ) a2

2

=
Bq,1(x)(u2 − v2)

12
+
B3
q,1(x)(u2 + v2) (1− µ)

4
[
B2
q,1(x)− 2

[2]q
Bq,2(x)

]
=
Bq,1(x)

4

[(
ψ(µ, x) +

1

3

)
u2 +

(
ψ(µ, x)− 1

3

)
v2

]
,

where

ψ(µ, x) =
B2
q,1 (1− µ)

B2
q,1(x)− 2

[2]q
Bq,2(x)

.

Thus, according to (3), we have

∣∣a3 − µa2
2

∣∣ 5

|[2]qx−q|

6[2]q
, 0 5 |ψ(µ, x)| 5 1

3 ,

|[2]qx−q|.|ψ(µ,x)|
2[2]q

, |ψ(µ, x)| = 1
3 .

After simple computation, we deduce that

∣∣a3 − µa2
2

∣∣ 5



|[2]qx−q|
6[2]q

;

|ψ − 1| 5
[2]2q

∣∣∣∣([2]q−2)x2+2(1−q)x+
q(q[3]q−2)
[2]q [3]q

∣∣∣∣
3([2]qx−q)2

,

|[2]qx−q|3|µ−1|

2[2]3q

∣∣∣∣([2]q−2)x2+2(1−q)x+
q(q[3]q−2)
[2]q [3]q

∣∣∣∣ ;

|ψ − 1| =
[2]2q

∣∣∣∣([2]q−2)x2+2(1−q)x+
q(q[3]q−2)
[2]q [3]q

∣∣∣∣
3([2]qx−q)2

.

This completes the proof of Theorem 4.

By putting µ = 1 in Theorem 4, we obtain the following result.

Corollary 2 If f ∈ A be in the family CΣ(q;x), then

∣∣a3 − a2
2

∣∣ 5 |[2]qx− q|
6[2]q

.



114 Coeffi cient Bounds and Fekete-Szegö Inequalities

3 Conclusion

The fact that we can find many unique and effective usages of a large variety of interesting special functions
and specific polynomials in Geometric Function Theory of Complex Analysis provided the primary inspiration
and motivation for our analysis in this article. Our main objective was to define a new families S∗Σ(q;x) and
CΣ(q;x) of normalized holomorphic and bi-univalent functions which are defined by means of the q-Bernoulli
polynomial Bq,n(x) given by the recurrence relation (3) and by generating function Bq(x, h) in (4). We have
established inequalities for the initial Taylor-Maclaurin coeffi cients and Fekete-Szegö problem of functions
belonging to these newly-introduced families.
It should be remarked that, in many recent investigations dealing with some of the topics of our presen-

tation in this paper, the basic or quantum (or q-) calculus was extensively used (see, for example, [23], [33]
and [46]).
We deduce the present article by recalling a recently-published survey-cum-expository review article in

which Srivastava [37] explored the mathematical applications of the q-calculus, the fractional q-calculus and
the fractional q-derivative operators in Geometric Function Theory of Complex Analysis, especially in the
study of Fekete-Szegö functional. Srivastava [37] also exposed the not-yet-widely-understood fact that the
so-called (p, q)-variation of the classical q-calculus is, in fact, a rather trivial and inconsequential variation
of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [37,
p. 340]; see also [38, pp. 1511—1512]).
As future research directions, the contents of the paper on a q-Bernoulli polynomial could inspire further

research related to other families.

Acknowledgment. The authors thank the constructive comments and suggestions by the editor and
anonymous referees, which have contributed to the improvement of the presentation of this paper.
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[4] O. Altıntaş and N. Mustafa, Coeffi cient bounds and distortion theorems for the certain analytic func-
tions, Turkish J. Math., 43(2019), 985—997.

[5] S. Bulut, Coeffi cient estimates for general subclasses ofm-fold symmetric analytic bi-univalent functions,
Turkish J. Math., 40(2016), 1386—1397.

[6] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259,
Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[7] H. Exton, q-Hypergeometric Functions and Applications, Ellis Horwood Ltd., Chichester; Halsted Press,
New York, 1983, 347 pp.

[8] M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc.,
8(1933), 85—89.

[9] G. Gasper and M. Rahman, Basic Hypergeometric Series (With a foreword by Richard Askey), Second
edition, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge,
2004.



A. K. Wanas and S. C. Khachi 115

[10] H. A. Ghany, q-Derivative of basic hypergeomtric series with respect to parameters, Internat. J. Math.
Anal.,3(2009), 1617—1632.

[11] H. Ö. Güney, G. Murugusundaramoorthy and J. Sokół, Subclasses of bi-univalent functions related to
shell-like curves connected with Fibonacci numbers, Acta Univ. Sapient. Math., 10(2018), 70—84.

[12] S. Husain, S. Khan, M. A. Zaighum and M. Darus, Applications of a q-Sălăgean type operator on
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