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Abstract

In this paper, we investigate the second-order differential equations with derivative functions under

Robin conditions
—u"(t) = f(t, u(t),u'(t)), t €[0,1],
{ au(0) — bu'(0) = aful, cu(1) + du'(1) = Blu] + AR,

where f :[0,1] x Rt x R — R™ is continuous, a[u] and B[u] are linear functionals involving Stieltjes
integral. The existence of positive solutions of the differential equation in the case of nonlinear terms
f(t,z1,x2) with super (sub) linear growth with respect to z1, z2 under this condition is proved by giving
some inequality conditions and conditions on the spectral radius of the linear operator, using the theory
of the index of immobile points on the cone in C[0,1]. Some examples are given to illustrate the theorems
respectively under multi-point and integral boundary conditions with sign-changing coefficients.

1 Introduction

In recent years, the fixed point theorems of cone mapping have been extensively applied to two-point bound-
ary value problems and some results of existence and multiplicity of positive solutions have been obtained,
see [1]-[6]. The existence of positive solutions of equations with Stieltjes integrals in the boundary value
condition was discussed by Ming et al. [3]

{ —u"(t) = f(t,u(t), v (), t €[0,1], 1)
au(0) — b/ (0) = alul, cu(l) + du'(1) = Blul,

using the theory of fixed point exponents on cones, where

aM=AUWMw6M=Au@w@,

A, B are bounded variational functions, a, b, ¢ and d are nonnegative contants with p = ac + ad + be > 0,
and the derivative of the unknown function is not contained in the Stieltjes integrals.

There are also some research results on the boundary values problems in the Stieltjes integrals containing
derivatives of unknown functions, see [5]-[9]. The authors in [5] studied the existence of positive solutions
for the boundary value problem (BVP)

{ —U”(tl=g(t)f(t,U(t)), t

0,1),

€ (
afu], u(l) = Blu] + A[u'],

where A\[u'] = fol u/(t)dA(t), A, B and A are bounded variational functions and the nonlinear term function
does not contain the derivative of the unknown function.
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In this paper, we discuss the existence of positive solutions for the general derivative dependent BVP
subject to Stieltjes integral boundary conditions and Robin conditions

{ = Hu ), e 1) -
(0) = bu/(0) = aful, cu(l) + du'(1) = Bfu] + A’

where A\[u'] = p fo ), A are bounded variational functions, a, b, ¢, d are nonnegative constants with
p=ac + ad + bc > 0 Our Work is different from [5, 9, 10, 11] about discussion on nonlinearity and Stieltjes
integral boundary conditions.

2 Preliminaries

Let C'[0,1] denote the Banach space of all continuously differentiable functions on [0, 1] with the norm

Julls = (- ) = max { ama, (0] g, 01
We first make the assumptions:
(C1) f:]0,1] x RT x R — RT is continuous where R* = [0, c0).
(C2) A1) =A(0)=0, A(s) >0, Vs e [0,1].
Lemma 1 Under the conditions of (C1) and (C2), when afu] = Blu] =0, i.e.

—u"(t) = f(t,u(t), v (t), t €0,1],
{GU()bu() 0, cu(l) + du'(1) = A[u'], (4)

the solution of (4) in C*[0,1] is given by the fived point of the operator H defined as follows,
1 1
(Hu)(®) = [ At +5)f(s,u(s) 1 ()ds + [ bt )75 uls), ' (5))ds
0 0
1
- /0 Fat (b 8) (5, u(s), ' (s))ds (5)

where ( b)( d ),
_ as + c+d—ct OSSStSL
k(t,s) = — {(at+b)(c+d—cs)0§tS3§1, ©

A(s)(at +b) +
kit s) = {A(s)(at+ b) +

as+b)(c+d—ct),0<s<t <1,

o
i(ater)(chdfcs)O<t<s<1 (™)
p =r=0 =

Proof. First, integrate twice for —u" (¢) = f(¢,u(t), v (¢)) in [0, ¢] and [¢, 1] and use the side value conditions
in (4) to obtain equation (5). The details are as follows

(Hu)(t) = / A(s)(at +b) f(s,u(s),u'(s) d8+/ k(t,s)f(s,u(s),u'(s))ds

/A (at 4+ b)f(s,u(s),u'(s))ds

t

l(as +b)(c+d—ct)f(s,u(s), v (s))ds
o P

/ X
/t %(at +b)(c+d—cs)f(s,u(s),u'(s))ds,

+
+
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(Hu)(t) = a / A(3) (5, u(s), ' (5))ds — / © a5+ B) (s, u(s). 1 (5)ds

1 a ,
4 / et d = es)f(s,u(s), ' (2)ds.

and
(Hu)"(t) = = f(t, ut), u'(¢)).
Then . -
b/o A(s )ds+/0 ;(chdfcs)f(s,u(s),u(s))ds,
AW/ Ds+ [ Letrd '(s))d
)=a [ Al (s [ Se+d ) (s u(s). (9)ds,
a(Hu)(0) — b(Hu)'(0) =0,
! !/ ! d I
(H0) = [ A a+0)f(sus) (6D + [ S (as+0)f )./ (5))ds,
1 1, /
(H' (1) = [ M) (s u(e) 9)ds = [ (as ) (s, u(s).0 (9)ds,
1
c(Hu)(1) + d(Hu')(1) = p/o A(s)ds,
1 1 c
AM(Hu) ] = p/o {a/o A(s dsf/o ;aerb s),u'(s))ds
+/126+dcs ds]dA
1o
= ap/o /0 A(s ))dsdA(t) — / / (as + b) f(s,u(s),u'(s))dsdA(t)
; / alc+d—cs)f(s,u(s),u'(s))dsdA(t)
1 1
= (—acs — be)(—A(s ))ds—l—/ (ac+ ad — acs)A(s)ds
0 0
[ eas)as
0
and

c(Hu)(1) + d(Hu)'(1) = A[(Hu)'].
Therefore, (Hu)"(t) = —f(t,u(t),v'(t)), a(Hu)(0) — b(Hu)'(0) =0, c¢(Hu)(1) + d(Hu)' (1) = A[(Hu)']. =
Lemma 2 If (Cy) is satisfied, then there exists a non-negative function @y (s) = A(s)(a+b) + (a5+b)(

d — ¢s) such that Vt,s € [0,1] has
c(t)®pu(s) <ku(t,s) < Pu(s),

where

c(t)—min{ blc+d—ct) d(at 4+ b) }
- pMo(a+0b) + (a+b)(c+d)’ pMo(a+b)+ (a+0b)(c+d) [
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Proof. Viewing kg (t, s) as a function about ¢, and according to (7),
1
kp(t,s) < ®g(s) =A(s)(a+b)+ ;(as +b)(c+d—cs).

Denote

My := sup A(s). (8)
s€[0,1]

When 0 <s<t<1,

ku(t,s) A(s)(at+b)+%(aerb)(chdfct)

Oy(s) A(s)(a+b)—|—%(as—&—b)(c—i—d—cs)
%b(c—l—d—ct)

Mo(a+b) + 5 (a+b)(c+d)
b(c+d—ct)

bt h) + atoera oW

v

Y

When 0 <t <s<1,

ki (t,s) A(s)(at +b) + %(at +0b)(c+d—cs)

D (s) A(S)(@—i—b)—i—%(as—&—b)(c—i—d—cs)
Sd(at +b)

Mo(a+b) + 5 (a+b)(c+d)

d(at + b) S
pMo(a+b)+ (a+b)(c+d) 7

Y

v

Therefore,
kH (t, S)
Pp(s)

> min {co(t),c1 ()} =: e(t).

]
It is easy to prove that BVP (3) has a solution if and only if there exists a solution in C1[0,1], for the
following integral equation

wlt) = 1 (Halu] + 72O + (Hu)(®) = (Tu)(d), ©)
71<t>="”‘pt”” and (1) = *0.

Because the mixed side value condition of equation (3) contains the derivative of the unknown function,
similar to the method used by Webb in [5], we need to give the corresponding Green’s function. We also
impose the following hypotheses:

(C3) A and B are of bounded variation and for s € [0, 1],
1 1
Ka(s) ::/ ku(t,s)dA(t) >0, Kp(s) :z/ kg (t,s)dB(t) > 0;
0 0

(C1) 0<afyy] <1, Bly1] >0, 0<B[yy] <1, afyy] >0, and

D := (1 —af[v])(1 = Blva]) — alya]B[v:1] > 0.
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Define the operator as follows

(Su)e) = 2 [(1—%]) K ()7 (5. u(s). o (5))ds
|

= ab) [ (o) uls) 6

0

+ [ e s u(e) 0 (9)ds
1
= ; ks(t,s)f(s,u(s),u'(s))ds, (10)

(Su)(t) = / kst 5)f (s, u(s), u'(5))ds, (11)

where

kst ) = 5 10— ppalica(s) + el ()] + 222 8,1k + (L - aly)Ka()] + ku(t.). (12)

Lemma 3 If (C2)—(Cy4) hold, then there exists a nonnegative continuous function ®(s) satisfying
v(t)P(s) < ks(t,s) < ®(s) fort, se€l0,1],

where

v(t) = min bletd—ct) d(at +b)
p |81+ 8+ Mo(a+b)| + (a+b)(c+d) p|®r+F+ Mola+)| + (atb)(c+d) |

g ._citd | “ a) L " .
2= (1= Bll) (Se[olf’” Ka( )) + afy,] (se[ol,)l] Kn( )> :
~ _a+b “ . . . .
5= O o <se[0‘?1]’“( >> (- aly)) (86[01?11163( >>]
and
2(s) = L2 01— g oo+ 2 Bnla(s) 4 (1 afvKa(e)] + @
=5 Yo )Ka(s) + aly,]Ke(s)] + D B1Ka(s) + (1 —a[y)Ks(s)] + ®a(s).

Proof. Viewing ks(t, s) as a function about ¢, and according to (7), (8), (12), (Cs),

#1(9) = 2D (1= Bl )a(s) + ablKa(s)].
Ba(s) = L (30 1Kals) + (1~ b DK (s),

Therefore,
ks(t,s) < ®(s) = 1(s) + P2(s) + Pu(s).
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When 0 < s <t <1,
ks(t,s) Dy (s) + Dy(s) + A(s)(at +b) + %(as +b)(c+d—ct)
O(s)  Dy(s) + Pa(s) + A(s)(a+b) + %(as—l—b)(c—i—d—cs)
- %b(c +d— ct)
T @1+ Py + Mo(a+b) + L(a+ b)(c+ d)
> . b(c+d— ct) —
0 [cbl + By + Mo(a +b)| + (a+b)(c+d)
When 0 <t <s <1,
ks(t,s)  Pi(s) + Pa(s) + A(s)(at +b) + 2(at +b)(c+d — cs)
®(s)  Dy(s) + Pa(s) + A(s)(a+b) + %(as—i—b)(c—i—d—cs)
. %d(at +b)
D14+ Dy + My(a+b) + %(a—i—b)(c—kd)
> . d(at +b) p——
p [<I>1 + @y + Mo(a+b)| + (a+b)(c+ d)
Therefore,
ks(t,s . .
o(s) min {vo(t),v1(t)} := v(t).
]
By (10), then
] < 2 BKae) + abulKne)] + S SNIKA) + (L abi)Ka(o)
Okp(t,s)
* ’ ot
< |5l = BhaKa(s) + abalCn()] + 5 180IKa(s) + (1 = aln])Kn(s)
1 1
+ max {aA(s) + ;a(c—i— d—cs), al(s) + ;c(as + b)} = U(s), (13)
where
Okp(t,s) aA(S)—i—%(—acs—bc), 0<s<t<l,
ot {aA(s)—i—ll)(ac—i—ad—acs), 0<t<s<1.
Define two cones in C1[0,1] and two linear operators in C0, 1] as follows
P={ueC'0,1]:u(t) >0, Vte[0,1]}, (14)
K={ueP:u(t)>cluls, vVt €[0,1]; afu] >0, Blu] >0}, (15)
(Lu)(t) = / ks(t, s)u(s)ds, u € C[0, 1], (16)
0
and )
(L*u)(s) = ks(t, s)u(t)dt, u € C|0,1]. (17)

0

We write u < v equivalently v = u if and only if v — u € P, to denote the cone ordering induced by P.
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Lemma 4 If (C1)—(Cy4) hold, then S: P — K and L, L*: C[0,1] — C[0,1] are completely continuous
operators with L(P) C K.

Proof. From (11), (12) and (C;)—(Cy4) we have for u € P that (Su)(¢) > 0. It is easy to see from (Cy) that
S: P — C'0,1] is continuous. Let I be a bounded set in P, then there exists M > 0 such that ||Jul o < M
for all u € I. By (C1) and Lemma 3, we have that Vu € I and ¢ € [0,1],

(Su)(t) < fson) [ a(s)ds.

max
<(s,z,y)e[0,1] x[0,M]x[—M,M]

Y okg (t,s)

5 ds

Su)'(t)] < .z, /
|( u) ( )| - ((s,x,y)e[o,l]rf[%m]x[—M,M] f(s v y)) 0

1
< max s, x, W(s)ds.
- <(s,m,y)e[0,1]x[0,M]x[M,M] I y)) /o (s)

Then S(I) is uniformly bounded in C1[0,1]. Moreover Vu € I and t;, to € [0,1] with ¢; < o,
1
[(Su)(t1) — (Su)(t2)] < / ks (t1,s) = ks(tz, s)| f(s, u(s), ' (s))ds
0
1
P [ hs(ens) = hstea ol ds
0

max
((s,z,y)G[O,l] x[0,M]x[—M,M]

and
1
(Su)' (1) — (Su)' ()] < / Ky (b, ) — K (b, )] £, u(s), o ())ds
< / k{1, 5) — K (ta, 5)] f (s, u(s), o (5))ds
<

to
2 max s, x, / W(s)ds.
((s,x’y)E[O’I]X[O»M]X[M’M]f( y)) t (s)

Thus S(I) and S'(I) := {6': §'(t) = (Su)'(t),u € I} are equicontinuous. Therefore S : P — C'[0,1] is
completely contmuous by the Arzela—Ascoh theorem.
For u € P, it follows from Lemma 3 that

ISulle = g / ks(t, 5)f (s, uls),u (s))ds)</0 B(s)f (s, u(s), u'(s))ds,

and hence for ¢ € [0, 1],

1 1
(Su)(t) :/O ks(t,s)f (s, u(s),u'(s))ds > v(t)/o O(s)f (s, u(s),u'(s))ds = v(t) || Sullc -

From (C1)—(Cy) it can easily be checked that a[Su] > 0 and S[Su] > 0. Thus S: P — K.
Similarly, L, L* : C[0,1] — C0, 1] are completely continuous operators with L(P) C K. =

Lemma 5 If (C1)—~(Cy) hold, then S and T have the same fized points in K. As a result, BVP (3) has a
solution if and only if S has a fixed point.

Proof. First, assume that u is a fixed point of T, i.e.

u(t) = (Tw)(t) = vi(H)afu] + 72 (t)B[ul + (Hu)(t),
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a[Tu] = aly,]alu] + aly,]8[u] + a[Hu), A[Tu] = Bly,]ofu] + Bly2)8[u] + B[Hu
olHu]\ _ (1—afy] —afw] \ (alu]) _ , (ofu]
(B[Hu}) = < B 1 —/M) <mu1) =0 (mm) '

(i) -5 (o 1 2an) (i) - (i)

and

From (Cy),

—_

ut) = "ﬁ) [(1 = Blva))alHu] + alyo] B[ Hul]
220 500 ol )+ (1 ol )BLH) + (Hu)()
- Vlzgt) [(1‘/3[72])/0 /0 ki (t, ) f (s, u(s), u'(s))dsdA(t)
+0‘[’Yz]/0 /0 ku(t, S)f(s,u(s),u’(s))dsdB(t)}
+vzl§t) [ﬁm% ; ks (t, ) f (s, u(s), o' (s))dsdA(t)

+a-ap) [ fm(t,s)f(s,u(s)m’(s))dsdB(tﬂ
+/0 Fat (1, ) £ (5, u(s), o/ ())ds

= 20 sl [ Ka (et (9)as
rab) | @(s)f(au(s)m’(s))ds}

+72D(t) [ﬁhl]/o Ka(s)f(s,u(s),u'(s))ds

HL = ab) [ (s (u(s) /()]
+/O ku(t,s)f(s,u(s),u'(s))ds
1
= /0 ks(t,s)f(s,u(s), v (s))ds = (Su)(t).

Therefore, u is a fixed point of S.
Second, assuming that u is a fixed point of S,

a _ooi (el o (1=Bl) al)
(5:) =@ () e @ = (500" 208,
We have u(t) = (Su)(t) = yi01 + 72081 + (Hu)(t). Therefore, afu] = afy;]ar + afys]f; + a[Hu] and

Blu] = Blmlaa + Bly2]B1 + B[Hu].
Let afu] = a3 + 1, and Blu] = 1 + ny. Substitute them into the above equation, so we have that

(o B () = () - (i)
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()=o) = (35) = (5)

Then (Su)(t) = (Tw)(t) = u(t). That is, S and T have the same fixed point. m

Hence,

3 Main Results

In order to prove the main theorems, we need the following properties of fixed point index, see [1, 2, 7].
Lemma 6 Let Q2 be a bounded open subset of X with 0 € Q and K be a cone in X. If A: KNQ — K
is a completely continuous operator and pAu # u for w € K NIQ and p € [0,1], then the fized point index
(A, KNQ, K)=1.
Lemma 7 Let Q be a bounded open subset of X and K be a cone in X. If A: KNQ — K is a completely
continuous operator and there exists vg € K \ {0} such that u — Au # vvg for u € K NOQ and v > 0, then
the fixed point index i(A, KNQ, K)=0.

Recall that a cone P in Banach space X is said to be total if X = P — P.
Lemma 8 (Krein-Rutman) Let P be a total cone in Banach space X and L : X — X be a completely
continuous linear operator with L(P) C P. If the spectral radius (L) > 0, then there exists ¢ € P\ {0} such
that Ly = r(L), where 0 denotes the zero element in X.

The following lemma comes from [7, Theorem 2.5] and is useful for later calculations of r(L).
Lemma 9 Let P be a cone in Banach space X and L : X — X be a completely continuous linear operator
with L(P) C P. If there exist vg € P\ {0} and Ao > 0 such that Lvg > Agvo in the sense of partial ordering
induced by P, then there exist ug € P\ {0} and A1 > Ao such that Lug = Ajug.

In the sequel, let X = C*[0,1] and denote Q, = {u € X : |lu||o: <7} for r > 0.
Theorem 1 Under the hypotheses(C1)—(Cy) suppose that

(F1) there exist nonnegative constants a1, by, c1 satisfying

1 1
al/o <I>(s)d5+b1/0 U(s)ds < 1 (18)

such that
ft,z1,22) < arxy + by |z2| + ¢, (19)

for all (t,z1,z3) € [0,1] x RT x R;
(F3) there exist constants az > 0 and r > 0 such that
ft, @1, x2) > a1, (20)

for all (t,x1,x2) € [0,1] x [0,7] x [—r,7], moreover the spectral radius r(L) > i, where L is defined by
(16).

Then BVP (3) has at least one positive solution.
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Proof. Let W = {u € K : u = pSu, p € [0,1]} where S and K are respectively defined in (11) and (15).
We first assert that W is a bounded set. In fact, if w € W, then v = puSu for some p € [0, 1]. From Lemma
3 and (19), we have that

lulle = /HHBLX(/0 ks (t,5)f (s,u(s), u'(s))ds)

0<t<1

1
< / ®(s)[aru(s) + by |u'(s)| + c1]ds
0
1
< (@ fjullg + by 'l + 1) / B(s)ds
0
and
! aks(t S)
’ o ) ’
ol = mguas, | [ s ) (s) s
1
< / U (s)[aru(s) + by [u'(s)] + c1]ds
0
1
< (@ llullg + b1 el + 1) / W(s)ds.
0
Thus . .
lullo < (1 - a / B(s)ds) " (by [/ + 1) / B(s)ds (21)
0 0
and

Il < 1_fl}><>d ol (| 1 w(e)as) ( [ 1 (s)ds )

o U 20e) (] veo)

1 1
b ||u’||C/ U (s)ds + c1/ U (s)ds. (22)
0 0
From (18), (21) and (22), then

c1 fol ®(s)ds
1—ay fol D (s)ds — by fol U(s)ds

1 fol U(s)ds
1—a fol P(s)ds — by fol U(s)ds

ulle < e <

)

and hence W is bounded.
Now select R > max {r, supW}. Then uSu # u foru € KNdQg and p € [0,1], and i(S, KNQg, K) =1
follows from Lemma 6. It is easy to see that L(PT) C P C P*, where

PH0,1] = {u € C[0,1] : u(t) > 0, ¥t € [0,1]}

is a total cone in C[0,1]. Since r(L) > % > 0, it follows from Lemma 8 that there exists ¢, € P\ {0} such
that Ly, = r(L)g,. Furthermore, ¢, = (r(L)) 'Ly, € K by Lemma 4.

We may suppose that S has no fixed points in K N0<Y,. and will show that v — Su # vy, for u € KNOQ,
and v > 0. Otherwise, there exist u; € K N9, and 7 > 0 such that u; — Su; = 7¢,, and it is clear that
7 > 0. Since u; € K NN, , we have 0 < wuy(t) <r, —r <uj(t) <r, ¥t €[0,1]. It follows from (20) that
(Su1)(t) > a1(Luq)(t) which implies that

up =T, + Sur = 79 +a1Lug = 7. (23)
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Set 7* =sup {7 > 0:u; > 7p;}. Then 7 < 7* < 400 and u; > 7*p;. Thus it follows from (23) that
uy = 7o) + a1 Luy = 7o + a7 Loy = 19y + a7 r(L) ;.

But (L) > alT’ souy = (7 +7%) ¢y , which is a contradiction to the definition of 7*. Therefore u— Su # 7¢;
forue KNoQ, and 7 > 0.
From Lemma 7, it follows that (S, K N Q,., K) = 0. Making use of the properties of fixed point index,
we have that
i(S, KN (Qr\ Q) ,K)=i(S,KNQg,K)—i(S,KNQ,,K) =1

and hence S has at least one fixed point in K. Therefore, BVP(3) has at least one positive solution by
Lemma 5. m

Lemma 10 ([3, Lemma 5.1 of Chapter XII]) Let R > 0, and let ¢ : [0,00] — (0,00) be continuous

and satisfy -
pdp
—— = 00. 24

/0 v(p) 34

Then there exists a number M > 0, depending only on ¢, R such that if v € C?[0, 1] which satisfies ||[v||o < R
and [v" ()] < @([v'(¢)]), t €[0,1], then [[v']|o < M.

Theorem 2 Under the hypotheses (C1)—(Cy) suppose that

(F5) there exist nonnegative constants ay, by and r > 0 satisfying

(a1 + b1) max {/01 cI>(s)ds,/01 \Il(s)ds} <1, (25)

such that
f(t,x1,22) < arxy + by |22, (26)
for all (t,x1,x2) € [0,1] X [0,7] X [—7,7];
(Fy) there exist positive constants as, co such that

f(t, z1,22) > asx1 — ca, (27)

for all (t,z1,12) € [0,1] x R x R, moreover the spectral radiu v(L) > é,r(L*) > ?12 where L, L* are
defined by (16) and (17)respectively;

F5) for any M > 0 there is a positive continuous function on RT satisfying (24) such that
wip

ftz,y) < 30(‘3/|) —c2, Y(t,z,y) € [07 1] X [OaM] X R, (28)

Then BVP (3) has at least one positive solution.

Proof. (i) First we prove that uSu # u for v € K N9, and p € [0,1]. In fact, if there exist u; € K NIQ,
and py € [0,1] such that u; = pySuy, then we deduce from Lemma 3, (13), (25), (26)and 0 < wuy(t) <
r, —r <uj <r, Vt €[0,1] that

lurlle = o max (/01 ks(t»S)f(Syu(S)au'(S))d8>

0<t<1

IN

/O B(s)[arun(s) + by [u (s)[)ds

IN

1
(a + b) ( / @(s)ds) laallen < llutllgr =
0
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and

||U/1Hc = Hp IMax

Oks(t,s)
0<t<1 / Ohstt2) (s,u(s),u'(s))ds

/ W(s)[arun (s) + by [u (3)]]ds

0

IN

IN

1
(ar + b1) ( / ws)ds) lurllor < fluallgn = r-
0

Hence ||u1||o1 < r which contradicts u; € K N 0SY,.. Therefore, i (S, K NQ,, K) =1 follows from Lemma
6.

(i7) It is easy to see that L*(P*) C PT. Since r(L*) > é > 0, it follows from Lemma 8 that there exists
©* € P\ {0} such that L*p* = r(L*)p*. Let

1 1
*(t)dt [ ks(t,s)ds

M = CQIOSD Jo kst 5 (29)

(agr(L*) —1) fo

where v(t) comes from Lemma 3.
(#it) For u € P, define
1
(Syu)() = / ks(t, s) (f(s,u(s),u/(s)) + c2) ds. (30)
0

Similar to the proof in Lemma 4, we know that is completely continuous. If there exist us € K and Ag € [0, 1]
such that
(1 - )\0) S’LLQ + )\()S]'LLQ = U2, (31)

thus by (27) and (31), we obtain that

1

/O o (Dyus(t)dt
— (1) / (1)t / s (t, )£ (5, ua(s), uh(s))ds

1 1

o / o (1)t / (st 5) (F(5, us(s), wh(s)) + ) ds
_ /gp*(t)dt/ kst ) (F(5,ua(s), wy(5)) + Aocs) ds

0 0

v

/ " (t)dt/ ks(t,s) (aaua(s) — ca + Aoc2) ds
0 0

as /1 *(t )dt/l ks(t, s)ua(s)ds — co /01 ©*(t)dt /01 ks(t,s)ds
= ag/ us(s ds/ ks(t,s)p™(t)dt — ca /1 gp*(t)dt/ol ks(t,s)ds

= ar(l?) / & ()uz(s)ds — 2 / (bt / kst )ds,

%

which implies that

”“2”0/0 v(t)e" (t)dt < /0 o (Hus(t)dt < 2 Jo “Dzli?(d%o’%i(tw)ds
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and thus ) )
sl < ca [y w*(t)dt f[i ks(t,s)ds _ (32)
(agr (L) = 1) [y ()@~ (t)di
We can derive from (28), (31) and (32)that
lug ()] = (1= o) [t ua(t), us(t) + Ao (f(t, u2(t), us(t)) + c2)
= ft,ua(t),up(t)) + Aoca < f(t ua(t), up(t)) + c2
< @ (lua(®)]) (33)

By Lemma 10, there exists a constant M; > 0 such that ||u5||, < M;. Let R > max {r, M, M;}. Then
(I=X)Su+ASju#wu, Vu e KNoQg, A€ |0,1]. (34)
From (34) it follows that
i(S, KNQgr, K)=1i(S1, KNQg, K) (35)
by the homotopy invariance property of fixed point index.

(iv) Since L(P*) € P C P* and r(L) > £ > 0, it follows from Lemma 8 that there exists ¢, € P\ {0}

such that L, = r(L)p,. Furthmore, ¢, = (r (L))" Ly, € K by Lemma 3. Now we prove that u—Siu # vep,
for u € KN9ONgk and v > 0 and hence
i(S1, KN Qp, K) =0 (36)

holds by Lemma 7. Assume that there exist ug € KNI and vy > 0 such that uy—S1up = vop,. Obviously
vo > 0 by (34) and
= S1up + Vo = VoPy- (37)

Set
v  =sup{v>0:uy = vy},

Then vp < v* < 00 and ug = v*p,. From (27) and (37) we have

ug = Siug +vopg = azLug + vopy
= axv Loy + vopy = a20™r(L)py + vopg-

But (L) > é, 50 ug = (v* + vg)wy, which is a contradiction to the definition of v*.
(v) From (35) and (36) it follows that i (S, KNQg, K) =0 and

i(9, KN(Qr\Q), K)=1i(S, KNQg, K)—i(S, KNQ,, K)=—

Hence S has at least one fixed point in K and BVP (3) has at least one positive solution by Lemma 5. =

4 Examples

We consider second-order problem under mixed boundary conditions involving multi-point with coefficients
of both signs and integral with sign-changing kernel

—u' () = f(tu(t),w' (1)), t € [0,1]
w'(0) = gul3) — 13u(3), (38)
(1) = fo u(t)(cosmt + 2 dt+f0 pu/ () (sin 7t + 7t cos t) dt.
that is, afu] = Fu(3) — Hu(3), Blu] = fol u(t)(cost + 2)dt, Au'] = f01 u'(t) (sin7t + 7t cosmt) dt and
a=c=0,b=d=1, p=1. Hence
A(s)t+s(1—1),0<s<t <1,
Fu(t,s) = {A(s)t+t(1 —5),0<t<s<1,
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A(t) = tsinnt, A(0) = A(1) =0, A(s) >0, Vs € [0,1]. Then (C3) is satisfied. Since
, , X 5 (%sinws—i—:ﬂ%)s Ogsgﬁ,
0<Ka(s)= §kH(§’S) - ﬁ""'H(g’S) = (fgsinms—Z)s+5 $<s<2,
Elsinms —1)s+1]  2<s<1,
1 2
2 3 25 —1 —
Kp(s) :/ ku(t,s) (cosmﬁ + ) dt = COb(WS)_; 5 p 273 >0,
0 T ™ v
we see that (C3) is satisfied. Since
7 1
< — <1 =— >
0 < o] 36 s alys] T 0,
2 1 2
and )
297 — 31w + 54
D= (1~ ahy))(1 - Bha]) — alln] = 22T 5,
(Cy) is also satisfied. Furthermore,
1 244 1
D(s) = ) {W 7; Ka(s)+ 36163(8)] + s%sinms + s(1 — s),
1 27 —m2 1
U(s) = 5 {Wﬂ_QWICA(s) + ;ICB(S)} + max {s(sin7s) + (1 — s), s(sinmws) + s}.
Example 1 If f(t,21,22) = tes + a3, take a = %, by = % and thus
1 1
al/ D(s)ds + b1/ U(s)ds
0 0
_ L 14477 4 5947° 4 37507° + (108v/3 — 8352)7* + 128167 + (432V/3 — 11664)7>
4 3132n6 — 334875 4 583274
N 1 —43270 4 743475 + 40327% + (2374 — 324+/3)7% + 1659672 + 648+/37
2 93967% — 1004474 + 1659673
< 1
So Fy holds for c¢; large enough. In addition, take as = 12, r = ﬁ. From Lemma 3 and Lemma 4 we
have that v(t) € C*[0,1], and for t € [0,1],
1
Lo(t) > v(t) / B(s)0(s)ds,
0
then by Lemma 9, the spectral radius
1
r(L) > / D(s)v(s)ds
0
_ [ 187207 4 77227 4 487507° 4 (14043v/3 — 108576)m + 166608 + (56163 — 151632)x2 |
B 5619676 + 602647° + 1049767+ '
~ 0.264903
1
il 39
> o (39)

Therefore, (Fy) holds since (20) can be inferred easily. By Theorem 1 we know that BVP (38) has at least

one positive solution.
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4 4
Example 2 If f(t,z1,72) = 2({5:”_1%7%, take a1 = %, by = 3 and thus
1
(a1 + by) / B(s)ds
0
_ 3 14477 + 59470 + 375075 + (108v/3 — 8352)7* + 1281673 + (432v/3 — 11664) 7>
4 3132m6 — 334875 4 583274
< 1,
1
(a1 +b1)/ U(s)ds
0
_ 3 —43275 + 743475 + 40327 + (2374 — 324+/3) 73 + 1659672 + 648+/37
4 939675 — 1004474 + 1659673
< 1L

Therefore, (F3) holds since (26) can be inferred easily for r = 1. Now take take ay = 12. From Lemma 3
and Lemma 4 we have ® € P*[0,1] and for s € [0,1],

(L*®)(s) > <I>(s)/0 v(t)D(t)dt,

then by Lemma 9, the spectral radius

r(L7) > /1 o(B)B (1) dt

0

B [1872#7 + 772275 + 487507 + (14043+/3 — 108576)7 + 16660873 + (56161/3 — 151632) 7>

0.93
5619675 + 602647° + 1049767+
~ 0.264903
1
> —.
a2

It is easy to see that (27) holds for co large enough. Therefore, (Fy) is satisfied if (39) is conbined with. As
for (Fs), one can let o(p) = M? + p? + co. By Theorem 2 we know that BVP (38) has at least one positive
solution.
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