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Abstract

A multi-parameter and planar first-order autonomous differential system of degree six is shown to be

integrable. More specifically, we show that it possesses a time-dependent first integral and an autonomous

one. This enables us to analytically obtain the solutions. Moreover, under some appropriate conditions,

we prove that this system admits an explicit hyperbolic algebraic limit cycle. Finally, we draw the

possible phase portraits on the Poincaré disk and illustrate the geometric behavior of the trajectories of

the system.

1 Introduction and Statement of the Main Result

Recent years have seen rapid progress in the study of second-order nonlinear ordinary differential equations.
Some of these equations are of particular interest due to their frequent occurrence in other scientific areas.
As examples, we can cite the Liénard equation [17, 35], the Rayleigh equation [37] and autonomous systems
leading to these types of equations such as Kukles’ system [5, 19] and Kolmogorov system [36]. However, one
of the significant challenges in the study of these nonlinear differential equations and systems is to identify
which ones are integrable. This can be achieved through the investigation of integrability, which enables the
gathering of all necessary data explicitly from solutions or implicitly from invariants such as first integrals,
inverse integrating factors, and invariant algebraic curves, among others.

We recall that an autonomous differential system of dimension n is completely integrable if it has n − 1
independent first integrals, and therefore the exact solutions of the system can be obtained by intersecting
the level sets of these first integrals (for more details, see [9, 28]).

For a planar differential system, the knowledge of a first integral is of great importance in the study of
its dynamical behavior. Several analytical methods have been proposed to tackle integrability, each with
its own advantages and disadvantages. These methods include Noether symmetries [34], Lie symmetries
[32, 6], the Darbouxian theory of integrability [14], direct methods [21, 22] and Painlevé analysis [7, 13].
As a particularly interesting example of the last approach, Nucci and Leach [31] proposed a model for an
infectious disease expressed by

ẋ = −βxy − µx+ γy + µK,

ẏ = βxy − (µ + γ) y,
(1)

where the dot stands for differentiation with respect to time, x(t) and y(t) represent the susceptibles and
the infectives of the population, respectively, β is the infectivity coefficient of the typical Lotka-Volterra
interaction term, µK is the birth rate, µ is the proportionate death rate and γ represents the recovery
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coefficient. Using the Painlevé analysis method, the authors showed that system (1) is integrable under
certain assumptions. After that, they obtained the solution analytically with the help of the Lie theory of
transformation groups.

In [12], Chandrasekar et al. studied the second-order nonlinear ordinary differential equations of the form

ẍ =
P

Q
, P,Q ∈ C [t, x, ẋ] , (2)

where ẋ = dx/dt and P,Q are polynomials in t, x and ẋ with coefficients in the field of complex numbers.
The authors used the extended Prelle-Singer method (for more details, see [15]) to find the first integrals
and general solutions, as well as proposed a new technique to identify linearizing transformations.

Continuing the study on the integrability and exact solutions of nonlinear ordinary differential equations,
Chandrasekar et al. [11] employed the same method to investigate the integrability of the following class of
nonlinear oscillators described by the planar differential system

ẋ = y,

ẏ = − (k1x
q + k2) y − k3x

2q+1 − k4x
q+1 − λ1x,

(3)

where the parameters λ1, q and ki, i = 1, 2, 3, 4 are real. Moreover, the authors obtained integrating factors
and general solutions for the integrable cases.

Thereafter, Lin and Han [23] proved that for specific parameter values of q, k3, k4, the integrable system
(3) possesses a stable limit cycle. They also determined its explicit parametric representation. This limit
cycle was obtained a long time ago in [1] and [4] using the method of invariant curves. In the same direction,
the present paper aims to study the class of first-order autonomous differential systems

ẋ = dx
dt

= P (x, y),

ẏ = dy
dt

= Q(x, y),
(4)

where
P (x, y) = a(−hwx− 2hay− 2hbx2 +wx3 +wa2xy2 + 2wabx3y + wb2x5),

Q(x, y) = 2hx− hway + hwbx2 + 4habxy+ 4hb2x3 +wax2y + wa3y3

−wbx4 +wa2bx2y2 −wab2x4y −wb3x6,

(5)

and a, b, w and h are real parameters. We prove that this class of differential systems is integrable, allowing us
to obtain exact analytical solutions. Furthermore, we show that under certain conditions on the parameters,
the system possesses a hyperbolic algebraic limit cycle. As far as we know, there are very few examples of
planar differential systems that exhibit simultaneously first integral, explicit solutions, and algebraic limit
cycles.

Our main result is the following.

Theorem 1 Let X = (P,Q) be the vector field given by equations (4) and (5). Let also

Γ =
{

(x, y) ∈ R
2 : (bx2 + ay)2 + x2 − h = 0

}

.

When a, b, w ∈ R∗ and h ∈ R, the following statements hold:

1. X has an autonomous first integral H, given by

H(x, y) =

(

bx2 + ay
)2

+ x2

(

bx2 + ay
)2

+ x2 − h
exp

(

w arctan
(

a
y

x
+ bx

))

, ∀(x, y) ∈ R
2.

2. X has a non-autonomous first integral I, given by

I(x, y, t) =

(

bx2 + ay
)2

+ x2

(

bx2 + ay
)2

+ x2 − h
exp(2ahwt), ∀(x, y, t) ∈ R

3.
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3. If h > 0, then X has two exact solutions (xi(t), yi(t)), i ∈ {1, 2}, t ∈ R, given by

xi(t) = (−1)i

√

h cos2(2aht)

1 + hC exp(2ahwt)
,

yi(t) = −

√
h cos2(2aht)

(

b
√
h + (−1)i+1 tan(2aht)

√

1 + hC exp(2ahwt)

cos2(2aht)

)

a(1 + hC exp(2ahwt))
,

where C ≥ 0;

4. If h > 0, then Γ is a hyperbolic algebraic limit cycle for X and the following statements hold:

(a) If aw < 0 (resp. aw > 0), then Γ is stable (resp. unstable);

(b) If aw < 0 (resp. aw > 0), then Γ is the global sink (resp. source) of X;

(c) Γ is the unique limit cycle of X.

Moreover, the phase portraits of X in the Poincaré disk are topologically equivalent to those shown in Figure 1.

h > 0 h 6 0

Figure 1: The topological distinct phase portraits of X.

As many different techniques are necessary to prove our main result, it is useful to include a section that
summarizes these techniques, see for instance [25, 26, 27, 3, 10]. For the sake of self-containment, we have
introduced some preliminary results in Section 2. Theorem 1 is proved in Section 3.

2 Preliminary Results

2.1 First Integrals and Invariant Algebraic Curves

Consider a vector field denoted by X = (P,Q), where P and Q are polynomials. We say that X is integrable
if there exists a non-constant analytic function H : R2 → R, referred to as a first integral of X, such that the
orbits of X are contained in the level sets of H . More specifically, if an orbit of X is given by (x(t), y(t)) for
t ∈ I, where I ⊂ R, then there exists a constant c ∈ R such that H(x(t), y(t)) = c, for all t ∈ I. Note that
H is a first integral of X if and only if

P (x, y)
∂H

∂x
(x, y) +Q(x, y)

∂H

∂y
(x, y) = 0, (6)
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for all (x, y) ∈ R2. If the first integral depends on the time t, i.e., H = H(x, y, t), then we say that H is a
non-autonomous first integral of X if

P (x, y)
∂H

∂x
(x, y, t) +Q(x, y)

∂H

∂y
(x, y, t) +

∂H

∂t
(x, y, t) = 0, (7)

for all (x, y, t) ∈ R2 × I. Let F : R2 → R be a real polynomial. We say that F is an invariant for X if there
exists a real polynomial K : R2 → R, called the cofactor associated with the set F (x, y) = 0, such that

P (x, y)
∂F

∂x
(x, y) +Q(x, y)

∂F

∂y
(x, y) = K(x, y)F (x, y), (8)

for all (x, y) ∈ R2. Note that if n is the maximum of the degrees of P and Q, then degK 6 n − 1. Also,
note that the set F (x, y) = 0 is invariant under the flow of X. Particularly, if the set F (x, y) = 0 contains
an oval, it is called an algebraic limit cycle. For more details about first integrals, invariant algebraic curves
and algebraic limit cycles, refer to Chapter 8 of [16] and the references cited therein.

2.2 Singular Points

Consider X as a polynomial vector field represented by (P,Q). A point q ∈ R2 is said to be a singularity of
X if P (q) = Q(q) = 0. The Jacobian matrix J of the vector field X at q is given by

J(q) =





∂P
∂x

(q) ∂P
∂y

(q)

∂Q
∂x

(q) ∂Q
∂y

(q)



 . (9)

Let λ1 and λ2 be the eigenvalues of the Jacobian matrix J(q), which are the roots of the characteristic
polynomial equation

λ2 − T (q)λ +D(q) = 0,

with D(q) = λ1λ2 and T (q) = λ1 + λ2 are the determinant and trace of J(q), respectively. The singularity
q is said to be:

1. Hyperbolic if both eigenvalues have non-zero real parts. Here, we distinguish:

(a) If D(q) < 0, then q is a saddle.

(b) If D(q) > 0 and T (q) > 0, then q is an unstable focus/node.

(c) If D(q) > 0 and T (q) < 0, then q is a stable focus/node.

2. Non-degenerate monodromic if D(q) > 0 and T (q) = 0. In this case, q is a weak focus or a center.

3. Semi-hyperbolic if D(q) = 0 and T (q) 6= 0.

4. Nilpotent if D(q) = T (q) = 0 and J(q) is not identically zero.

5. Linearly zero if D(q) = T (q) = 0 and J(q) is identically zero.

We study the local phase portraits at hyperbolic, semi-hyperbolic and nilpotent singular points using
Theorems 2.15, 2.19 and 3.5 of [16], respectively. For the linearly zero singularities, we determine their local
phase portraits by applying the blow-up technique.
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2.3 The Blow-up Technique

Let the origin be an isolated singularity of a polynomial vector field X, thus we can perform the change of
coordinates φ : S1 × R+ → R2 given by φ(θ, r) = (r cos θ, r sin θ) = (x, y), where R+ = {r ∈ R : r ≥ 0}.
Consequently, it is possible to obtain the vector field X0 in S1 × R+ by pullback, i.e., X0 = Dφ−1X. When
the k-jet of X (which is the k-th order Taylor expansion of X, denoted as jk) is zero at the origin, the k-jet
of X0 is also zero at every point in S1 × {0}. As a result, one can define the vector X̂ = 1

rkX0 by taking
the first k ∈ N satisfying jk(X(0, 0)) = 0 and jk+1(X(0, 0)) 6= 0. Therefore, understanding the behavior of
X̂ near S1 is equivalent to understanding the behavior of X near the origin. One can also see that S1 is
invariant under the flow of X̂ . For more details on this technique, see [2] or Chapter 3 of [16]. The vector
field X̂ is also given by

ṙ =
xẋ+ yẏ

rk+1
, θ̇ =

xẏ − yẋ

rk+2
.

There exists a generalization of the blow-up technique, known as the quasihomogeneous blow-up. This time,
we consider the change of coordinates ψ(θ, r) = (rα cos θ, rβ sin θ) = (x, y) for (α, β) ∈ N2. In a way analogous
to the previous technique, there exists a vector field X0 in R+ ×S1. For some k ∈ N maximal, one can define
Xα,β = 1

rkX0 and observe that this vector field is expressed as follows

ṙ = ξ(θ)
cos θ rβ ẋ+ sin θ rαẏ

rα+β+k−1
, θ̇ = ξ(θ)

α cos θ rαẏ − β sin θ rβẋ

rα+β+k
,

where ξ(θ) = (β sin2 θ+α cos2 θ)−1. Since ξ(θ) > 0 for all θ ∈ S1, hence, it can be removed through a change
in the time variable. Thus, we have

ṙ =
cos θ rβ ẋ+ sin θ rαẏ

rα+β+k−1
, θ̇ =

α cos θ rαẏ − β sin θ rβẋ

rα+β+k
.

Similarly to the previous technique, for studying the behavior of Xα,β near S1, we study the behavior of X
near the origin.

2.4 The Poincaré Compactification

To investigate the singularities at infinity of the planar vector fieldX = (P,Q) of degree n ∈ N, we employ the
Poincaré compactification. The Poincaré compactified vector field p(X) is an analytic vector field generated
on the sphere S2, as follows (for more details on this technique, see [20] or Chapter 5 of [16]). The Poincaré
sphere is denoted by

S
2 = {(y1, y2, y3) ∈ R

3 : y2
1 + y2

2 + y2
3 = 1}

and the equator is represented by S1 = {(y1, y2, y3) ∈ S2 : y3 = 0}. The northern hemisphere and the
southern hemisphere are defined as

H+ = {(y1, y2, y3) ∈ S
2 : y3 > 0} and H− = {(y1, y2, y3) ∈ S

2 : y3 < 0},

respectively. We identify R2 with the plane (x1, x2, 1) in R3. Consider the central projections f± : R2 → H±,

where f±(x1, x2) = ±∆(x1, x2)(x1, x2, 1), with ∆(x1, x2) = (x2
1 + x2

2 + 1)−
1

2 . These two maps define two
copies of X, one copy X+ in H+ and the other copy X− in H−. Thus we have the vector field X′+ ∪X−

defined on S2\S1, where the equator S1 of the sphere S2 corresponds with the infinity of R2. In order to
extend X′ from S2\S1 to S2, we apply the rescaling yn−1

3 X′. The resulting analytic extension is the Poincaré
compactified vector field p(X). The projection of the closed northern hemisphere onto y3 = 0 using the
transformation (y1, y2, y3) 7→ (y1, y2) is called the Poincaré disk D. The dynamics of p(X) near S1 is the
same as the dynamics of X near infinity in R2. To compute the expression of p(X), we define the local charts
of S2 by

Ui = {(y1, y2, y3) ∈ S
2 : yi > 0} and Vi = {(y1, y2, y3) ∈ S

2 : yi < 0} for i ∈ {1, 2, 3}.
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Their corresponding local maps are φi : Ui → R2 and ψi : Vi → R2 with

φi(y1, y2, y3) = ψi(y1, y2, y3) =

(

ym

yi

,
yn

yi

)

,

where m 6= i, n 6= i and m < n. We denote by (u, v) the image of φi and ψi, for i = 1, 2 in each chart.
Therefore, the expression of p(X) in the local chart U1 is given by

u̇ = vn

[

Q

(

1

v
,
u

v

)

− uP

(

1

v
,
u

v

)]

, v̇ = −vn+1P

(

1

v
,
u

v

)

,

and the expression of p(X) in the local chart U2 is

u̇ = vn

[

P

(

u

v
,
1

v

)

− uQ

(

u

v
,
1

v

)]

, v̇ = −vn+1Q

(

u

v
,
1

v

)

.

The expression of p(X) in V1 and V2 is identical to the expression of p(X) in U1 and U2 except that it is
multiplied by the factor (−1)n−1. In the local charts U1, U2, V1 and V2, the coordinate v = 0 represents the
points of S1. Hence, the singularities at infinity of R2. Note that S1 is invariant under the flow of p(X).

2.5 The Markus-Neumann-Peixoto Theorem

Consider the polynomial vector field X. Let p(X) be its compactification on D and φ be the flow associated
to p(X). The separatrices of p(X) are:

1. All the orbits at infinity;

2. All the singular points;

3. All the limit cycles of X;

4. All the trajectories that are on the boundaries of the hyperbolic sectors of the finite and infinite singular
points.

The set of all separatrices, denoted by S is closed. Each connected component of D\S is called a canonical
region of the flow (D, φ). The separatrix configuration Sc of the flow (D, φ) is defined as the union of the
separatrices S, with one orbit from each canonical region. Two separatrix configurations Sc and S∗

c of
the flows (D, φ) and (D, φ∗) are said to be topologically equivalent if there is a homeomorphism of D that
transforms the orbits of Sc into those of S∗

c and preserves or reverses the orientation of all these orbits.

Theorem 2 (Markus-Neumann-Peixoto) Consider two Poincaré compactified p(X) and p(Y ) in the
Poincaré disk D of two polynomial vector fields X and Y with finitely many singularities. Then the phase
portraits of p(X) and p(Y ) are topologically equivalent if and only if their separatrix configurations are
topologically equivalent.

Proof. See [29, 30, 8].

2.6 Poincaré Return Map

Let X = (P,Q) be a planar vector field of class Cr, where r ∈ N, and φt(x) be the flow associated to X.
Consider γ = {φt(p), 0 ≤ t ≤ T} a periodic orbit of X through a point p ∈ R2, with period T > 0. Let
Σ ⊂ R2 be a transverse section of γ at p. For each point q ∈ Σ sufficiently close to p, the orbit φt(q) of
X through q intersects Σ. More precisely, if Σ is small enough, then there exists a function τ : Σ → R+ of
class Cr, such that φτ(q)(q) ∈ Σ is the first intersection of φt(q) with Σ. The Cr-map Π: Σ → Σ given by
Π(q) = φτ(q)(q), is known as the Poincaré return map. Since a limit cycle is an isolated periodic orbit, it
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follows that γ is a limit cycle if and only if q is an isolated zero of Π. Moreover, γ is hyperbolic if and only
if Π′(q) 6= 1. Let

div(x, y) =
∂P

∂x
(x, y) +

∂Q

∂y
(x, y).

It follows from the Liouville’s formula that

Π′(q) = exp

(

∫ T

0

div(γ(t)) dt

)

. (10)

Hence, if

r(Γ) =

∫ T

0

div(γ(t)) dt, (11)

then it follows that γ is hyperbolic and stable (resp. unstable) if r(Γ) < 0 (resp. r(Γ) > 0). For more details,
see Section 3.4 of [33]. In the special case of an algebraic limit cycle, it follows that

r(Γ) =

∫ T

0

K(γ(t)) dt, (12)

where K(x, y) is the cofactor defined in (8). For more details in this special case, see [18].

3 Proof of Theorem 1

Let us look at statements (a) and (b). To see that

H(x, y) =

(

bx2 + ay
)2

+ x2

(

bx2 + ay
)2

+ x2 − h
exp

(

w arctan
(

a
y

x
+ bx

))

(13)

is an autonomous first integral of X, it is sufficient to observe that the equation

P (x, y)
∂H

∂x
(x, y) +Q(x, y)

∂H

∂y
(x, y) = 0,

is satisfied. Similarly, to see that

I(x, y, t) =

(

bx2 + ay
)2

+ x2

(

bx2 + ay
)2

+ x2 − h
exp(2ahwt) (14)

is a non-autonomous first integral of X, it is sufficient to observe that the equation

P (x, y)
∂I

∂x
(x, y, t) +Q(x, y)

∂I

∂y
(x, y, t) +

∂I

∂t
(x, y, t) = 0,

is also satisfied. Let us now look at statement (c). To see that (xi(t), yi(t)) are indeed exact solutions of X,
it is sufficient to observe that the equations

ẋi(t) = P (xi(t), yi(t)), ẏi(t) = Q(xi(t), yi(t)),

are satisfied, for i ∈ {1, 2}. From equations (13) and (14), we get

exp
(

w arctan
(

a
y

x
+ bx

))

= exp(2ahwt). (15)
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If we isolate y in equation (15), we obtain

y(x, t) =
x

a

(

−bx+ tan(2aht)
)

. (16)

Replacing (16) in the first equation of (5), we obtain the Bernoulli differential equation

ẋ =
aw

cos2(2aht)
x3 −

[

ah
(

w + 2 tan(2aht)
)]

x. (17)

If h > 0, the solutions of (17) are given by

xi(t) = (−1)i

√

h cos2(2aht)

1 + hC exp(2ahwt)
, (18)

for i ∈ {1, 2} and C ≥ 0. Replacing (18) in equation (16), we get

yi(t) = −

√
h cos2(2aht)

(

b
√
h+ (−1)i+1 tan(2aht)

√

1 + hC exp(2ahwt)

cos2(2aht)

)

a(1 + hC exp(2ahwt))
.

Hence, we have obtained the exact solutions. We now look at statement (d). Let F : R2 → R be given by

F (x, y) = (bx2 + ay)2 + x2 − h,

and observe that if h > 0, then

P (x, y)
∂F

∂x
(x, y) +Q(x, y)

∂F

∂y
(x, y) = K(x, y)F (x, y), (19)

where
K(x, y) = 2aw(b2x4 + a2y2 + x2 + 2abx2y). (20)

Therefore, if h > 0, then the curve F−1(0) = Γ is an invariant algebraic curve for X. Observe that Γ is given
by

y±(x) =
−bx2 ± sign(a)

√
h− x2

a
,

for x ∈ [−
√
h,

√
h]. Hence, Γ is an oval. Since the origin is the unique singularity of X and it does not

lie on Γ, thus Γ must be an algebraic limit cycle for X. Let T > 0 be the period of Γ and let γ(t) be the
parameterization of Γ given by the flow of X. From equation (12), where K is given by (19) and (20), it
follows that K(x, y) > 0 (resp. K(x, y) < 0) if aw > 0 (resp. aw < 0). Therefore, we conclude that r(Γ) 6= 0
(i.e., Γ is hyperbolic) and the sign of aw determines the sign of r(Γ). This proves statement (i).

Let us now look at statement (ii). Let I1 : R2\Γ → R be given by

I1(x, y) =

(

bx2 + ay
)2

+ x2

(

bx2 + ay
)2

+ x2 − h
, (21)

and observe that I(x, y, t) = I1(x, y)e
2ahwt, where I is the non-autonomous first integral of X, given by (14).

Suppose aw < 0 and let (x(t), y(t)) be any orbit of X. Since I(x(t), y(t), t) is constant and

lim
t→+∞

e2ahwt = 0,

it follows that
lim

t→+∞
|I1(x(t), y(t))| → ∞.
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Therefore, it follows from (21) that the denominator of I1 approaches zero, i.e.,

lim
t→+∞

(

bx2(t) + ay(t)
)2

+ x2(t) − h = 0.

Hence, it follows that (x(t), y(t)) → Γ, as t → +∞. The case aw > 0 follows similarly.
To prove statement (iii), observe that if X had another limit cycle, then Γ could not be the global sink

or source of X. Finally, we now look at the phase portraits of X. First, we observe that X is invariant under
the following change of variables and parameters:

(1) (a, b, w) → (−a,−b,−w),

(2) (x, y, b) → (−x,−y,−b),

(3) (y, t, a) → (−y,−t,−a).

Therefore, it follows from (1) that we can assume w > 0. Hence, it follows from (2) that we can assume
b > 0 and thus it follows from (3) that we can also assume a > 0. It is not hard to see that the origin is the
unique singularity of X and that its Jacobian matrix is given by

DX(0, 0) =

(

−ahw −2a2h

2h −ahw

)

.

Therefore, the eigenvalues of DX(0, 0) are λ± = −awh ± i2a, where i2 = −1. Hence, it follows from
Subsection 2.2 that the origin is a hyperbolic focus if h 6= 0, and its stability is determined by the sign of
−aw. We now look at infinity. The origin of the second chart of Poincaré compactification is the unique
singularity at infinity. Moreover, after performing a quasihomogeneous blow-up with weights (α, β) = (1, 2)
and a homogeneous blow-up, its local phase portrait is given by Figure 2. Therefore, it follows that the

Figure 2: Local phase portrait at the origin of the second chart of the Poincaré compactification.

phase portrait of X is shown in Figure 1.
The level curves of the first integral H for the vector field X, represented by a continuous line, are

defined by H(x, y) = c, where c ∈ R∗ and H is defined in equation (13). These curves take the form shown
in Figures 3 and 4 under the conditions a, w, h ∈ R∗

+ and b ∈ R∗. It is noteworthy that in Figure 3, when a,
w, h > 0 and b > 0, the level curves for |c| � 0 and c ≈ 0 complement each other. Furthermore, depending
on whether c > 0 (resp. c < 0), the level curves are situated within the unbounded (or bounded) region
delimited by the algebraic limit cycle Γ, depicted with a dashed line. The level curve corresponding to c = 0
precisely coincides with the origin. It’s important to observe also that Γ lies precisely in the region where
H is not well-defined, specifically in the region where the denominator of H vanishes.

In a similar manner, we obtain the level curves of the first integral H and the algebraic limit cycle Γ for
X when a, w, h > 0, b < 0 and c ∈ R∗, as illustrated in Figure 4.
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c > 0, c ≈ 0. c � 0. c < 0, c ≈ 0. c � 0.

Figure 3: Level curves H(x, y) = c and algebraic limit cycle Γ for the vector field X when a, b, w, h > 0 and
c ∈ R∗.

c > 0, c ≈ 0. c � 0. c < 0, c ≈ 0. c � 0.

Figure 4: Level curves of H and algebraic limit cycle Γ for X when a, w, h > 0, b < 0 and c ∈ R∗.
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