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Abstract

In this paper, by relaxing the hypothesis of the famous Enestrom-Kakeya Theorem, we establish a
zero bound in the theory of distribution of the zeros of polynomials. Our results not only generalizes the
Enestrom-Kakeya Theorem but are also applicable to the larger class of polynomials. We also show by
examples that established results give better bounds than Cauchy bound.

1 Introduction and Main Results

Polynomials perpetrate and much that is beautiful in mathematics is related to polynomials. Virtually every
branch of mathematics, from Algebraic number theory and Algebraic Geometry to Applied Analysis, Fourier
Analysis and Computer Sciences, has its corpus of theory arising from the study of polynomials. The subject
is now much too large to attempt an encyclopaedic coverage.

The most amusing problem of the algebra is to find the zeros of a polynomial. But as the degree of
a polynomial shoot up, it is very difficult to find the zeros of a polynomial. This makes identification of
regions containing zeros of a polynomial a significant problem. In 1829, A. L Cauchy [2] gave a very simple
expression for the zero-bound in terms of the coefficients of a polynomial. In fact he proved that all the zeros
of the polynomial

P(2) =apnz" +an 12" '+ a1z +ag,a, 0
lie in the disk

Gy
|z| <14+ M, where M = max |— k|
1<k<n' ap
The remarkable property of this result is its simplicity of computations. In literature [5], there exists several
results concerning the bounds for zeros of polynomials. The following elegant result on the location of zeros
of a polynomial with restricted coefficients is known as Enestrom-Kakeya Theorem [5, 9] which states that:

Theorem 1 Let P(z) = a,2" + a,_12"" 1 +---+ a1z + ag be a polynomial of degree n with real coefficients
satisfying an > an—1 > -+ > a1 > ag > 0. Then all the zeros of p(z) lie in |z| < 1.

Joyal, Labelle and Rahman [4] extended Theorem 1 to polynomials whose coefficients are monotonic but
are not necessarily non-negative and proved that:

Theorem 2 Let P(2) = ap2" +an_12" "1 + -+ +a1z +ag be a polynomial of degree n with real coefficients
satisfying an > an—1 > -+ > a1 > ag. Then all the zeros of p(z) lie in

an — ap + |ao|

z| <
2| < ]
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Aziz and Zargar [1] also relaxed the hypothesis of Theorem 2 in several ways and among other things
they proved the following result:

Theorem 3 Let P(z) = a,2" + a,_12"" 1 +---+ a1z + ag be a polynomial of degree n with real coefficients
such that for some k > 1, ka, > ap—1 > -+ > a1 > ag. Then all the zeros of p(z) lie in

ka, —
o4k — 1] < Fon = 00+ Jao]
|an|
Shah and Liman [10] extended Theorem 3 to the polynomials with complex coefficients by proving that:

Theorem 4 Let p(2) = a,2"+a,_12" 1 +---+aiz+ag be a polynomml of degree n with complex coefficients
such that for some real B, |arga; — 3| <a < %,7=0,1,2,...,n and k > 1,

klan| > |an—1] > -+ > lai| > |ag|.
Then all the zeros of p(z) lie in
1 n—1
lz4+k—1] < Tl (Klan| — lao|)(cos a + sin @) + |ag| + 2sina Y _ |a |
n =0

Rather et al. [6] relaxed the hypothesis of Theorem 3 and they proved the following result:

Theorem 5 Let P(2) = ap2" +an_ 12"t + -+ a1z +ag be a polynomial of degree n with real coefficients
such that for some kj > 1, ap—j41 >0, 5 =1,2,...,7 where 1 <r < n,

klan Z k2an—1 Z k3an—2 2 T Z kran—r-i-l 2 Ap—r 2 o Z aj Z ap.
Then all the zeros of P(z) lie in

Ay 1
z+k1717(k2—1)T1 gm kyan — (ky — 1)|an_ 1|+QZ D|an—j41] — ao + |aol

Recently Rather et al ([8], [7]), extended Theorem 5 to the polynomials with complex coefficients and
proved following two results:

Theorem 6 Let P(2) = apz"+a, 12" '+ -+aiz+ag be a polynomial of degree n with complex coefficients
such that for some real 3, |arga; — 3| <a < 7,7 =0,1,2,...,nand k; > 1, a,_; #0,j =0,1,...,r where
1<r<n-—1,

kolan| > Eilan—1| > kalan—o| > -+ > kplan—r| > [an—r_1] > --- > |a1| > |ao].
Then all the zeros of P(2) lie in

1
< {(kzo|an| — lag|)(cos a + sin @)

|an|

+2s1na(2k lan—j| + Z |an— J|>

Jj=r+1

(k1 — Dl 1|+22 1l J|+ao}

Apn—1

Z+k0—1—(k‘1—1)

Qn



662 On The Enestrom-Kakeya Theorem

n .
Theorem 7 Let P(z) = ) a;27, a; = a;j + iy, be a polynomial of degree n with complex coefficients such
§=0
that for some k; > 1, 000—j11 >0, 7 =1,2,...,7 where 1 <r <n,
klan > k2an71 > k:304n72 >z kranfr+1 > Qpp 22 Q1 2 Qp-

Then all the zeros of P(z) lie in

o, o 1 .
=12 = (=022 < ke, = G = Dlaor +2( 305 - Dlaw-i
n—1
+ 3 yl) — o+ faol + |-
j=0

Although Theorems 5-7 are applicable to the larger class of polynomials as compared to all other
Enestrom-Kakeya type results, but are not applicable to the polynomials with one coefficient equals zero.
For instance, if we consider the polynomial P(z) = 5z% + 423 + 022 + 2z + 1, then one can note that all
Enestrom-Kakeya type results including Theorems 5-7 are not applicable to this polynomial. So it is inter-
esting to look for the results applicable to such class of polynomials. Motivated by this, here we establish
the following results applicable to such class of polynomials. We begin, by proving the following result.

Theorem 8 If P(2) = anz"+an_ 12"t +---+aiz+ag is a polynomial of degree n with complex coefficients
such that for some real B, |arg(k; + an—;) —B] < a < §, j = 0,1,2,...,n and for some numbers k;,
17=0,1,2,...,r wherel <r <n-—1,

ko + anl > [k1 + an—1] > [k2 + an—2| > > [k + an—r| > [an—r—1] > -+ > |a1]| > |ao],
then all the zeros of P(z) lie in

ko — k1

%

1 n
<{(k0+an| lao|)(cosa + sina) 4+ 2sin « Z (|kj + an—j|) + Z lan—j|

B |an| j=r+1

’z-i—

r—1
+ 1y kol + ool .
j=1
Remark 1 If we take transformation k; = (A\j — )an—j, an—; #0,X; > 1, j =0,1,2,...7, then Theorem
8 reduces to improved version of Theorem 6.
Remark 2 For a = 3 =0, Theorem 8 reduces to the following result.

Corollary 1 Let P(z) = ap2" +an_12" "t +---+ a1z +ag be a polynomial of degree n with real coefficients
such that for some k; >0, 7 =0,1,2,...,7 where1 <r <n—1,

k0+an > k1+an71 Zk2+a'nf2 > Zkr"i_anfr Za'nfrfl > Zal ZGO ZO
Then all the zeros of P(z) lie in

ko — k1

an

r—1
<1+(k0+2k —kj+1|+k)

Jj=1

‘z—i—

n .
Theorem 9 Let P(z) = »_ a;2) where a; = a;j +1iv; be a polynomial of degree n with complex coefficients
j=0
such that for some k; >0, j =0,1,2,...,r where 1 <r <n-—1,

k0+an2k1+anflZk2+an722"'2kr+anfrZanfrflZ"'ZQIZQ(L
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Then all the zeros of P(z) lie in

r—1 n—1
ko — k1
< o {an laol = a0+ X5 = Kyl + 3 s =251+ ol + B+ o

1
Qp |an

‘z +
j=1 =0

If all the coefficients of P(z) are real then the above theorem reduces to the following result:

Corollary 2 Let P(z) = ap2" +an_12" "t +---+ajz+ag be a polynomial of degree n with real coefficients
such that for some k; >0, j=0,1,2,...,7 where 1 <r <n—1,

kO"_anzkl"_anflZk2+an722"'Zkr+an7r2anfr712"'2a12a0~

Then all the zeros of P(z) lie in

r—1
1
< — an+ko+2\kj—kj+1|+kr+|ao|—ao

n j=1

ko — k1

G,

‘z-i—

Remark 3 In Corollary 2, if we take k; =0, 7 =0,1,2,...,r we get theorem 2.

Remark 4 Corollary 2 reduces to the Corollary 1 If we take ag > 0. Further for k; =0, j =0,1,2,...,r
Corollary 1 reduces to the famous Enestrom-Kakeya Theorem [5, 9].

Remark 5 It is worth mentioning here that if we use same transformation as in Remark 1, then Theorem
9 reduces to Theorem 7 and Corollary 2 reduces to Theorem 5.

2 Computations and Analysis

In this section, we present some examples of polynomials to show that our results give better information
about the location of the zeros than Cauchy’s Theorem.

Example 1 Let P(z) = 32* +2.823 +2.622 + 32+ 1. By taking B =a =0 and r = 2 with ko = 0, k1 = 0.2,
ko = 0.4 in Theorem 8, it follows that all the zeros of P(z) lie in the disc |z — 1—15\ < 1.2. Whereas, if we use
Cauchy’s Theorem, it follows that all the zeros of P(z) lie in the disc |z| < 2.

Example 2 Let P(z) = 42° +3.22% + 323 + 2.822 + 32 + 1. By taking r = 3 with ko = 0, k; = 0, ko = 0,
ks = 0.2 in Corollary 1, it follows that all the zeros of P(z) lie in the disc |z| < 1.1. Whereas, if we use
Cauchy’s Theorem, it follows that all the zeros of P(z) lie in the disc |z| < 1.75.

Example 3 Let P(z) = 1023 + 1022 + 1. By taking r = 2 with kg = 0, k;y = 0, ko = 1 in Corollary 1, it
follows that all the zeros of P(z) lie in the disc |z| < 1.2. Whereas, if we use Cauchy’s Theorem, it follows
that all the zeros of P(z) lie in the disc |z| < 2.

From the above examples, it is evident that our results give better bound than the bound obtained by
using Cauchy’s Theorem.

3 Lemma

For the proof of Theorem 8, we need the following lemma which is due to Govil and Rahman [3].

Lemma 1 If for some numbers k; and kji1, |kj+an—;| > |kjy1+an—;—1| and |arg(k; +an—;)— 5
for some real B, then

<a<

s
29

[(kj + an—j) — (kjs1 + an—j—1)| < ([kj + an—j| — [kjs1 + an—j—1]) cos o + (|kj + an—j| + |kj1 + an—j—1]) sinc.
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4 Proofs of the Theorems

Proof of Theorem 8. Consider the polynomial,

F(z) = (1-2)P(2)
—an 2" (an — ap_1)2" (A1 —an2)2" o (A — G 1)2" T -+ (a1 — ag)z + ag
= —a, 2"+ (ko + an) — (k1 + an_1)]2" — (ko — k1)2" + [(k1 + an_1) — (k2 + an_2)]z"*
—(ky —ko)2" P A [(Bro F+ Gnrgn) — (Bre1 F @ppy1)]2" 2
kr_g — /fr—l)znﬂur2 + [(kr—1 + an—rt1) — (ke + an—r)]2n7r+1 — (kpo1 — kr)Znﬂ’H

—(
+[(kr + af’n—r) - an—'r—l]znir - k'r'zn77q + (a'n—r—l - af’n—r—2)znir71 +-+ (0,1 - aO)Z + aop.

This implies,

[F(2)] = | =an2""" = (ko — k1)z" + (ko +an) = (k1 + an-1)]2" + [(k1 + an—1) — (k2 + an—2)]"
_(kl - kZ)Z”_l +---+ [(k'r72 + anf'r+2) - (k'rfl + an7r+1)]zn_r+2 - (kr72 - krfl)zn_r—i_2
+[(kr71 + an7r+1) - (kr + anfr)}znirJrl - (krfl - kT)2n7r+1 + [(kr + anfr) - anfrfl}znir

_kTanr + (an—r—l - an—r—Z)Zniril +-+ ((11 - aO)Z + CLO|-
That is,

k n-1) — (k n— ki—k
|F(Z)| 2 |z|”{|anz+(k0—k1)|— (|(k0+an)—(k1—|—an1)+ |( 1ta 1)|Z( 2+ a 2)‘ +| 1|Z‘ 2‘

4ot |(kr—2 + an—r+2) - (kr—l + an—r+1)| + ‘kr—2 - kr—1| |(kr—l + an—r+1) - (kr + an—r)|
ERe R
K

|Z|7‘—2

|kr71 - kr| |(k7‘ + anf'r) - (anfr71)| | | |an77’71 - an77’72| |a1 - aO‘ |a0|
T T ER M P N T S Y N 6

Let |z| > 1 so that L, < 1. Then we have

2]

P) > |z”{|anz T (ko — k)] - (|<ko ) = (kr 4 )|+ |1+ anr) — (ks + an_g)| + [k — ko
+---+ |(kr—2 + an—r+2) - (kr—l + an—r+1)| + |kr—2 - kr—ll + |(kr—1 + an—r+1) - (kr + an—r)|

oyt — ol 4 (b & @) = (@ner )] + Vo] + [nrt — @ners] + -+ + a1 — ao] + |ao|) }
Applying Lemma 1, we have for |z| > 1,

ko — k 1
|F(2)] > |a7,,||z|”{|z + (Oail)I  Jan {<|ko +an| — k1 +an-1| + k1 +an_1| = [k2 + an—2| + ...
+ |kr—1 + an—r+l| - ‘kr + an—rl + |kr + an—r| - |an—r—1| + |an—r—1| - |an—r—2| +...
—la1| + |a1] — a0> cos o + (|k0 +an|+ k1 + an_1] + k1 + an—1| + k2 + an_a| + ...

+ |k7’71 + an7r+1| + ‘kr + an71‘| + |k'r + an77'| + |an71‘71| + |an77‘71| + |an7r72| + ...

r—1
T o] + ] + ) s+ 3y =y + [k + |ao|] }
j=1
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which gives

F)| > |an|z|"{ ko~ k)|

n

r—1
+2sma(2|k Falt Y Jan, )+Z|kj—kj+1|+|kr+|ao|}}
j=1

1
z+

{(Ui‘o + ay| — |ao])(cos a + sin a)

[an]

j=r+1
> 0
if
ko — k1 1 =
z+ (Iko + an| — |ao|)(cosa + sina) + 2sin« Z |k; + an—;] Z |an—;]
QAp | 7L| j=1 j=r+1
r—1
X1k = byl + i+ aol .
j=1
This shows that those zeros of F(z) whose modulus is greater than 1 lie in
ko — k 1 . .
‘z n oan o< |an|{(|k0 + an| — |ag])(cos @ + sina) + 2sin & ;(ch + an—jl) +j;_1 |an—;]

r—1
3y — Byl + el + |ao|}.
j=1

But those zeros of F(z) whose modulus is less than or equal to 1 already lie in this region. Hence it follows
that all the zeros of F'(z) and therefore of P(z) lie in

r

n
a |{(|ko+an| |ao|)(cos a + sin ) + 2 sin «v Z(|kj+an_j\)+ Z |an—;]
n j=1 j=r+1

r—1
+§]m—@HerH%@
j=1

ko — k1

Qn

1

z+ <

This completes the proof of Theorem 8. =
Proof of Theorem 9. Consider the polynomial

F(z) = (1-2)P(2)
= —a,2"T 4+ (n —ap—1)2" + (-1 — an,g)z”_l + (e — 1)z T
+Har —ag)z + a0 +i[(1n = Vno1)2" + (Vo1 = Yno2)2" 4+ (71— 70)2 + Yo
= —an2" (ko +an) — (k1 + an_1) — (ko — k1)]2" + [(k1 + an_1) — (k2 + an_2) — (k1 — k2)]2" !
ot [(Rpe2 + amrg2) = (b1 + anerg1) — (kpog — kpoq)]2" 772
+l(kr—1 4 an—ri1) = (kr + an—r) = (kr—1 — kr)}zn_”_l + [k + ey — 1 — k2"
a1 = a0)z + a0 +i[(Yn = Y1) 2" + (Yuor = Ya2) 2" F (1 = %0)2 0]
which implies,
P = | = anz™1 = (o — k1)=" + [(ko + an) — (k1 + an-1)]2" + [(k1n-1) — (ka + an_2))2" !
—(k1 — k2)2n71 + o+ [(kr—2 + an—ry2) — (kro1 + Oln—r+1)]Zn7T+2 — (kp_o — kr—l)}zn7T+2
H[(kr—1 + anry1) — (kb + @ )] 2" — (kpoy — k)2 [k b — g2
—kr2" 7"+ (a1 —ap)z + ap
Hi[(Vn = Y12+ (Yno1 = Yn2) 2"+ (11 = Y0)2 + 0] |
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that is,

[F(2)] > |z["[lzan + ko — k1| = (I(ko + an) = (k1 + an—1)| + [(k1 + an—1) = (k2 + an—2)|/|2]
+|k1 = Kal/|z| + -+ |(kr—2 + @neri2) = (kre1 + neri1)|/|2]7 2
k2 = kral /12772 + |(kro1 + anerg) = (ke 4 cne )|/ 12770 4 [heoy — kel /2771
+lkr + n—r = an—r—a|/[2|" + [kr|/[2]"
Hlom—r1 = anoral/I2[ T -+ |aa = aol/|2[* T+ [eol/]2]"
1 = Yneal + Vner = Yaal/12l+ -+ v =20l /1277 + ol /1217) ]

By using hypothesis, we have for |z| > 1,

ko — k1 1
an - |an|
k1 —Fo| -+ (kr—2 + an—ri2) = (kr—1 + p—rt1)

ko — ka4 (kr1 + an—rg1) — (kr + n—y) + |kr—1 — Ky |
+kr + oy —ap_r_1 +ky

+Qpr_1 = Qpoyp_2 + -+ a1 — ag + |ag

Y = Yno1l + Va1 = Yaeal + -+ 11 = Yol + 1rol) |-

|[F(2)] > |an\|z|”[|z + ((/fo +ap) — (k1 + an—1) + (k1 + an—1) — (k2 + an_2)

implies,
. ]130 _ kl 1 r—1 n—1
|F(z)] > |anl|z| |Z+ ‘—m a7z+‘a0|_a0+z‘kj_kj+1|+2|7j+1_7j|
n j=1 Jj=0

+|’70| + kr + ko}:|

> 0

if

r—1 n—1
ko — k1 1
|2+ . | > a{a" +laol — a0+ > 1k — kil + Y [ — vl + ol + ke +k0}~
n n _]:1 ]:O

This shows that those zeros of F(z) whose modulus is greater than 1 lie in

ko — k1
an

r—1 n—1
1
2 + | < {an +lool — a0+ Y Ik — Eipal + D v — 51+ ol + ke +ko}.

an‘ j=1 7=0

But those zeros of F(z) whose modulus is less than or equal to 1 already lie in this region. Hence it follows
that all the zeros of F'(z) and therefore of P(z) lie in

Z+

r—1 n—1
ko — k 1
O < —Lan+laol —ao+ ¥ ki — Kl + > i1 — 5]+ 1rol + ke + ko ¢
a || J J
" " j=1 3=0
This completes the proof of Theorem 9.
]
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