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Abstract

In this note, we prove a general theorem related to the divergence of series. A direct consequence of
this theorem is the divergence of a familiar class of slowly diverging series.

1 Introduction

A familiar class of slowly diverging series includes
∑

1
k ,
∑

1
k ln k ,

∑
1

k ln k ln ln k , etc. In general, denoting by

ln(0) x = x,

ln(1) x = lnx,

ln(2) x = ln lnx,

...

ln(m) x = ln ln · · · ln︸ ︷︷ ︸
m times

x,

it is well-known that the following series diverges:∑
k≥l

1

ln(0) k ln(1) k ln(2) k · · · ln(m) k
=
∑
k≥l

1

k ln k ln(2) k · · · ln(m) k
, (1)

where l is the smallest integer such that ln(m) l > 0 for a given finite number m.
The standard method for proving that the series in Eq. (1) diverges involves the integral test, although

there are other methods in the literature that show the divergence of this series, for example, the Cauchy’s
condensation test as well as the Abel-Dini theorem (see, e.g., [1] and [2]). However, in this note, we will
establish a general theorem that the divergence of the series in Eq. (1) is a direct consequence thereof. We
prove the main theorem in the next section.

2 Main results

In this section, we aim to present our main results. We prove the following theorem:

Theorem 1 Let Ak be a strictly increasing sequence of positive numbers tending to infinity. Then, for each
fixed nonnegative integer m, the series

∑
k≥l

Ak+1−Ak

Ak lnAk ln(2) Ak··· ln(m) Ak
diverges, where l is the smallest integer

such that ln(m)Al is positive.

∗Mathematics Subject Classifications: 40A05.
†Department of Statistics, Razi University, Kermanshah, Iran

209



210 A General Approach to a Familiar Class of Slowly Diverging Series

Proof. It can be shown that if k is large enough such that ln(m+1)Ak is positive, then

ln(m+1)Ak+1 ≤ ln(m+1)Ak +
Ak+1 −Ak

ln(0)Ak ln
(1)Ak ln

(2)Ak · · · ln(m)Ak
= ln(m+1)Ak +

Ak+1 −Ak
Ak lnAk ln

(2)Ak · · · ln(m)Ak
. (2)

Indeed, to prove inequality (2), we must first show that if inequality (2) holds for m − 1, then it holds for
m. This can be done by taking the natural logarithm of both sides of inequality (2) for m− 1, and using the
well-known inequality ln(1 + x) ≤ x for x ≥ 0. Therefore,

ln(m+1) Ak+1︷ ︸︸ ︷
ln(ln(m)Ak+1) ≤ ln

(
ln(m)Ak +

Ak+1 −Ak
Ak lnAk ln

(2)Ak · · · ln(m−1)Ak

)
= ln(m+1)Ak + ln

(
1 +

Ak+1 −Ak
Ak lnAk ln

(2)Ak · · · ln(m−1)Ak ln(m)Ak

)
≤ ln(m+1)Ak +

Ak+1 −Ak
Ak lnAk ln

(2)Ak · · · ln(m−1)Ak ln(m)Ak
.

Now, it is enough to show that inequality (2) holds for m = 0 (then, as shown above, it holds for m = 1,
then for m = 2, and so on). Since ln(1 + x) ≤ x for x ≥ 0, if we set x = Ak+1−Ak

Ak
, then we get lnAk+1 ≤

lnAk +
Ak+1−Ak

An
, that is, inequality (2) for m = 0. Thus, inequality (2) is proved.

From inequality (2), we have

Ak+1 −Ak
Ak lnAk ln

(2)Ak · · · ln(m)Ak
≥ ln ln

(m)Ak+1

ln(m)Ak
. (3)

Putting k = l, l + 1, . . . , n in inequality (3) and adding, gives

n∑
k=l

Ak+1 −Ak
Ak lnAk ln

(2)Ak · · · ln(m)Ak
≥

n∑
k=l

ln
ln(m)Ak+1

ln(m)Ak
= ln

n∏
k=l

ln(m)Ak+1

ln(m)Ak
= ln

ln(m)An+1

ln(m)Al
.

Since ln(m)An+1 tends to infinity as n→∞, therefore the series
∑∞

k=l
Ak+1−Ak

Ak lnAk ln(2) Ak··· ln(m) Ak
is divergent.

The proof is complete.

Corollary 1 For Ak = k, Theorem 1 implies the divergence of the series in Eq. (1).

It can be shown that Theorem 1 can produce some divergent series that diverge more slowly than the
series in Eq. (1). In this regard, let us consider the following example.

Example 1 For Ak =
√
k andm = 1, Theorem 1 implies that the series

∑∞
k=2

√
k+1−

√
k√

k ln
√
k
= 2

∑∞
k=2

√
k+1−

√
k√

k ln k

is divergent, that is, the series
∑∞

k=2

√
k+1−

√
k√

k ln k
diverges. On the other hand, it can be seen that

√
k + 1−

√
k√

k ln k
=

√
1 + 1

k − 1
ln k

<
1
k

ln k
=

1

k ln k
for k > 1.

Thus, this gives another proof (by comparison test) of the divergence of the familiar series
∑∞

k=2
1

k ln k .
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