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Abstract

In this paper, we introduce and investigate some new class of sequences in a gradual normed linear
space (X, ‖·‖G) and discuss some properties of these spaces like completeness, solidness, symmetricity,
convergence free, sequence algebra, etc. and prove some inclusion relations.

1 Introduction

The idea of fuzzy sets was first introduced by Zadeh [21] in the year 1965 which was an extension of the
classical set-theoretical concept. Nowadays it has wide applicability in different branches of science and
engineering. The “fuzzy number”plays a crucial role in the study of fuzzy set theory. Fuzzy numbers were
the generalization of intervals, not numbers. Even fuzzy numbers do not obey a few algebraic properties of
the classical numbers. So the “fuzzy number” is debatable to many authors due to its different behavior.
The “fuzzy intervals” is often used by many authors instead of fuzzy number. To overcome the confusion
among the researchers, in 2008, Fortin et al. [13] introduced the notion of gradual real numbers as elements
of fuzzy intervals. Gradual real numbers are mainly known by their respective assignment function which
is defined in the interval (0, 1]. So in some sense, every real number can be viewed as a gradual number
with a constant assignment function. The gradual real numbers also obey all the algebraic properties of the
classical real numbers and have been used in computation and optimization problems.
In 2011, Sadeqi and Azari [17] first introduced the concept of gradual normed linear space (GNLS). They

studied various properties of the space from both the algebraic and topological points of view. Further
progress in this direction has occurred due to Ettefagh et al. [11, 12], Choudhury and Debnath [5, 6, 7, 8, 11,
12] and many others. For an extensive study on gradual real numbers [1, 9, 14, 18, 22, 23] can be addressed,
where many more references can be found.
In functional analysis, a sequence space is a vector space whose elements are infinite sequences of real or

complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers
to the field K of real or complex numbers. The most important sequence spaces are bounded, convergent
and null sequence spaces, respectively denoted by `∞, c, and c0. A sequence space E is said to be solid (or
normal) if (αkxk) ∈ E whenever (xk) ∈ E and for all sequence αk of scalars with |αk| ≤ 1, for all k ∈ N. A
sequence space E is said to be symmetric if (xk) ∈ E implies (xπ(k)) ∈ E, where π is a permutation of N.
A sequence space E is said to be sequence algebra if (xk) ? (yk) = (xkyk) ∈ E whenever (xk), (yk) ∈ E. A
sequence space E is said to be convergence free if (yk) ∈ E whenever (xk) ∈ E and xk = 0 implies yk = 0.
Let K = {k1 < k2 < k3 < . . . } ⊂ N and (xn) ∈ w. Then the K-step space of the sequence space E is defined
by

λEK = {(xki) ∈ w : (xn) ∈ E}.
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A canonical preimage (yn) of a sequence (xn) ∈ E, where K-step space λEK is considered, is defined by

yn =

{
xn, if n ∈ K,
0, otherwise.

A sequence space E is said to be monotone, if it contains all preimages of its step spaces. For extensive
study on sequence spaces one may refer to [2, 3, 4, 10, 15, 16, 19, 20].
Motivated by the above works, in this paper, we define some new notions of sequence spaces in GNLS

such as space of all, bounded, convergent and null sequences with assignment function

A‖x‖G(α) = f(α)‖x‖ (x is a element of real normed space),∀α ∈ (0, 1],

where f : (0, 1] → R+ is a nonzero function. Then, we investigated that they are complete and prove
some inclusion relations. Finally, we define some properties of sequences like solid space, symmetric space,
sequence algebra, monotone space, convergence free and prove some theorems about these spaces.

2 Preliminaries

In this section, we present some existing definitions and results which are crucial for the subsequent sections.

Definition 1 ([13]) A gradual real number r̃ is defined by an assignment function Ar̃ : (0, 1]→ R. The set
of all gradual real numbers is denoted by G(R). A gradual real number r̃ is said to be non-negative, if for
every α ∈ (0, 1], Ar̃(α) ≥ 0. The set of all non-negative gradual real numbers is denoted by G?(R).

In [13], the gradual operations between the elements of G(R) was defined as follows:

Definition 2 Let ? be any operation in R and suppose r̃1, r̃2 ∈ G(R) with assignment functions Ar̃1 and
Ar̃2 respectively. Then, r̃1 ? r̃2 ∈ G(R) is defined with the assignment function Ar̃1?r̃2 given by

Ar̃1?r̃2(α) = Ar̃1(α) ?Ar̃2(α), ∀α ∈ (0, 1].

In particular, the gradual addition r̃1 + r̃2 and the gradual scalar multiplication cr̃(c ∈ R) are defined by

Ar̃1+r̃2(α) = Ar̃1(α) +Ar̃2(α) and Acr̃(α) = cAr̃(α), ∀α ∈ (0, 1].

For any real number s ∈ R, the constant gradual real number s̃ is defined by the constant assignment
function As̃(α) = s for any α ∈ (0, 1]. In particular, 0̃ and 1̃ are the constant gradual numbers defined by
A0̃(α) = 0 and A1̃(α) = 1 respectively. It is easy to verify that G(R) with the gradual addition and gradual
scalar multiplication forms a real vector space [13].

Definition 3 ([13]) Let r̃, s̃ ∈ G(R). The partial relation “≤”in G(R) defined as r̃ ≤ s̃ iff Ar̃(α) ≤ As̃(α),
∀α ∈ (0, 1].

Lemma 1 ([17]) Let r̃, s̃, t̃ ∈ G(R). Then

(i) if r̃ ≤ s̃, then r̃ − t̃ ≤ s̃− t̃;

(ii) if r̃ ≤ s̃, and 0̃ ≤ t̃, then (a) r̃ · t̃ ≤ s̃ · t̃ and (b) r̃/t̃ ≤ s̃/t̃, t̃ 6= 0̃;

(iii) (r̃ · s̃)/t̃ = r̃ · (s̃/t̃), t̃ 6= 0̃.

Definition 4 ([17]) Let X be a real vector space. The function || · ||G : X → G?(R) is said to be a gradual
norm on X, if for every α ∈ (0, 1], following conditions hold for any x, y ∈ X:

(i) A||x||G(α) = A0̃(α) if and only if x = 0;
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(ii) A||cx||G(α) = |c|A||x||G(α) for any c ∈ R;

(iii) A||x+y||G(α) ≤ A||x||G(α) +A||y||G(α).

The pair (X, || · ||G) is called a gradual normed linear space (GNLS).

Definition 5 ([12]) Let (xk) be a sequence in the GNLS (X, || · ||G). Then, (xk) is said to be gradual
bounded if for every α ∈ (0, 1], there exists B = B(α) > 0 such that A||xk||G ≤ B for all k ∈ N.

Definition 6 ([17]) Let (xk) be a sequence in the GNLS (X, || · ||G). Then, (xk) is said to be gradual
convergent to x ∈ X, if for every α ∈ (0, 1] and ε > 0, there exists N(= Nε(α)) ∈ N such that

A||xk−x||G(α) < ε, ∀k ≥ N.

Symbolically, xk
||·||G−−−→ x.

Example 1 ([17]) Let X = R and for x ∈ R, α ∈ (0, 1], define || · ||G by

A||x||G(α) = eα|x|.

Then, || · ||G is a gradual norm on R, and (R, || · ||G) is a GNLS.

Definition 7 ([17]) Let (xk) be a sequence in the GNLS (X, ‖·‖G). Then, (xk) is said to be gradually
Cauchy if for every α ∈ (0, 1] and ε > 0, there exists N(= Nε(α)) ∈ N such that

A‖xk−xj‖G(α) < ε, ∀k, j ≥ N.

The pair (X, ‖·‖G) is said to be complete if every Cauchy sequence in (X, ‖·‖G) is convergent in (X, ‖·‖G).

3 Main Results

In this section, we present the main results. Throughout the paper, wG, `G∞, c
G and cG0 denotes collection of

all, bounded, convergent and null sequences x = (xk) with gradual terms, respectively and defined as follows:

wG = Class of all sequences of gradual real numbers.

`G∞ = {(xk) ∈ wG : ∃B = B(α) > 0,A||xk||G(α) < B ∀k ∈ N, α ∈ (0, 1]}.

cG = {(xk) ∈ wG : ∃x0 ∈ G(R), lim
k→∞

A||xk−x0||G(α) = 0 ∀k ∈ N, α ∈ (0, 1]}.

cG0 = {(xk) ∈ wG : lim
k→∞

A||xk||G(α) = 0 ∀k ∈ N, α ∈ (0, 1]}.

Theorem 1 The classes of sequences `G∞, c
G and cG0 are GNLS with the gradual norm

‖x‖G = ‖(xk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ .
Proof. Let a, b be scalars and (xk), (yk) ∈ `G∞. Then

sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ <∞ and sup
k∈N,α∈(0,1]

∣∣A‖yk‖G(α)∣∣ <∞. (1)

Now,

‖ax+ by‖G = sup
k∈N,α∈(0,1]

∣∣A‖axk+byk‖G(α)∣∣
≤ |a| sup

k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣+ |b| sup
k∈N,α∈(0,1]

∣∣A‖yk‖G(α)∣∣
< ∞, by (1).
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Hence, `G∞ is a linear space. Similarly it can be shown that cG and cG0 are linear spaces.
Next for x = (xk) = θ, we have ‖x‖G = ‖(xk)‖G = 0. Conversely, let ‖(xk)‖G = 0. Then

‖(xk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ = 0.
Then xk = 0, ∀k ∈ N. It follows that x = θ,

‖cx‖G = ‖(cxk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖cxk‖G(α)∣∣
= sup

k∈N,α∈(0,1]
|c|
∣∣A‖xk‖G(α)∣∣ = |c| sup

k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣
= |c|‖x‖G,

‖x+ y‖G = ‖(xk + yk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖xk+yk‖G(α)∣∣
≤ sup

k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣+ sup
k∈N,α∈(0,1]

∣∣A‖yk‖G(α)∣∣
= ‖(xk)‖G + ‖(yk)‖G = ‖x‖G + ‖y‖G.

Hence, ‖·‖G is a gradual norm on `G∞. Similarly it can be shown that ‖·‖G is a gradual norm on cG and cG0 .
This completes the proof.

Theorem 2 The sequence spaces `G∞, c
G, cG0 are complete under the gradual norm

‖x‖G = ‖(xk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ .
Proof. Let (xn) be a gradual Cauchy sequence in `G∞, where x

n = (xni ) = (x
n
1 , x

n
2 , . . . ) ∈ `G∞, for each n ∈ N.

Then,

‖xn − xm‖G = sup
k∈N,α∈(0,1]

∣∣∣A‖xnk−xmk ‖G(α)∣∣∣→ 0 as n,m→∞.

Hence, for a given ε > 0, ∃ n0 ∈ N such that

‖xn − xm‖G = sup
k∈N,α∈(0,1]

∣∣∣A‖xnk−xmk ‖G(α)∣∣∣ < ε, ∀ n,m ≥ n0.

Therefore, |A‖xnk−xmk ‖G(α)| < ε, ∀ n,m ≥ n0, α ∈ (0, 1], k ∈ N. Then (xmk ) is a gradually Cauchy sequence
in R. So (xmk ) is a gradually convergent in R (since R is complete w.r.t. gradual norm).

Let, lim
m→∞

xmk = xk (say) for k ∈ N. Now

‖xn − x‖G = sup
k∈N,α∈(0,1]

∣∣∣A‖xnk−xk‖G(α)∣∣∣→ 0 as n→∞.

Therefore, xn → x as n→∞. Finally we will prove that x ∈ `G∞.

A‖xk‖G(α) = A‖xk−xnk+xnk‖G(α), ∀α ∈ (0, 1], k ∈ N
≤ A‖xk−xnk‖G(α) +A‖xnk‖G(α), ∀α ∈ (0, 1], k ∈ N
< ε+A‖xnk‖G(α), ∀ε > 0, k ∈ N.

It follows that x ∈ `G∞. Hence, `G∞ is complete space. Similarly it can be shown that the spaces cG and cG0
are also complete.

Remark 1 cG0 ⊂ cG ⊂ `G∞ and the inclusion are proper. It follows from the next example.
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Example 2 (1) Take f(α) = 1. Consider the sequence (xk) in R, defined by xk = 1+ 1
k , for k ∈ N. Then

lim
k→∞

A‖xk‖G(α) = lim
k→∞

|xk|, ∀α ∈ (0, 1] = lim
k→∞

∣∣∣∣1 + 1

k

∣∣∣∣ = 1.
So (xk) ∈ cG. But (xk) /∈ cG0 . Hence, cG0 ⊂ cG is proper.

(2) Take f(α) = 1. Consider the sequence (xk), defined by xk = (−1)k, for k ∈ N. Then

sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ <∞.
So (xk) ∈ `G∞. But (xk) /∈ cG. Hence, cG ⊂ `G∞ is proper.

Definition 8 A subset EG of wG is said to be solid or normal if (xk) ∈ EG implies (yk) ∈ EG, for all
sequences (yk) such that ∣∣∣A‖xk‖G (α)∣∣∣ ≥ ∣∣∣A‖yk‖G (α)∣∣∣ , ∀k ∈ N, α ∈ (0, 1].
Theorem 3 The sequence spaces `G∞, c

G
0 are solid but c

G is not solid.

Proof. Let (xk) ∈ `G∞. Then ∃ M =M(α) > 0 such that

‖(xk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ < M.

Let
∣∣A‖yk‖G(α)∣∣ ≤ ∣∣A‖xk‖G(α)∣∣. Then we have

‖(yk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖yk‖G(α)∣∣ ≤ sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ < M.

Thus (yk) ∈ `G∞. Hence, `G∞ is a solid.
Let, (xk) ∈ cG0 . Then we have A‖xk‖G(α) → 0 as k → ∞. Let, (yk) be such that

∣∣A‖yk‖G(α)∣∣ ≤∣∣A‖xk‖G(α)∣∣. Then, ∣∣A‖yk‖G(α)∣∣→ 0 as k →∞.

Therefore, (yk) ∈ cG0 . Hence, cG0 is solid. But cG is not solid. Example 3 illustrates the fact.

Example 3 Take f(α) = eα, ∀α ∈ (0, 1]. Suppose xk = 1 and yk = (−1)k. Then (xk) ∈ cG because
A‖xk−1̃‖G(α) = eα |xk − 1| → 0 as k →∞, ∀α ∈ (0, 1]. Also, ‖xk‖G = ‖yk‖G, because

A‖xk‖G(α) = A‖yk‖G(α), ∀α ∈ (0, 1] and k ∈ N.

But (yk) /∈ cG, since A‖yk−1̃‖G(α) = eα |yk − 1| does not tends to 0 as k → ∞, ∀α ∈ (0, 1]. So, cG is not
solid.

Definition 9 A sequence space EG is said to be symmetric if (xk) ∈ EG implies (xπ(k)) ∈ EG, where π is
a permutation of N.

Remark 2 If all the rearrangement of the terms of the sequence (xk) belongs to EG, then we say that the
sequence space EG is symmetric.

Theorem 4 The classes of sequences `G∞, c
G, cG0 are symmetric.
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Proof. Let, (xk) ∈ `G∞. Then
sup

k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ <∞.
Let (yk) be the rearrangement of (xk), then clearly,

sup
k∈N,α∈(0,1]

∣∣A‖yk‖G(α)∣∣ <∞.
Hence, (yk) ∈ `G∞. Thus `G∞ is symmetric.
Let, (xk) ∈ cG, then lim

k→∞
A‖xk‖G(α) exists and let it be x. For a given ε > 0, ∃N(= Nε(α)) ∈ N such

that A‖xk−x‖G(α) < ε, ∀k ≥ N . Let, (yk) be the rearrangement of (xk), i.e., xk = ynk for some nk ∈ N.
Consider the set {yn1 , yn2 , yn3 , . . . , ynk0 }. Let, M0 = max{n1, n2, n3, . . . , nk0} then we have A‖yk−x‖G(α) <
ε, ∀k ≥M0. This shows that (yk) ∈ cG. Since (xk) is arbitrary chosen, so cG is symmetric.
Suppose, x = 0 then we can easily establish that cG0 is symmetric.

Definition 10 Let, EG be a sequence space. Then EG is said to be a sequence algebra if there is defined an
operation ? on EG such that (xk), (yk) ∈ EG implies (xk) ? (yk) ∈ EG.

Theorem 5 The classes of sequences cG0 , c
G, `G∞ are sequence algebra with respect to the term wise gradual

multiplication of sequences and term wise gradual addition of sequences

A‖xk+yk‖G(α) = A‖xk‖G +A‖yk‖G(α) and A‖xk·yk‖G(α) = A‖xk‖G · A‖yk‖G(α)

∀α ∈ (0, 1] and k ∈ N.

Proof. We proof that cG0 is a sequence algebra. For the space c
G and `G∞, the result can be proved similarly.

Let (xk), (yk) ∈ cG0 . Then

lim
k→∞

A‖xk‖G(α) = 0 and lim
k→∞

A‖yk‖G(α) = 0, ∀α ∈ (0, 1], k ∈ N.

This shows that
lim
k→∞

A‖xk·yk‖G(α) = 0, ∀α ∈ (0, 1], k ∈ N.

Thus (xk · yk) ∈ cG0 . Hence, cG0 is a sequence algebra.

Definition 11 A subset EG of wG is said to be convergence free if (xk) ∈ EG and A‖xk‖G(α) → 0 implies
A‖yk‖G(α)→ 0 together with (yk) ∈ EG, ∀α ∈ (0, 1].

Theorem 6 The class of sequences `G∞, c
G, cG0 are not convergence free.

Proof. Let (xk) ∈ `G∞ defined by ∀α ∈ (0, 1] and k ∈ N

A‖xk‖G(α) =
{
1, if k is prime,

0, otherwise.

Now construct (yk) by

A‖yk‖G(α) =
{
k, if k is prime,

0, otherwise.

Thus (yk) /∈ `G∞. Similarly for the others.

Definition 12 Let, K = {k1 < k2 < k3 < · · · < kn < . . . } ⊂ N and (xn) ∈ wG. Then the K-step space of
the sequence space EG is defined by

λE
G

K = {(xki) ∈ wG : (xn) ∈ EG}.
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Definition 13 A canonical pre-image (yn) of a sequence (xn) ∈ EG, where K-step space λE
G

K is considered,
is defined by ∀α ∈ (0, 1],

A‖yn‖G(α) =
{
A‖xn‖G(α), if n ∈ K,
A0̃(α), otherwise.

Definition 14 A sequence space EG is said to be monotone if it contains all pre-images of its step space.

Theorem 7 A sequence space EG is solid implies EG is monotone.

Proof. Let EG be a solid space, then we have (xn) ∈ EG implies (yn) ∈ EG for all sequence (yn) such that∣∣A‖yn‖G(α)∣∣ ≤ ∣∣A‖xn‖G(α)∣∣ , ∀ n ∈ N, α ∈ (0, 1].
Consider the canonical pre-image of EG with respect to K. Then, (yn) is the canonical pre-image. This
implies

A‖yn‖G(α) =
{
A‖xn‖G(α), if n ∈ K,
A0̃(α), otherwise.

This follows that
∣∣A‖yn‖G(α)∣∣ ≤ ∣∣A‖xn‖G(α)∣∣ , ∀α ∈ (0, 1], n ∈ N. Hence, (yn) ∈ EG. Since K is arbitrary

subset of N, EG contains all the canonical pre-image of EG. Hence EG is monotone.

Theorem 8 The class of sequences cG0 and `
G
∞ are monotone but cG is not monotone.

Proof. Since the class of sequences `G∞ and cG0 are solid, so are monotone by Theorem 7. The class of
sequence cG is not monotone follows from the following example:

Example 4 Consider the sequence (xn) ∈ cG defined by A‖xn‖G(α) = A1̃(α), ∀α ∈ (0, 1] and n ∈ N.
Consider the canonical pre-image of (xn) i.e., (yn) defined by

A‖yn‖G(α) =
{
A‖xn‖G(α), if n is odd,

A0̃(α), otherwise.

Then, (yn) is not a gradual convergent sequence. Thus (yn) /∈ cG. It follows that cG is not monotone.

Conclusion

In this paper, we have investigated a few fundamental properties of space of bounded, convergent and null
sequences in gradual normed linear spaces which are connected by the relation

cG0 ⊂ cG ⊂ `G∞.

We also prove that, `G∞, c
G and cG0 are Banach spaces with respect to the gradual norm

‖x‖G = ‖(xk)‖G = sup
k∈N,α∈(0,1]

∣∣A‖xk‖G(α)∣∣ .
Finally, we have introduced the concept of solid space, symmetric space, sequence algebra, convergence free
and monotone space in the gradual normed linear spaces and established some theorem for the first time.
Summability theory and sequence spaces have wide applications in various branches of mathematics

particularly, in mathematical analysis. Research in this direction based on gradual normed linear spaces has
not yet gained much ground and it is still in its infant stage. In the future, this work can be extended over
difference sequences and several analytical properties can be investigated.
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Additionally, the following questions can be asked: Let EG ⊂ wG be a sequence space. If EG is monotone
then is it solid? Is EG separable for E = `∞, c and c0?
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