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Abstract

In this article, we study the decay rate for system of coupled semi-linear wave equations with power
external forces in Rn, including damping term of memory type which is very meaningful. We use the
weighted spaces to deal with unbounded domain. Owing to the Faedo-Galerkin method combined with
the stable set, we prove the existence of global solution. With the help of some special estimates and
generalized Poincaré’s inequality, we obtain a non classical decay rate for the energy function to generalize
a similar result in literature.

1 Introduction and Preliminaries

Some natural materials have viscoelastic structures. The structure of viscoelasticity manifests in different
types. It is very important to study the differential and integro-differential equations with viscoelasticity in
unbounded domains, which are models appearing in many applications: theory of viscoelasticity, thermal
physics, dynamics of multi-phase media. At present, the qualitative properties of global solutions of systems
with memory terms have been investigated.
We consider, for x ∈ Rn, t > 0, the following system utt + αut = θ(x)∆

(
u−

∫ t
0
$1(t− s)u(s) ds

)
+ h1(u, v)

vtt + αvt = θ(x)∆
(
v −

∫ t
0
$2(t− s)v(s) ds

)
+ h2(u, v),

(1)

with initial data {
u(x, 0) = u0(x), v(x, 0) = v0(x)

ut(x, 0) = u1(x), vt(x, 0) = v1(x),
(2)

where n ≥ 3, α > 0, the functions hi(., .) ∈ (R2,R), i = 1, 2 are given by

h1(y, z) = (q + 1)
[
d|y + z|(q−1)(y + z) + e|y|(q−3)/2y|z|(q+1)/2

]
h2(y, z) = (q + 1)

[
d|y + z|(q−1)(y + z) + e|z|(q−3)/2z|y|(q+1)/2

]
,

with d, e > 0, q > 3. The function 1
θ(x) ∼ ϑ(x) > 0, for all x ∈ Rn, is a density such that

ϑ(x) ∈ Lτ (Rn) with τ =
2n

2n− rn+ 2r
for 2 ≤ r ≤ 2n

n− 2
. (3)

As in [17], here exists a function G ∈ C1(R3,R) such that

uh1(u, v) + vh2(u, v) = (q + 1)G(u, v), ∀(u, v) ∈ R2, (4)
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satisfies
(q + 1)G(u, v) = |u+ v|q+1 + 2|uv|(q+1)/2. (5)

As in [4, 19], we introduce the function spaces H as the closure of C∞0 (Rn) as follows

H = {v ∈ L 2n
n−2 (Rn) | ∇v ∈ L2(Rn)n},

defined with the norm ‖v‖H = (v, v)
1/2
H for the inner product

(v, w)H =

∫
Rn
∇v · ∇w dx,

and L2ϑ(Rn) with the norm ‖v‖L2ϑ = (v, v)
1/2

L2ϑ
for

(v, w)L2ϑ
=

∫
Rn
ϑvw dx.

For general r ∈ [1,+∞)

‖v‖Lrϑ =

(∫
Rn
ϑ |v|r dx

) 1
r

,

is the norm of the weighted space Lrϑ(Rn).
The main aim of this work is to consider important properties for growth of the relaxation function

depending on a convex function, which make our contribution very interesting. We use a classical methods
to solve a new model with a nontrivial result related to the existence of global solution in Rn and obtained
an unusual decay rate for the energy function. The following references are related to our system for a single
equation [7] and [8]. The paper [7] is one of the pioneers in the literature for the single equation, which is the
source of inspiration of several researches, while the work [8] is a recent generalization of [7] by introducing
less dissipative effects.
We review the related papers regarding the semi-linear wave system, from a qualitative and quantitative

study. For a single wave equation, we beginning with the work treated in [13], for (x, t) ∈ Ω× (0,∞) where
the goal was mainely on the system

utt + µut −∆u− ω∆ut = u ln |u|, (6)

with initial and boundary conditions

u(x, t) = 0, x ∈ ∂Ω, u(x, 0) = u0(x), ut(x, 0) = u1(x),

where Ω is a bounded domain of Rn, n ≥ 1 with a smooth boundary ∂Ω. The author constructed, firstly, a
local existence of weak solution by using the contraction mapping principle and of course showed the global
existence, decay rate and infinite time blow up of the solution with conditions on initial energy.
Next, a nonexistence of global solutions for system of three semi-linear hyperbolic equations was intro-

duced in [3]. A coupled system for semi-linear hyperbolic equations was investigated by many authors and
a different results were obtained with the nonlinearities in the form f1 = |u|q−1|v|q+1u, f2 = |v|q−1|u|q+1v.
(Please, see [2, 15, 24, 30])
In the non-bounded domain Rn, we refer to the article recently published by T. Miyasita and Kh. Zennir

in [18], where the considered problem is as follows

utt + aut − φ(x)∆

(
u+ ωut −

∫ t

0

g(t− s)u(s) ds

)
= u|u|q−1, (7)

with initial data {
u(x, 0) = u0(x)

ut(x, 0) = u1(x).
(8)
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The authors established the existence of unique local solution and they continued to extend it to be global
in time. The rate of the decay for solution was the main result by considering the relaxation function which
is strictly convex. For more results related to decay rate of solution of this type of problems, please see
[14, 25, 26, 27, 29, 31].
Regarding the study of the coupled system of two nonlinear wave equations, it is worth recalling some

of the work recently published. Baowei et al. developed in [11], a coupled system for viscoelastic wave
equations with nonlinear sources in bounded domain ((x, t) ∈ Ω× (0,∞)) with smooth boundary as follows{

utt −∆u+
∫ t
0
g(t− s)∆u(s) ds+ ut = f1(u, v)

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ vt = f2(u, v).

(9)

Here, the authors are concerned with a system in Rn(n = 1, 2, 3). Under appropriate hypotheses, the authors
showed a very general decay estimate by multiplied techniques to extend some existing results for a single
equation to the case of a coupled system.
It is worth noting here that there are several studies in this field and we particularly refer to the gen-

eralization that Shun et al. made in studying a complicate non-linear case with degenerate damping term
in [22]. The IBVP for a system of nonlinear wave equations in viscoelasticity in a bounded domain was
considered in the system

utt −∆u+
∫ t
0
g(t− s)∆u(s) ds+ (|u|k + |v|q)|ut|m−1ut = f1(u, v)

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ (|v|κ + |u|ρ)|vt|r−1vt = f2(u, v)

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), v(x, 0) = v0(x)

ut(x, 0) = u1(x), vt(x, 0) = v1(x),

(10)

where Ω is bounded domain with a smooth boundary. Given some conditions on the memory terms, nonlinear
source terms and degenerate damping, they got a new decay estimate of associated energy functional with
certain initial conditions.
The lack of existence (Blow up) is considered one of the most important qualitative studies that must be

spoken of, given its importance in terms of application in various applied sciences. Regarding the global non-
existence for solutions of more degenerate case for coupled system of damped wave equations with different
damping, we mention the articles [5, 6, 9, 20, 21, 23, 28]. The next Sobolev embedding and generalized
Poincaré inequalities will be very useful.

Lemma 1 ([18]) Let ϑ satisfy (3). For a positive constants Cτ > 0 and CP > 0 depending only on ϑ and
n, we have

‖v‖ 2n
n−2
≤ Cτ ‖v‖H and ‖v‖L2ϑ ≤ CP ‖v‖H

for v ∈ H.

Lemma 2 ([12]) Let ϑ satisfy (3). Then the estimates

‖v‖Lrϑ ≤ Cr ‖v‖H and Cr = Cτ ‖ϑ‖
1
r
τ

hold for v ∈ H. Here τ = 2n/(2n− rn+ 2r) for 1 ≤ r ≤ 2n/(n− 2).

We assume that the kernel functions $1, $2 ∈ C1(R+,R+) satisfy

1−$1 = l > 0 for $1 =

∫ +∞

0

$1(s) ds, $
′
1(t) ≤ 0 (11)

and

1−$2 = m > 0 for $2 =

∫ +∞

0

$2(s) ds, $
′
2(t) ≤ 0. (12)
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Noting by

$(t) = max
t≥0

{
$1(t), $2(t)

}
, (13)

and

$0(t) = min
t≥0

{∫ t

0

$1(s)ds,

∫ t

0

$2(s)ds
}
. (14)

We assume that there is a function χ ∈ C1(R+,R+) such that

$′i(t) + χ($i(t)) ≤ 0, χ(0) = 0, χ′(0) > 0, i = 1, 2, (15)

for any ξ ≥ 0.
Hölder and Young inequalities give

‖uv‖(q+1)/2
L
(q+1)/2
ϑ

≤
(
‖u‖2

L
(q+1)
ϑ

+ ‖v‖2
L
(q+1)
ϑ

)(q+1)/2
≤
(
l‖u‖2H +m‖v‖2H

)(q+1)/2
.

Thanks to Minkowski’s inequality, we have

‖u+ v‖(q+1)
L
(q+1)
ϑ

≤ c
(
‖u‖2

L
(q+1)
ϑ

+ ‖v‖2
L
(q+1)
ϑ

)(q+1)/2
≤ c

(
‖u‖2H + ‖v‖2H

)(q+1)/2
.

Then, there exist η > 0 such that

‖u+ v‖(q+1)
L
(q+1)
ϑ

+ 2 ‖uv‖(q+1)/2
L
(q+1)/2
ϑ

≤ η
(
l‖u‖2H +m‖v‖2H

)(q+1)/2
. (16)

We need to define positive constants λ0 and E0 by

λ0 ≡ η−1/(q−1) and E0 =
(1

2
− 1

q + 1

)
η−2/(q−1). (17)

The maine aim of the present paper is to obtain a new decay estimate of solution by the convexity property
of the function χ given in Theorem 3.
We denote an eigenpair {(λi, ei)}i∈N ⊂ R×H of

−θ(x)∆ei = λiei x ∈ Rn,

for any i ∈ N, 1
θ(x) ∼ ϑ(x). Then

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · ↑ +∞,

holds and {ei} is a complete orthonormal system in H.

Definition 1 The pair (u, v) is said to be a weak solution to (1)-(2) on [0, T ] if it satisfies for x ∈ Rn,
∫
Rn ϑ(x)(utt + +αut)ϕdx+

∫
Rn ∇u∇ϕdx−

∫ t
0
$1(t− s)∇u(s) ds∇ϕdx =

∫
Rn ϑ(x)h1(u, v)ϕdx,∫

Rn ϑ(x)(vtt + αvt)ψdx+
∫
Rn ∇v∇ψdx−

∫ t
0
$2(t− s)∇v(s) ds∇ψdx,∫

Rn ϑ(x)(vtt + αvt)ψdx+
∫
Rn ∇v∇ψdx−

∫ t
0
$2(t− s)∇v(s) ds∇ψdx =

∫
Rn ϑ(x)h2(u, v)ψdx,

(18)

for all test functions ϕ,ψ ∈ H for almost all t ∈ [0, T ].
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2 Statement of Main Results

The next Theorem is concerned with the local solution (in time [0, T ]).

Theorem 1 (Local existence) Assume that

1 < q ≤ n+ 2

n− 2
and that n ≥ 3. (19)

Let (u0, v0) ∈ H3 and (u1, v1) ∈ L2ϑ(Rn)× L2ϑ(Rn). Under the assumptions (3)—(5) and (11)—(15), we have
(1)—(2) admits a unique local solution (u, v) such that

(u, v) ∈ X 2T , XT ≡ C
(
[0, T ];H

)
∩ C1

(
[0, T ];L2ϑ(Rn)

)
,

for suffi ciently small T > 0.

We prove the existence of global solution in time. Let us introduce the potential energy J : H3 → R
defined by

J (u, v) =

(
1−

∫ t

0

$1(s) ds

)
‖u‖2H + ($1 ◦ u) +

(
1−

∫ t

0

$2(s) ds

)
‖v‖2H + ($2 ◦ v) . (20)

where

($j ◦ w) (t) =

∫ t

0

$j(t− s) ‖w(t)− w(s)‖2H ds,

for any w ∈ L2(Rn), j = 1, 2. The modified energy function is defined by

E(t) =
1

2

(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
+

1

2
J (u, v)−

∫
Rn
ϑ(x)G(u, v)dx, (21)

Theorem 2 (Global existence) Let (3)—(5) and (11)—(15) hold. Under (19) and for suffi ciently small
(u0, u1), (v0, v1) ∈ H × L2ϑ(Rn), problem (1)—(2) admits a unique global solution (u, v) such that

(u, v) ∈ X 2, X ≡ C
(
[0,+∞);H

)
∩ C1

(
[0,+∞);L2ϑ(Rn)

)
. (22)

The decay rate for solution is given in the next Theorem.

Theorem 3 (Decay of solution) Let (3)—(5) and (11)—(15) hold. Under condition (19) and

γ = η
(2(q + 1)

q − 1
E(0)

)(q−1)/2
< 1, (23)

there exists t0 > 0 depending only on $1, $2, λ1 and χ′(0) such that

0 ≤ E(t) < E(t0) exp

(
−
∫ t

t0

$(s)

1−$0(t)

)
, (24)

holds for all t ≥ t0.
Next Lemma will be very useful and play an important role.

Lemma 3 For (u, v) ∈ X 2T , the functional E(t) associated with problem (1)—(2) is decreasing.

Proof. For 0 ≤ t1 < t2 ≤ T , we have

E(t2)− E(t1) =

∫ t2

t1

d

dt
E(t) dt

= −1

2

∫ t2

t1

(
$1(t) ‖u‖2H − ($′1 ◦ u)

)
dt− 1

2

∫ t2

t1

(
$2(t) ‖v‖2H − ($′2 ◦ v)

)
dt

−α
(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
≤ 0,

owing to (11)—(15).
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3 Proofs of Main Results

We sketch here the outline of the proof for local solution by a standard procedure (See [10, 14, 31]).

Proof of Theorem 1. Let (u0, u1), (v0, v1) ∈ H × L2ϑ(Rn). For any (u, v) ∈ X 2T , we can obtain a weak
solution of the related system

ϑ(x)(ztt + αzt)−∆z = −
∫ t
0
$1(t− s)∆u(s) ds+ ϑ(x)h1(u, v)

ϑ(x)(ytt + αyt)−∆y = −
∫ t
0
$2(t− s)∆v(s) ds+ ϑ(x)h2(u, v)

z(x, 0) = u0(x), y(x, 0) = v0(x)

zt(x, 0) = u1(x), yt(x, 0) = v1(x).

(25)

We reduce problem (25) to a related Cauchy problem for system of ODE and then, by the Faedo-Galerkin
approximation, we find weak solution of (25). We then find a solution map > : (u, v) 7→ (z, y) from X 2T to
X 2T . We are now ready to show that > is a contraction mapping in an appropriate subset of X 2T for a small
T > 0. Hence > has a fixed point >(u, v) = (u, v), which gives a unique solution in X 2T .

We will show the global solution. By using conditions on functions $1, $2, we have

E(t) ≥ 1

2
J (u, v)−

∫
Rn
ϑ(x)G(u, v)dx

≥ 1

2
J (u, v)− 1

q + 1
‖u+ v‖(q+1)

L
(q+1)
ϑ

− 2

q + 1
‖uv‖(q+1)/2

L
(q+1)/2
ϑ

≥ 1

2
J (u, v)− η

q + 1

[
l ‖u‖2H +m ‖v‖2H

](q+1)/2
≥ 1

2
J (u, v)− η

q + 1

(
J (u, v)

)(q+1)/2
= G (ς) , (26)

here ς2 = J (u, v), for t ∈ [0, T ), where

G(ξ) =
1

2
ξ2 − η

q + 1
ξ(q+1).

Noting that E0 = G(λ0), given in (17). Then{
G(ξ) ≥ 0 in ξ ∈ [0, λ0],

G(ξ) < 0 in ξ > λ0.

Moreover, lim
ξ→+∞

G(ξ)→ −∞. Then, we have the following Lemma.

Lemma 4 Let 0 ≤ E(0) < E0.

(i) If ‖u0‖2H + ‖v0‖2H < λ20, then local solution of (1)—(2) satisfies

J (u, v) < λ20, ∀t ∈ [0, T ).

(ii) If ‖u0‖2H + ‖v0‖2H > λ20, then local solution of (1)—(2) satisfies

‖u‖2H + ‖v‖2H > λ21, ∀t ∈ [0, T ), λ1 > λ0.

Proof. Since 0 ≤ E(0) < E0 = G(λ0), there exist ξ1 and ξ2 such that G(ξ1) = G(ξ2) = E(0) with
0 < ξ1 < λ0 < ξ2.
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The case (i) By (26), we have
G(J (u0, v0)) ≤ E(0) = G(ξ1),

which implies that J (u0, v0) ≤ ξ21. Then we claim that J (u, v) ≤ ξ21, ∀t ∈ [0, T ). Then, there exists
t0 ∈ (0, T ) such that

ξ21 < J (u(t0), v(t0)) < ξ22.

Then
G(J (u(t0), v(t0))) > E(0) ≥ E(t0),

by Lemma 3, which contradicts (26). Hence we have

J (u, v) ≤ ξ21 < λ20, ∀t ∈ [0, T ).

The case (ii) We could prove that ‖u0‖2H + ‖v0‖2H ≥ ξ
2
2 and that ‖u‖

2
H + ‖v‖2H ≥ ξ

2
2 > λ20 in the same way

as (i).

Proof of Theorem 2.
(u0, u1), (v0, v1) ∈ H × L2ϑ(Rn) satisfy both 0 ≤ E(0) < E0 and ‖u0‖2H + ‖v0‖2H < λ20. By Lemma 3 and

Lemma 4, we have

1

2

(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
+ l ‖u‖2H +m ‖v‖2H

≤ 1

2

(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
+

(
1−

∫ t

0

$1(s) ds

)
‖u‖2H + ($1 ◦ u)

+

(
1−

∫ t

0

$2(s) ds

)
‖u‖2H + ($2 ◦ v)

≤ 2E(t) +
2η

q + 1

[
l ‖u‖2H +m ‖u‖2H

](q+1)/2
≤ 2E(0) +

2η

q + 1

(
J (u, v)

)(q+1)/2
≤ 2E0 +

2η

q + 1
λq+10

= η−2/(q−1). (27)

This completes the proof.
Let

Λ(u, v) =
1

2

(
1−

∫ t

0

$1(s) ds

)
‖u‖2H +

1

2
($1 ◦ u) +

1

2

(
1−

∫ t

0

$2(s) ds

)
‖v‖2H +

1

2
($2 ◦ v)

−
∫
Rn
ϑ(x)G(u, v)dx (28)

and

Π(u, v) =

(
1−

∫ t

0

$1(s) ds

)
‖u‖2H + ($1 ◦ u) +

(
1−

∫ t

0

$2(s) ds

)
‖v‖2H + ($2 ◦ v)

−(q + 1)

∫
Rn
ϑ(x)G(u, v)dx. (29)

Lemma 5 Let (u, v) be the solution of problem (1)—(2). If

‖u0‖2H + ‖v0‖2H − (q + 1)

∫
Rn
ϑ(x)G(u0, v0)dx > 0. (30)

Then under condition (23), the functional Π(u, v) > 0, ∀t > 0.
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Proof. By (30) and continuity, there exists a time t1 > 0 such that

Π(u, v) ≥ 0,∀t < t1.

Let
Y = {(u, v) | Π(u(t0), v(t0)) = 0, Π(u, v) > 0,∀t ∈ [0, t0)}.

Then, by (28), (29), we have for all (u, v) ∈ Y ,

Λ(u, v) =
q − 1

2(q + 1)

[(
1−

∫ t

0

$1(s) ds

)
‖u‖2H +

(
1−

∫ t

0

$2(s) ds

)
‖v‖2H

]
+

q − 1

2(q + 1)

[
($1 ◦ u) + ($2 ◦ v)

]
+

1

q + 1
Π(u, v)

≥ q − 1

2(q + 1)

[
l ‖u‖2H +m ‖v‖2H + ($1 ◦ u) + ($2 ◦ v)

]
.

Owing to (21), it follows for (u, v) ∈ Y

l ‖u‖2H +m ‖v‖2H ≤
2(q + 1)

q − 1
Λ(u, v) ≤ 2(q + 1)

q − 1
E(t) ≤ 2(q + 1)

q − 1
E(0). (31)

By (16), (23) we have

(q + 1)

∫
Rn
G(u(t0), v(t0)) ≤ η

(
l‖u(t0)‖2H +m‖v(t0)‖2H

)(q+1)/2
≤ η

(2(q + 1)

q − 1
E(0)

)(q−1)/2
(l ‖u(t0)‖2H +m ‖v(t0)‖2H)

≤ γ(l ‖u(t0)‖2H +m ‖v(t0)‖2H)

<
(

1−
∫ t0

0

$1(s)ds
)
‖u(t0)‖2H +

(
1−

∫ t0

0

$2(s)ds
)
‖v(t0)‖2H

<
(

1−
∫ t0

0

$1(s)ds
)
‖u(t0)‖2H +

(
1−

∫ t0

0

$2(s)ds
)
‖v(t0)‖2H

+($1 ◦ u) + ($2 ◦ v),

hence Π(u(t0), v(t0)) > 0 on Y , which contradicts the definition of Y since Π(u(t0), v(t0)) = 0. Thus
Π(u, v) > 0, ∀t > 0.

We are now ready to show the decay estimate.

Proof of Theorem 3. By (16) and (31), we have for t ≥ 0

0 < l ‖u‖2H +m ‖v‖2H ≤
2(q + 1)

q − 1
E(t).

Let

I(t) =
$(t)

1−$0(t)
, (32)

where $ and $0 defined in (13) and (14). Noting that lim
t→+∞

$(t) = 0 by (11)-(14), we have

lim
t→+∞

I(t) = 0, I(t) > 0, ∀t ≥ 0.

Then we take t0 > 0 such that

0 <
1

2
I(t) < χ′(0),
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with (15) for all t > t0. Due to (21), we have

E(t) ≤ 1

2

(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
+

1

2
[($1 ◦ u) + ($2 ◦ v)]

+
1

2

(
1−

∫ t

0

$1(s) ds

)
‖u‖2H +

1

2

(
1−

∫ t

0

$2(s) ds

)
‖v‖2H

≤ 1

2

(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
+

1

2
[($1 ◦ u) + ($2 ◦ v)]

+
1

2
(1−$0(t))[‖u‖2H + ‖v‖2H].

Then by definition of I(t), we have

I(t)E(t) ≤ 1

2
I(t)

(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
+

1

2
$(t)[‖u‖2H + ‖v‖2H] +

1

2
I(t)[($1 ◦ u) + ($2 ◦ v)],

and Lemma 3, we have for all t1, t2 ≥ 0,

E(t2)− E(t1) ≤ −
1

2

∫ t2

t1

(
$(t)[‖u‖2H + ‖v‖2H]

)
dt+

1

2

∫ t2

t1

(($′1 ◦ u) + ($′2 ◦ v)) dt− α
(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
,

then,

E ′(t) ≤ −1

2
$(t)[‖u‖2H + ‖v‖2H] +

1

2
[($′1 ◦ u) + ($′2 ◦ v)]− α

(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
.

Finally, ∀t ≥ t0, we have

E ′(t) + I(t)E(t) ≤
(1

2
I(t)− α

)(
‖ut‖2L2ϑ + ‖vt‖2L2ϑ

)
+

1

2
[($′1 ◦ u) + ($′2 ◦ v)]

+
1

2
I(t)(($1 ◦ u) + ($2 ◦ v)),

and we can choose t0 > 0 large enough such that

1

2
I(t) < α,

then

E ′(t) + I(t)E(t) ≤ 1

2

∫ t

0

{$′1(t− τ) + I(t)$2(t− τ)} ‖u(t)− u(τ)‖2H dτ

+
1

2

∫ t

0

{$′2(t− τ) + I(t)$2(t− τ)} ‖v(t)− v(τ)‖2H dτ

≤ 1

2

∫ t

0

{$′1(τ) + I(t)$1(τ)} ‖u(t)− u(t− τ)‖2H dτ

+
1

2

∫ t

0

{$′2(τ) + I(t)$2(τ)} ‖v(t)− v(t− τ)‖2H dτ

≤ 1

2

∫ t

0

{
−χ
(
$1(τ)

)
+ χ′(0)$1(τ)

}
‖u(t)− u(t− τ)‖2H dτ

+
1

2

∫ t

0

{
−χ
(
$2(τ)

)
+ χ′(0)$2(τ)

}
‖v(t)− v(t− τ)‖2H dτ

≤ 0.

By the convexity of χ and (15), we have

χ(ξ) ≥ χ(0) + χ′(0)ξ = χ′(0)ξ.
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Then

E(t) ≤ E(t0) exp

(
−
∫ t

t0

I(s)ds

)
,

which completes the proof.

Conclusion

Our novelty lies mainly in the study of the effect of terms to develop the quality of growth of the unique
global solution. This is based on the following:

1. The use of weighted spaces constructed by the function ϑ(x), is to compensate the role of Poincare’s
inequality which considered as a key of the proofs.

2. We have found that the solution decays in general way depends on a convex function χ, which represents
the development of relaxation function.

3. The main contribution is the rate of obtained solution, in which it is expressed with the functional
(32). This rate was developed firstly in [18].

Acknowledgment. The author would like to thank the anonymous referees and the handling editor for
their careful reading and for relevant remarks/suggestions to improve the paper.

References

[1] A. B. Aliev and G. I. Yusifova, Nonexistence of global solutions of Cauchy problems for systems of
semilinear hyperbolic equations with positive initial energy, Electron. J. Differential Equations, 2017,
10 pp.

[2] A. B. Aliev and A. A. Kazimov, Global Solvability and Behavior of Solutions of the Cauchy Problem
for a System of two Semilinear Hyperbolic Equations with Dissipation, Translation of Differ. Uravn.,
49(2013), 476—486.

[3] A. B. Aliev and G. I. Yusifova, Nonexistence of global solutions of the Cauchy problem for the systems
of three semilinear hyperbolic equations with positive initial energy, Trans. Natl. Acad. Sci. Azerb. Ser.
Phys.-Tech. Math. Sci., 37(2017), Mathematics, 11—19.

[4] A. Beniani, A. Benaissa and Kh. Zennir, Polynomial decay of solutions to the Cauchy problem for a
Petrovsky-Petrovsky system in Rn, Acta Appl. Math., 146(2016), 67—79.

[5] A. Braik, A. Beniani and Kh. Zennir, Well-posedness and general decay for Moore-Gibson-Thompson
equation in viscoelasticity with delay term, Ricerche mat, (2021), https://doi.org/10.1007/s11587-021-
00561-9.

[6] S. Boulaaras, A. Draifia and Kh. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation
with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Methods Appl. Sci., 42(2019),
4795—4814.

[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a
non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24(2001), 1043—1053.

[8] M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka and W. M. Claudete, Intrinsic decay rates
for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable
density, Adv. Nonlinear Anal., 6(2017), 121—145.



320 Damped Hyperbolic Equations with Power External Forces

[9] H. Dridi and K. Zennir, Well-posedness and energy decay for some thermoelastic systems of Timoshenko
type with Kelvin-Voigt damping, SeMA J., 78(2021), 385—400.

[10] B. Feng, Kh. Zennir and K. L. Lakhdar, General decay of solutions to an extensible viscoelastic plate
equation with a nonlinear time-varying delay feedback, Bulletin Malay. Math. Sci. Soc., 42(2019), 2265—
2285.

[11] B. Feng, Y. Qin and M. Zhang, General decay for a system of nonlinear viscoelastic wave equations
with weak damping, Bound. Value Prob., 2012(2012), 164, 1—11.

[12] N. I. Karachalios and N. M. Stavrakakis, Global existence and blow-up results for some nonlinear wave
equations on RN , Adv. Differential Equations, 6(2001), 155—174.

[13] W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping
terms and logarithmic source term, Adv. Nonlinear Anal., 9(2020), 613—632.

[14] G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on
RN , Comput. Math. Appl., 70(2015), 1345—1356.

[15] W. Liu, Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon
equations with damping terms, Nonlinear Anal., 73(2010), 244—255.

[16] Q. Li and L. He, General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with
strong damping, Bound. Value Probl., 2018, 22 pp.

[17] S. A. Messaoudi and B. Said-Houari, Global nonexistence of positive initial-energy solutions of a systemof
nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365(2010),
277—287.

[18] T. Miyasita and K. Zennir, A sharper decay rate for a viscoelastic wave equation with power nonlinearity,
Math. Methods Appl. Sci., 43(2020), 1138—1144.

[19] P. G. Papadopoulos and N. M. Stavrakakis, Global existence and blow-up results for an equation of
Kirchhoff type on RN , Topol. Methods Nonlinear Anal., 17(2001), 91—109.

[20] E. Piskin and N. Polat, Global existence, decay and blow up solutions for coupled nonlinear wave
equations with damping and source terms, Turkish J. Math., 37(2013), 633—651.

[21] E. Piskin, Blow up of positive initial-energy solutions for coupled nonlinear wave equations with degen-
erate damping and source terms, Bound. Value Probl., 43(2015), 11 pp.

[22] S. T. Wu, General decay of solutions for a nonlinear system of viscoelastic wave equations with degen-
erate damping and source terms, J. Math. Anal. Appl., 406(2013), 34—48.

[23] J. Wu and S. Li, Blow-up for coupled nonlinear wave equations with damping and source, Appl. Math.
Lett., 24(2011), 1093—1098.

[24] Y. Ye, Global existence and nonexistence of solutions for coupled nonlinear wave equations with damping
and source terms, Bull. Korean Math. Soc., 51(2014), 1697—1710.

[25] K. Zennir, Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity
in Rn, Russian Math., 64(2020), 21—33.

[26] K. Zennir, General decay of solutions for damped wave equation of Kirchhoff type with density in Rn,
Ann. Univ. Ferrara Sez. VII Sci. Mat., 61(2015), 381—394.

[27] K. Zennir, M. Bayoud and S. Georgiev, Decay of solution for degenerate wave equation of Kirchhoff
type in viscoelasticity, Int. J. Appl. Comput. Math., 4(2018), 1—18.



K. Bouhali 321

[28] K. Zennir, Growth of solutions with positive initial energy to system of degeneratly Damed wave equa-
tions with memory, Lobachevskii J. Math., 35(2014), 147—156.

[29] K. Zennir and T. Miyasita, Dynamics of a coupled system for nonlinear damped wave equations with
variable exponents, ZAMM Z. Angew. Math. Mech., 101(2021), 20 pp.

[30] K. Zennir and S. S. Alodhaibi, A novel decay rate for a coupled system of nonlinear viscoelastic wave
equations, Mathematics, 8(2020), 1—12.

[31] S. Zitouni and K. Zennir, On the existence and decay of solution for viscoelastic wave equation with
nonlinear source in weighted spaces, Rend. Circ. Mat. Palermo, 66(2017), 337—353.


	Introduction and Preliminaries
	Statement of Main Results
	Proofs of Main Results

