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Abstract

If P (z) = an
∏n
j=1(z − zj) is a complex polynomial of degree n having all its zeros in |z| ≤ K where

K ≥ 1, then Kumar [8] proved that

max
|z|=1

|P ′(z)| ≥
(

2

1 +Kn
+

(|an|Kn − |a0|)(K − 1)
(1 +Kn)(|an|Kn + |a0|K)

) n∑
j=1

K

K + |zj |
max
|z|=1

|P (z)|. (A)

In this paper we first extend inequality (A) to the class of polynomials having s-fold zero at origin and
then establish the polar derivative analogue of the result obtained.

1 Introduction

A well known inequality due to Bernstein [5] states that if P (z) is a polynomial of degree n, then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)| . (1)

In connection with inequality (1), P. Erdös conjectured and later Lax [9] proved that if P (z) is a polynomial
of degree n having no zeros in |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (2)

The inequality (2) is best possible and equality holds if P (z) = α+ βz, where |α| = |β|. On the other hand
Turan’s classical inequality [14] provides the lower bound estimate to the size of derivative of a polynomial
on the unit circle relative to the size of polynomial itself when zeros lie in |z| ≤ 1. It states that if P (z) is a
polynomial of degree n having all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (3)

Equality in (3) holds for polynomials having all zeros on |z| = 1. As a generalisation of (3) to the polynomials
having all their zeros in |z| ≤ K where K ≥ 1, Govil [6] proved if P (z) is a polynomial of degree n having
all its zeros in |z| ≤ K, K ≥ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 +Kn
max
|z|=1

|P (z)|. (4)

The inequality (4) is sharp and equality holds for the polynomial P (z) = zn + Kn. While considering
the modulus of each zero of P (z) in inequality (3), Aziz [1] established the following generalisation of
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inequality (3) to the class of polynomials having all their zeros in |z| ≤ K where K ≥ 1 by proving that if
P (z) = an

∏n
j=1(z − zj) is a complex polynomial of degree n with |zj | ≤ K, K ≥ 1, then

max
|z|=1

|P ′(z)| ≥ 2

1 +Kn

n∑
j=1

K

K + |zj |
max
|z|=1

|P (z)|. (5)

Very recently Kumar [8] while preserving the modulus of each zero in the inequality (5) sharpened the
inequality by proving that if P (z) is a polynomial of degree n having all its zeros in |z| ≤ K, K ≥ 1, then

max
|z|=1

|P ′(z)| ≥
(

2

1 +Kn
+

(|an|Kn − |a0|)(K − 1)
(1 +Kn)(|an|Kn + |a0|K)

) n∑
j=1

K

K + |zj |
max
|z|=1

|P (z)|. (6)

Let DαP (z) denote the polar derivative of a polynomial of degree n with respect to a real or complex number
α. Then

DαP (z) = nP (z) + (α− z)P ′(z).

The polar derivative DαP (z) is a polynomial of degree at most n−1. Furthermore, it generalizes the ordinary
derivative P ′(z) of P (z) in the sense that

lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect to z for |z| ≤ R, R > 0.
For more information about the polar derivative of a polynomial one can refer monographs by Rahman

and Schmeisser or Milovanovic et al. [10]. The analogue of inequality (4) for the polar derivative of a
polynomial was established by Aziz and Rather [3] who proved that if P (z) is a polynomial of degree n
having all its zeros in |z| ≤ K, K ≥ 1, then for every α ∈ C with |α| ≥ K

max
|z|=1

|DαP (z)| ≥ n
(
|α| −K
1 +Kn

)
max
|z|=1

|P (z)|. (7)

Several refinements of inequality (7) can be found in the literature (see [4], [12] and [13]). For the class
of polynomials having s-fold zero at origin, inequality (7) was recently refined by Govil and Kumar [7] by
establishing that if P (z) = zs(a0 + a1z + ...+ an−sz

n−s), 0 ≤ s ≤ n is a polynomial of degree n having all
its zeros in |z| ≤ K, K ≥ 1, then for every α ∈ C with |α| ≥ K

max
|z|=1

|DαP (z)| ≥
|α| −K
1 +Kn

(
n+ s+

|an−s|Kn−s − |a0|
|an−s|Kn−s + |a0|

)
max
|z|=1

|P (z)|.

2 Main Results

In this paper we generalize the inequality (6) to the class of polynomials having s-fold zero at origin. In fact
we prove

Theorem 1 If P (z) = zs(a0 + a1z + ... + an−sz
n−s) = an−sz

s
∏n−s
j=1 (z − zj), 0 ≤ s ≤ n with zj 6= 0 for

1 ≤ j ≤ n− s is a polynomial of degree n which has all its zeros in |z| ≤ K with K ≥ 1, then

max
|z|=1

|P ′(z)| ≥
(

2

1 +Kn−s +
(K − 1)(|an−s|Kn−s − |a0|)

(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)s+ n−s∑
j=1

K

K + |zj |

max
|z|=1

|P (z)|. (8)

Remark 1 If we take s = 0 in Theorem 1, we obtain inequality (6).
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If we take K = 1 in Theorem 1, we obtain the following refinement of inequality (3) for the polynomials
having s-fold zero at origin.

Corollary 1 If P (z) = zs(a0 + a1z + ... + an−sz
n−s) = an−sz

s
∏n−s
j=1 (z − zj), 0 ≤ s ≤ n with zj 6= 0 for

1 ≤ j ≤ n− s is a polynomial of degree n which has all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥

s+ n−s∑
j=1

1

1 + |zj |

max
|z|=1

|P (z)|.

We next prove the following extension of Theorem 1 to the polar derivative of a polynomial having s-fold
zero at origin.

Theorem 2 If P (z) = zs(a0 + a1z + ... + an−sz
n−s) = an−sz

s
∏n−s
j=1 (z − zj), 0 ≤ s ≤ n with zj 6= 0 for

1 ≤ j ≤ n − s is a polynomial of degree n having all its zeros in |z| ≤ K, K ≥ 1, then for any complex
number α with |α| ≥ K

max
|z|=1

|DαP (z)| ≥
(

2

1 +Kn−s +
(K − 1)(|an−s|Kn−s − |a0|)

(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)

×

s(|α| −K) + n−s∑
j=1

K(|α| −K)
K + |zj |

max
|z|=1

|P (z)|. (9)

Remark 2 If we divide both sides to inequality (9) by |α| and let |α| → ∞ in (9), we get (8) and thus
Theorem 1 is a special case of Theorem 2.

Remark 3 If we take s = 0 in Theorem 2, we obtain Theorem 1.4 due to Kumar [8].

3 Lemmas

The first lemma is the generalization of Schwarz Lemma due to Osserman [11].

Lemma 1 Let f(z) be analytic in |z| < 1 such that |f(z)| < 1 for |z| < 1 and f(0) = 0. Then

|f(z)| ≤ |z| |z|+ |f
′(0)|

1 + |f ′(0)| |z| for |z| < 1.

The next lemma is due to Aziz and Mohammad [2].

Lemma 2 If P (z) is a polynomial of degree n, then for any R ≥ 1 and 0 ≤ θ ≤ 2π

|P (Reiθ)|+ |Q(Reiθ)| ≤ (1 +Rn) max
|z|=1

|P (z)|

where Q(z) = znP (1/z).

Lemma 3 If P (z) = zs(a0 + a1z + ...+ an−sz
n−s), 0 ≤ s ≤ n is a polynomial of degree n ≥ 1 having s-fold

zero at origin and all other zeros in |z| ≥ 1, then for any R ≥ 1

max
|z|=R

|P (z)| ≤ (1 +R
n)(|a0|+R|an−s|)

(1 +R)(|a0|+ |an−s|)
max
|z|=1

|P (z)|.
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Proof. Let P (z) = zs(a0 + a1z + ... + an−sz
n−s) = zsA(z), where A(z) = a0 + a1z + ... + an−sz

n−s

is a polynomial of degree n − s. Then A(z) has no zero in |z| < 1. Therefore the conjugate polynomial
B(z) := zn−sA(1/z) of A(z) has all its zeros in |z| ≤ 1. It follows that the polynomial F (z) = zB(z)

A(z) satisfies
the hypothesis of Lemma 1 and hence we obtain for |z| < 1,

|F (z)| ≤ |z| |z|+ |F
′(0)|

1 + |F ′(0)| |z|

which is equivalent to

|B(z)| ≤ |z| |a0|+ |an−s||a0|+ |an−s| |z|
|A(z)| for |z| < 1. (10)

Replacing z by 1/z in (10), we get for |z| > 1

|zsA(z)| ≤ |a0|+ |an−s| |z||a0| |z|+ |an−s|
|B(z)|. (11)

Since the inequality (11) is already true for all z on |z| = 1. Therefore for any R ≥ 1 and 0 ≤ θ < 2π, we
have

|P (Reiθ)| ≤ |a0|+ |an−s|R|a0|R+ |an−s|
|B(Reiθ)|. (12)

Inequality (12) in conjunction with Lemma 2 and the fact that znP (1/z) = B(z) yields the desired inequality.

Lemma 4 If P (z) = zs(a0 + a1z + ...+ an−sz
n−s), 0 ≤ s ≤ n is a polynomial of degree n with all its zeros

in |z| ≤ K and K ≥ 1, then

max
|z|=K

|P (z)| ≥
(

2Kn

1 +Kn−s +
Kn(K − 1)(|an−s|Kn−s − |a0|)
(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)
max
|z|=1

|P (z)|.

Proof. Since P (z) has all its zeros in |z| ≤ K, K ≥ 1, the polynomial G(z) = P (Kz) has all its zeros in the
unit disc |z| ≤ 1. Hence the (n− s)th degree polynomial H(z) = znG(1/z) has no zero in |z| < 1. Therefore
applying Lemma 3 to the polynomial H(z) with R = K, K ≥ 1, we have

max
|z|=K

|H(z)| ≤ (1 +K
n−s)(|an−s|Kn + |a0|Ks+1)

(1 +K)(|an−s|Kn + |a0|Ks)
max
|z|=1

|H(z)|,

which is equivalent to

max
|z|=1

|G(z)| ≥ (1 +K)(|an−s|Kn + |a0|Ks)

(1 +Kn−s)(|an−s|Kn + |a0|Ks+1)
max
|z|=K

|H(z)|. (13)

But H(z) = znG(1/z) = znP (K/z) so that

max
|z|=K

|H(z)| = Knmax
|z|=1

|P (z)|. (14)

Using (14) in (13), we get

max
|z|=1

|G(z)| ≥ Kn (1 +K)(|an−s|Kn + |a0|Ks)

(1 +Kn−s)(|an−s|Kn + |a0|Ks+1)
max
|z|=1

|P (z)|. (15)

Replacing G(z) by P (Kz) in (15) and simplifying we get

max
|z|=K

|P (z)| ≥
(

2Kn

1 +Kn−s +
Kn(K − 1)(|an−s|Kn−s − |a0|)
(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)
max
|z|=1

|P (z)|.
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4 Proofs of Theorems

Proof of Theorem 1. Since P (z) = an−sz
s
∏n−s
j=1 (z − zj), 0 ≤ s ≤ n has all its zeros in |z| ≤ K, the

polynomial G(z) = P (Kz) = Knan−sz
s
∏n−s
j=1 (z−zj/K) has all its zeros in |z| ≤ 1. Hence for all z on |z| = 1

for which G(z) 6= 0, we have
zG′(z)

G(z)
= s+

n−s∑
j=1

z

z − zj
K

.

This gives

Re

(
zG′(z)

G(z)

)
= s+Re

n−s∑
j=1

z

z − zj/K

 ≥ s+ n−s∑
j=1

K

K + |zj |
.

Which implies ∣∣∣∣zG′(z)G(z)

∣∣∣∣ ≥ s+ n−s∑
j=1

K

K + |zj |

for all z on |z| = 1 for which G(z) 6= 0. Therefore

max
|z|=1

|G′(z)| ≥

s+ n−s∑
j=1

K

K + |zj |

max
|z|=1

|G(z)|, (16)

or equivalently

K max
|z|=1

|P ′(Kz)| ≥

s+ n−s∑
j=1

K

K + |zj |

max
|z|=1

|P (Kz)|.

Using Lemma 4 and the fact that Kn−1max|z|=1 |P ′(z)| ≥ |P ′(Kz)|, we get

Knmax
|z|=1

|P ′(z)| ≥

s+ n−s∑
j=1

K

K + |zj |

× ( 2Kn

1 +Kn−s +
Kn(K − 1)(|an−s|Kn−s − |a0|)
(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)
max
|z|=1

|P (z)|,

which is equivalent to

max
|z|=1

|P ′(z)| ≥
(

2

1 +Kn−s +
(K − 1)(|an−s|Kn−s − |a0|)

(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)
×

s+ n−s∑
j=1

K

K + |zj |

max
|z|=1

|P (z)|.

This completes the proof of Theorem 1.

Proof of Theorem 2. Since P (z) has all its zeros in |z| ≤ K, K ≥ 1, the polynomial G(z) = P (Kz) has
all its zeros in |z| ≤ 1. Therefore for |α|/K ≥ 1, it can be easily seen that

max
|z|=1

|Dα/KG(z)| ≥
(|α| −K)

K
max
|z|=1

|G′(z)|,

or

max
|z|=K

|DαP (z)| ≥
(|α| −K)

K
max
|z|=1

|G′(z)|.

Using inequality (16), we have

max
|z|=K

|DαP (z)| ≥
(|α| −K)

K

s+ n−s∑
j=1

K

K + |zj |

max
|z|=1

|G(z)|,
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which is equivalent to

max
|z|=K

|DαP (z)| ≥
(|α| −K)

K

s+ n−s∑
j=1

K

K + |zj |

 max
|z|=K

|P (z)|.

Now applying Lemma 4 in the right hand side of above inequality, we get

max
|z|=K

|DαP (z)| ≥
(|α| −K)

K

s+ n−s∑
j=1

K

K + |zj |


×
(

2Kn

1 +Kn−s +
Kn(K − 1)(|an−s|Kn−s − |a0|)
(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)
max
|z|=1

|P (z)|. (17)

Since DαP (z) is a polynomial of degree at most n− 1, it follows that

max
|z|=K

|DαP (z)| ≤ Kn−1max
|z|=1

|DαP (z)|.

Using this observation in (17), we obtain

max
|z|=1

|DαP (z)| ≥

s(|α| −K) + n−s∑
j=1

K(|α| −K)
K + |zj |


×
(

2

1 +Kn−s +
(K − 1)(|an−s|Kn−s − |a0|)

(1 +Kn−s)(|an−s|Kn−s + |a0|K)

)
max
|z|=1

|P (z)|.

Which is the desired inequality and completes the proof of Theorem 2.
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