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Abstract

In this paper, we propose an implementation of stochastic perturbation of conditional gradient and
bisection (SPCGB) method (a.k.a. Frank-Wolfe method ) for solving non-convex differentiable program-
ming under linear constraints. The goal is to attempt to avoid getting stuck in local optimum solutions.
Theoretical results guarantee the convergence of the proposed method towards a global minimizer. To
demonstrate the effectiveness of our method, some numerical results of small and medium scale problems
are given.

1 Introduction

Convex optimization has played an important role in recent years with the advent of the computer to study a
given phenomenon, or to study a range of phenomena. A main challenge today is on non-convex problems in
these phenomena. There exist several application areas for non-convex optimization with linear constraints
(NCOLC) problems like combinatorial optimization (water distribution [9], co-localization image and video),
optimal control [10], integer programming of call center [2], machine learning [20, 21], and or learning neural
networks based on parsimonious coding and conditional gradient algorithm [4]. This algorithm also known
as the Frank-Wolfe, was originally proposed by Marguerite Frank and Philip Wolfe in 1956 [13], is one of the
oldest methods for nonlinear constrained optimization and has seen an impressive revival in recent years due
to its low memory requirement and projection-free iterations. It makes it possible to approximate to each
iteration a function by its development in first-order Taylor series.

We consider non-convex optimization problems with linear equality or inequality constraints of the form






minimize f(x)
subject to Ax ≤ b

` ≤ x ≤ η
(1)

where f : R
n → R is a twice continuously differentiable function, A is m × n matrix with rank m, b is an

m-vector, and the lower and upper bound vectors, ` and η, may contain some infinite components; and






minimize f(x)
subject to Ax = b

0 ≤ x
(2)

where f : R
n → R is an objective function non-convex and continuously differentiable, A ∈ R

m×n and
b ∈ R

m.
In convex situations, the global optimization problem can be tackled by a set of classical methods, such

as, for example, those based on the gradient, which have shown their effectiveness in this field. When
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the situation is not convex, this problem cannot be solved using the classic deterministic methods like the
conditional gradient. The stochastic algorithms like the genetic algorithm and the simulated annealing
algorithm are also ineffcient for solving this type of problems. For this reason, in order to solve this kind of
problems, we try to stochastically perturb the deterministic classic method.

The problem (2) can be numerically approached by using conditional gradient with bisection (CGB)
method, which generates a sequence {xk}k≥0, where x0 is an initial feasible point and, for each k > 0, a new
feasible point xk+1 is generated from xk by using an operator Qk (see Section 3). Thus, the iterations are
given by:

∀k ≥ 0 : xk+1 = Qk(xk).

We introduce in this paper a different approach, inspired from the method of stochastic perturbations
introduced in [23] for unconstrained minimization of continuously differentiable functions and adapted to
linearly constrained problems in [8].

In such a method, the sequence {xk}k≥0 is replaced by a random vectors sequence {Xk}k≥0 and the
iterations are modified as follows:

∀k ≥ 0 : Xk+1 = Qk(Xk) + Pk,

where Pk is a suitable random variable, usually referred as the stochastic perturbation. The sequence {Pk}k≥0

must converge to zero slowly enough in order to prevent convergence of the sequence {Xk}k≥0 to a local
minimum (see Section 4).

The rest of the article is organized as follows. In section 2, we introduce some notations and give some
precise assumptions that will be useful for the rest of the article. The principle of the conditional gradient
with bisection method is recalled in section 3. Then, in section 4, we present the stochastic perturbation of
CGB method. Finally, in section 5, we provide some numerical experiments of linear constraints non-convex
optimization test of small and medium scale problems.

2 Notations and Assumptions

We use the following notations:

• E = R
n, the n-dimensional positive real Euclidean space.

• x = (x1, . . . , xn)t ∈ E.

• ‖x‖ =
√

xT x = (x2
1 + · · ·+ x2

n)1/2 the Euclidean norm of x.

• xt denotes the transpose of x.

Let
S = {x ∈ E | Ax = b, x ≥ 0}.

The objective function is f : E → R, its lower bound on S is denoted by α∗ i.e. α∗ = min
S

f . Let us introduce

Sλ = Cλ ∩ S; where Cλ = {x ∈ E | f(x) ≤ λ}.

We assume that
f is twice continuously differentiable on E, (3)

∀λ > α∗ : Sλ is not empty, closed and bounded, (4)

∀λ > α∗ : meas(Sλ) > 0, (5)

where meas(Sλ) is the measure of Sλ.
Since E is a finite dimensional space, the assumption (4) is verified when S is bounded or f is coercive,

i.e., lim
‖x‖→+∞

f(x) = +∞ . Assumption (4) is verified when S contains a sequence of neighborhoods of a point
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of optimum x∗ having strictly positive measure, i.e., when x∗ can be approximated by a sequence of points
of the interior of S.

We observe that the assumptions (3) and (4) yield that

S =
⋃

λ>α∗

Sλ, i.e., ∀x ∈ S : ∃λ > α∗ such that x ∈ Sλ.

From (3)–(4), one has

γ1 = sup {‖∇f(x)‖ : x ∈ Sλ} < +∞.

Consequently, one deduces

γ2 = sup {‖d‖ : x ∈ Sλ} < +∞,

where d is the direction of conditional gradient method. Thus

β (λ, ε) = sup {‖y − (x + ηd)‖ : (x, y) ∈ Sλ × Sλ, 0 ≤ η ≤ ε} < +∞, (6)

where ε, η are positive real numbers.

3 Conditional Gradient Method and Bisection Algorithms

In this section, we recall conditional gradient method for convex optimization, see Frank and Wolfe [13],
as well as Demyanov and Rubinov [7], cited here for minimization problems. From now on, we consider a
nonlinear programming problem with linear equality or inequality constraints of the form







min f(x)
s.t Ax = (or ≤) b (7)

where f : R
n −→ R

n is non-convex twice continuously differentiable function, A is m×n matrix with m ≤ n
and b is a vector in R

m.

In the conditional gradient algorithm one determines dk through the solution of the approximation of the
problem (7) that is obtained by replacing the function f with its first-order Taylor expansion around xk:

f(x) ∼ f(xk) + ∇f(xk)(x − xk).

By eliminating the constants, this amounts to minimizing the linear function:

{

minimize ∇f(xk)>s
subject to As = (or ≤) b

(8)

This is an linear programming problem, and it gives an extreme point sk as an optimal solution. The search
direction is dk := sk − xk and then updates

xk+1 = Qk(xk) = xk + ηkdk. (9)

We determine the optimal step as the value ηk such that

f
(

xk + ηkdk

)

= min
0≤η≤1

{

f
(

xk + ηdk

)}

. (10)
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3.1 Bisection Algorithm

We use the bisection algorithm in this paper to solve the unconstrained optimization problem with one
variable (10). For example, see [3]. Let us denote the recursive bisection procedure by bis(h, a, b, ε). The
inputs for this procedure are the h calculation procedure, the [a, b] segment, and the accuracy ε. The outputs
are the approximation of xm for the minimizer x∗ and hm for the value of the h function minimum over the
[a, b] segment.

The following steps are used in the iteration of the recursive procedure.
Step 0: If b − a ≥ ε, go to step 1, otherwise stop.

Step 1: Compute

d =
a + b

2
, a′ =

a + d

2
, b′ =

d + b

2
, h(d), h (a′) , h (b′) .

Step 2: If h (a′) ≤ h(d) ≤ h (b′) , set b = b′ If h (a′) ≥ h(d) ≥ h (b′) , set a = a′.

If h(d) ≤ min{h (a′) , h (b′)} , set a = a′, b = b′.

Step 3: Execute bis(h, a, b, ε) with new inputs.

3.2 Algorithm of Conditional Gradient

The conditional gradient algorithm is an iterative first-order optimization algorithm for constrained non-
convex optimization, that given an initial guess x0 constructs a sequence of estimates x1, x2, . . . that converges
towards a solution of the optimization problem. The algorithm is defined as follows (Algorithm 1):

Algorithm 1 Standard conditional gradient algorithm

1: Choose a feasible point x(0) ∈ S
2: for k = 0 . . .K do
3: Compute sk := LMOS (∇f(x(k))) := arg min

s∈S
∇f(x(k))>s (the linear minimization oracle)

4: Let dk := sk − x(k) (the CG direction)
5: Compute gk :=

〈

−∇f(x(k)), dk

〉

(CG gap)

6: if gk < ε then return x(k)

8: Step size by optimal line search
ηt ∈ arg min

η∈[0,1]
f(x(t) + ηdt)

9: Update x(k+1) := x(k) + ηtdk

10: end for
11: return x(K)

3.3 Convergence of Conditional Gradient for Non-convex Objectives

Let us present a convergence rate result which is valid for objectives with L-Lipschitz gradient but not
necessarily convex. This was first proven by Simon Lacoste-Julien (see for instance [17]):

Theorem 1 (Convergence of CG on non-convex objectives) If f is differentiable with L-Lipschitz
gradient and the domain D is a convex and compact set., then we have the following O(1/

√
t) bound on

the best conditional gradient gap:

min
0≤i≤t

gi ≤
max

{

2h0, Ldiam(D)2
}

√
t + 1

for t ≥ 0,

where h0 := f(x0) − min
x∈D

f(x) is the initial global suboptimality.

Proof. See, [17].
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4 Stochastic Perturbation of Conditional Gradient with Bisection

(SPCGB) Method

From [13], it is well-known that if f is not convex, the global minimum can not be found using a CGB
algorithm. To overcome this difficulty, we propose an appropriate random perturbation. In the next, we will
establish the convergence of SPCGB to a global minimum for non-convex optimization problems.

The sequence of real numbers
{

xk
}

k≥0
is replaced by a sequence of random variables

{

Xk
}

k≥0
involving

a random perturbation Pk of the deterministic iteration (9); then we have X0 = x0;

∀k ≥ 0 Xk+1 = Qk(Xk) + Pk = Xk + ηkdk + Pk = Xk + ηk(dk +
Pk

ηk
), (11)

where ηk 6= 0 satisfied the Step 8 in CG algorithm, and

∀k ≥ 1 Pk is independent from (Xk−1, . . . ,X0)

and

X ∈ S ⇒ Qk(X) + Pk ∈ S.

Equation (11) can be viewed as perturbation of the ascent direction dk, which is replaced by a new direction
Dk = dk +Pk

ηk
and the iterations (11) become

Xk+1 = Xk + ηkDk.

General properties defining convenient sequences of perturbation {Pk}k≥0 can be found in the literature
[8, 23]: usually, sequence of Gaussian laws may be used in order to produce elements satisfying these
properties.

We introduce a random vector Zk, we denote by Φk and φk the cumulative distribution function and the
probability density of Zk, respectively.

We denote by Fk+1(y | Xk = x) the conditional cumulative distribution function

Fk+1(y | Xk = x) = P (Xk+1 < y | Xk = x),

and the condition probability density of Xk+1 is denoted by fk+1.
Let us introduce a sequence of n-dimensional random vectors {Zk}k≥0 ∈ S. We consider also {ξk}k≥0, a

suitable decreasing sequence of strictly positive real numbers converging to 0 and such that ξ0 ≤ 1.
The optimal choice for ηk is determined by Step 8. Let Pk = ξkZk and

Fk+1(y | Xk = x) = P (Xk+1 < y | Xk = x).

It follow that

Fk+1(y | Xk = x) = P

(

Zk <
y−Qk(x)

ξk

)

= Φk

(

y−Qk(x)

ξk

)

.

So, we have

fk+1(y | Xk = x) =
1

ξn
k

φk

(

y−Qk(x)

ξk

)

, y ∈ S. (12)

The relation (6) shows that
‖y−Qk(x)‖ ≤ β(λ, ε) for (x,y) ∈ Sλ × Sλ.

We assume that there exists a decreasing function t 7→ hk(t) > 0 on R
+ such that

y ∈ Sλ ⇒ φk

(

y−Qk(x)

ξk

)

≥ hk(
β(λ, ε)

ξk
). (13)
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For simplicity, let
Zk = 1C(Zk)Zk, (14)

where Z is a random variable, for simplicity let Z ∼ N(0,1).
The procedure generates a sequence Uk = f(Xk). By construction this sequence is increasing and upper

bounded by α∗.
∀k ≥ 0 : α∗ ≥ Uk+1 ≥ Uk. (15)

Thus, there exists U ≤ α∗ such that
Uk → U for k → +∞.

Lemma 1 Let Pk = ξkZk and γ = f(x0) if Zk is given by (14). Then there exists v > 0 such that

P (Uk+1 > θ|Uk ≤ θ) ≥ meas(Sγ − Sθ)

ξn
k

hk

(

β(γ, ε)

ξk

)

> 0 ∀θ ∈ (α∗, α∗ + v],

where n = dim(E).

Proof. Let Sθ = {x ∈ S | f(x) < θ} , for θ ∈ (α∗, α∗ + v]. Since Sλ ⊂ Ŝθ, α∗ < λ < θ, it follows from (5)
that Ŝθ is not empty and has a strictly positive measure. If meas(S−Ŝθ) = 0 for any θ ∈ (α∗, α∗ + v], the
result is immediate, since we have f(x) = α∗ on S.

Let us assume that there exists ε > 0 such that meas(S−Ŝθ) > 0. For θ ∈ (α∗, α∗ + ε], we have Ŝθ ⊂ Ŝε

and meas(S−Ŝθ) > 0.

P (Xk /∈ Ŝθ) = P (Xk ∈ S−Ŝθ) =

∫

S−Ŝθ

P (Xk ∈ dx) > 0

for any θ ∈ (α∗, α∗ + ε], since the sequence {Ui}i≥0 is increasing, we have also

{

Xi
}

i≥0
⊂ Sγ . (16)

Thus

P (Xk /∈ Ŝθ) = P (Xk ∈ S−Ŝθ) =

∫

Sγ−Ŝθ

P (Xk ∈ dx) > 0 for any θ ∈ (α∗, α∗ + ε].

Let θ ∈ (α∗, α∗ + ε], we have from (15)

P (Uk+1 > θ | Uk ≤ θ) = P (Xk+1 ∈ Ŝθ | Xi /∈ Ŝθ , i = 0, . . . , k).

But Markov chain yield that

P (Xk+1 ∈ Ŝθ | Xi /∈ Ŝθ, i = 0, . . . , k) = P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ).

By the conditional probability rule

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) =
P (Xk+1 ∈ Ŝθ, X

k /∈ Ŝθ)

P (Xk /∈ Ŝθ)
.

Moreover

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) =

∫

S−Ŝθ

P (Xk ∈ dx)

∫

Ŝθ

fk+1(y | Xk = x)dy.

From (16) we have

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) =

∫

Sγ−Ŝθ

P (Xk ∈ dx)

∫

Ŝθ

fk+1(y | Xk = x)dy,
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and

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) ≥ inf
x∈Sγ−Ŝθ

{∫

Ŝθ

fk+1(y | Xk = x)dy

} ∫

Sγ−Ŝθ

P (Xk ∈ dx).

Thus

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) ≥ inf
x∈Sγ−Ŝθ

{∫

Ŝθ

fk+1(y | Xk = x)dy

}

.

Taking (12) into account, we have

P (Xk+1 ∈ Ŝθ | Xk /∈ Ŝθ) ≥ 1

ξn
k

inf
x∈Sγ−Ŝθ

{∫

Ŝθ

φk

(

y−Qk(x)

ξk

)

dy

}

.

The relation (6) shows that

‖y−Qk(x)‖ ≤ β(γ, ε).

and (13) yields that

φk

(

y−Qk(x)

ξk

)

≥ hk

(

β(γ, ε)

ξk

)

.

Hence

P (Xk+1 ∈ Ŝθ |Xk
/∈ Ŝθ) ≥ 1

ξn
k

inf
x∈Sγ−Ŝθ

∫

Ŝθ

hk

(

β(γ, ε)

ξk

)

dy,

P (Xk+1 ∈ Ŝθ|Xk
/∈ Ŝθ) ≥

meas(Sγ − Sθ)

ξn
k

hk

(

β(γ, ε)

ξk

)

.

4.1 Global Convergence

The global convergence is a consequence of the following result, which is a consequence of the Borel-Catelli’s
lemma (for instance, see [23]):

Lemma 2 Let {Uk}k≥0 be a increasing sequence, upper bounded by α∗. Then, there exists U such that
Uk → U for k → +∞. Assume that there exists v > 0 such that for any θ ∈ (α∗, α∗ + v], there is a sequence
of strictly positive real numbers {ck(θ)}k≥0 such that

∀k ≥ 0 : P (Uk+1 > θ | Uk ≤ θ) ≥ ck(θ) > 0 and

+∞
∑

k=0

ck(θ) = +∞.

Then U=α∗ almost surely.

Proof. For instance, see [18, 23].

Theorem 2 Let γ = f(x0). Assume that x0 ∈ S, the sequence ξk is non increasing and

+∞
∑

k=0

hk

(

β(γ, ε)

ξk

)

= +∞. (17)

Then U=α∗ almost surely.

Proof. Let

ck(θ) =
meas(Sγ − Sθ)

ξn
k

hk

(

β(γ, ε)

ξk

)

> 0.
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Since the sequence {ξk}k≥0 is non increasing,

ck(θ) ≥ meas(Sγ − Sθ)

ξn
k

hk

(

β(γ, ε)

ξk

)

> 0.

Thus, Eq. (17) shows that

+∞
∑

k=0

ck(θ) ≥ meas(Sγ − Sθ)

ξn
k

+∞
∑

k=0

hk

(

β(γ, ε)

ξk

)

= +∞.

Using Lemmas 1 and 2 we have U=α∗ almost surely.

Theorem 3 Let Zk define by (14), and let

ξk =

√

â

log(k + d̂)
, (18)

where â > 0, d̂ > 0 and k is the iteration number. If x0 ∈ S then, for â large enough, U=α∗ almost surely.

Proof. We have

φk(Z) =
1

(
√

2π)n
exp(−1

2
‖Z‖2

) = hk(‖Z‖) > 0,

so,

hk

(

β(γ, ε)

ξk

)

=
1

(
√

2π)n(k + d̂)β(γ,ε)2/2â
.

For â such that

0 <
β(γ, ε)2

2â
< 1,

we have
+∞
∑

k=0

hk

(

β(γ, ε)

ξk

)

= +∞,

and, from the preceding Theorem 3, we have U=α∗ almost surely.

4.2 Practical Implementation of Algorithm SPCGB

The above results suggest the following numerical algorithm:

(1) An initial guess X0 ∈ S is given.

(2) At the iteration number k > 0, Xk is known and Xk+1 is determined by performing the following three
substeps:

(2.1) We determine the direction dk and the step ηk using ascent method (9). This generates the first
trial point:

T 0
k+1 = Qk

(

Xk
)

.

(2.2) We determine a sample
(

P1
k , . . . ,Pkzo

k

)

of ksto new trial points:

T i
k+1 = T 0

k+1 + Pi
k, i = 1, . . . , ksto.
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(2.3) We determine Xk+1 by selecting it from the set of available points:

Ak =
{

Xk, T 0
k+1, . . . , T

ksto

k+1

}

.

As was shown in Theorem 3, substep (2.2) may use Pi
k = ξkZk, where Z = (Z1, . . . , Zk+1) is a sample of

N(0, 1) and ξk is given by the equation (18). The computation of Xk+1 is performed by

Xk+1 = arg min
X∈Ak

f(X).

5 Numerical Experiments

In this section, we describe practical implementation of stochastic perturbation and we present the results
of some numerical experiments which illustrate the numerical behavior of the method.

In order to apply the method, we start with the initial value X0 = x0 ∈ S. At step k ≥ 0, Xk is known
and Xk+1 is determined. We generate ksto the number of perturbation, the case ksto = 0 corresponds to
the unperturbed conditional gradient with bisection method. In our experiments, the Gaussian variates are
obtained from calls to standard generators. We use

ξk =

√

â

log(k + 2)
, where â > 0.

The methods in the tables have the following meanings:

(i) “SQP” stands for sequential quadratic programming [5].

(ii) “IP” stands for interior-point algorithm [16].

(iii) “CGB” stands for the method of conditional gradient and bisection.

(iv) “SPCGB” stands for the method of stochastic perturbation of conditional gradient and bisection.

The code of the proposed algorithm SPCGB is written by using Matlab programming language. We test
SPCGB method and compare it with interior-point algorithm [16] and Sequential quadratic programming
[5], using Matlab fmincon function on low and large dimensional problems. This algorithms has been tested
on some problems from [1, 11, 12, 22, 24, 26, 27], where linear constraints are present with given initial
feasible points x0. The results are listed in Table 1 and Table 2, where n stands for the dimension of tested
problem and nc stands for the number of constraints. We will report the following results: the optimal value
f∗ and the number of iteration kiter.

The optimal line search process of CGB and SPCGB find by using bisection method, we set ε = 10−4.
We stop the iteration if we find a best solution (global solution) or maximum iteration is satisfied. All
algorithms were carried out in a TOSHIBA Intel(R) Core(TM) processor 2.40 GHz and 6G RAM, Core i7,
running under windows 7 professional 64 bit operating system. The row cpu gives the mean CPU time in
seconds for one run. We give in each small and medium scale problem the initial value x0, the optimal
solution x∗ of problem (1) the number of stochastic perturbation ksto and minimum value f∗

SPCGB .

Problem 1 ([1])
{

minimize: x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3,

subject to: −50 ≤ xi ≤ 50, i = 1, 2,

ksto = 10 is used and the initial point x0 = (20, 10)T . This optimal solution x∗ = (−0.00049, 0.00016)T and
f∗

SPCGB = 4.2077e− 06 is given by the Matlab code of our approach.
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Problem 2 ([1])
{

minimize: 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2,

subject to: −5 ≤ xi ≤ 5, i = 1, 2,

ksto = 5 is used and the initial point x0 = (1, 1)T . This optimal solution x∗ = (−0.09021, 0.71247)T and
f∗

SPCGB = −1.0316 is given by the Matlab code of our approach.

Problem 3 ([1])
{

minimize: 105x2
1 + x2

2 − (x2
1 + x2

2)
2 + 10−5(x2

1 + x2
2)

4,

subject to: −20 ≤ xi ≤ 20, i = 1, 2,

ksto = 2 is used and the initial point x0 = (5, 5)T . This optimal solution x∗ = (−0.00015, 14.9119)T and
f∗

SPCGB = −24774.56 is given by the Matlab code of our approach.

Problem 4 ([14])










minimize: (x1 − 1)2(x1 − 2)2 + (x2 − 1)2(x2 − 2)2 + x1 + 3x2 + x3 − 3,

subject to: −1 ≤ xi ≤ 3, i = 1, 2,

−1 ≤ x3 ≤ 1,

ksto = 5 is used and the initial point x0 = (0, 0, 0)T . This optimal solution x∗ = (0.73927, 0.49992,−0.9989)T

and f∗
SPCGB = −1.0891 is given by the Matlab code of our approach.

Problem 5 ([14])
{

minimize: x2
1(3x2

1 − 4x1 − 12) + 3x2
2(3x2

2 − 8x2 − 18),

subject to: −2 ≤ xi ≤ 3, i = 1, 2,

ksto = 100 is used and the initial point x0 = (0, 0)T . This optimal solution x∗ = (1.9984, 2.9669)T and
f∗

SPCGB = −436.7659 is given by the Matlab code of our approach.

Problem 6 ([1])
{

minimize: − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2),

subject to: −10 ≤ xi ≤ 10, i = 1, 2,

ksto = 2 is used and the initial point x0 = (2, 1)T . This optimal solution x∗ = (3.1282, 3.1551)T and
f∗

SPCGB = −0.9995 is given by the Matlab code of our approach.

Problem 7 ([25])










minimize: x2
1(3x2

1 − 4x1 − 12) + 2x2
2(3x2

2 − 4x2 − 12) + 3x2
3(3x2

3 − 4x3 − 12),

subject to: 2x1 + 2x3 ≤ 7,

−2 ≤ xi ≤ 3, i = 1, 2,

ksto = 100 is used and the initial point x0 = (0, 0, 0)T . This optimal solution x∗ = (1.5458, 2.004, 1.8875)T

and f∗
SPCGB = −185.0364 is given by the Matlab code of our approach.

Problem 8 ([25])














minimize: sin(x1) − cos(x2) −
(x1 + x2)

2
,

subject to: 0 ≤ x1 ≤ 15,

0 ≤ x2 ≤ 20,

ksto = 5 is used and the initial point x0 = (0, 0)T . This optimal solution x∗ = (14.9996, 19.3742)T and
f∗

SPCGB = −17.4018 is given by the Matlab code of our approach.
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Problem 9 ([1])

{

minimize: (exp(x1) − x2)
4 + 100(x2 − x3)

6 + (tan(x3 − x4))
4 + x8

1,

subject to: −1 ≤ xi ≤ 1, i = 1, . . . , 4,

ksto = 40 is used and the initial point x0 = (0.5, 0.9, 0.9, 0.9)T. This optimal solution

x∗ = (−0.15228, 0.84332, 0.81445, 0.81062)T

and f∗
SPCGB =4.0389e-07 is given by the Matlab code of our approach.

Problem 10 ([1])











minimize: 100(x2 − x2
1)

2 + (1 − x1)
2 + 90(x4 − x2

3)
2 + (1 − x3)

2 + 10.1,

((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),

subject to: −10 ≤ xi ≤ 10, i = 1, . . . , 4,

ksto = 50 is used and the initial point x0 = (0.9, 1, 1.2, 1.2)T . This optimal solution

x∗ = (0.92196, 0.8492, 1.0722, 1.151)T

and f∗
SPCGB =0.0206 is given by the Matlab code of our approach.

Problem 11 ([22])


















minimize: −x1 + x1x2 − x2,

subject to: −6x1 + 8x2 ≤ 3,

3x1 − x2 ≤ 3,

0 ≤ x1, x2 ≤ 5,

ksto = 15 is used and the initial point x0 = (0, 0)T . This optimal solution x∗ = (1.1667, 0.50005)T and
f∗

SPCGB = −1.0833 is given by the Matlab code of our approach.

Problem 12 ([24])






























minimize: −2x1 − 6x2 + x3
1 + 8x2

2,

subject to: x1 + 6x2 ≤ 6,

5x1 + 4x2 ≤ 10,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 1,

ksto = 2 is used and the initial point x0 = (0, 1)T . This optimal solution x∗ = (0.81618, 0.37523)T and
f∗

SPCGB = −2.2137 is given by the Matlab code of our approach.

Problem 13 ([27])






































minimize: x2
1 − 10x1x2 + 7x1 + 7x2 − 9,

subject to: −2x1 + 3x2 ≤ 6,

4x1 − 5x2 ≤ 8,

5x1 + 3x2 ≤ 15,

−4x1 − 3x2 ≤ −12,

x1, x2 ≥ 0,

ksto = 10 is used and the initial point x0 = (1, 3)T . This optimal solution x∗ = (1.547, 2.4188)T and
f∗

SPCGB = −16.27 is given by the Matlab code of our approach.
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Problem 14 ([26])






































minimize: 2x1 − 2x2
1 + 2x1x2 + 3x2 − 2x2

2

subject to: −x1 + x2 ≤ 1,

x1 − x2 ≤ 1,

−x1 + 2x2 ≤ 3,

2x1 − x2 ≤ 3,

x1, x2 ≥ 0,

ksto = 30 is used and the initial point x0 = (0.5, 0.5)T . This optimal solution x∗ = (3, 3)T and f∗
SPCGB = −3

is given by the Matlab code of our approach.

Problem 15 ([14])










minimize: (x1 − 1)2 + (x2 − x3)
2 + (x4 − x5)

subject to: x1 + x2 + x3 + x4 + x5 = 5,

x3 − 2(x4 + x5) = −3,

ksto = 30 is used and the initial point x0 = (2, 3/2, 0, 3/2, 0)T. This optimal solution

x∗ = (1, 0.73399, 0.73398, 1.266, 1.266)T

and f∗
SPCGB =2.0694e-10 is given by the Matlab code of our approach.

Problem 16 ([14])



























minimize: −32.174(255 ln((x1 + x2 + x3 + 0.03)/(0.09x1 + x2 + x3 + 0.03))
+280 ln((x2 + x3 + 0.03)/(0.07x2 + x3 + 0.03))
+290 ln((x3 + 0.03)/(0.13x3 + 0.03))),

subject to: x1 + x2 + x3 = 1,

0 ≤ xi ≤ 1, i = 1, 2, 3,

ksto = 20 is used and the initial point x0 = (1, 0, 0)T . This optimal solution x∗ = (0.61781, 0.3282, 0.053988)T

and f∗
SPCGB = −26250.46 is given by the Matlab code of our approach.

Problem 17 ([14])























































minimize: −
235
∑

i=1

ln
(

(ai(x) + bi(x) + ci(x))/
√

2π
)

,

subject to: 1 − x1 − x2 ≥ 0,

0.001 ≤ xi ≤ 0.499, i = 1, 2,

100 ≤ x3 ≤ 180,

130 ≤ x4 ≤ 210,

170 ≤ x5 ≤ 240,
5 ≤ xi ≤ 25, i = 6, . . . , 8,

where
ai(x) =

x1

x6
exp(−(yi − x3)

2/(2x2
6)),

bi(x) =
x2

x7
exp(−(yi − x4)

2/(2x2
7)),

ci(x) =
1 − x2 − x1

x8
exp(−(yi − x5)

2/(2x2
8)).
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Table Data of y

i yi i yi i yi

1 95 102-118 150 199-201 200
2 105 119-122 155 102-204 205

3-6 110 123-142 160 205-212 210
7-10 115 143-150 165 213 215
11-25 120 168-175 175 220-224 230
41-55 130 176-181 180 225 235
56-68 135 182-187 185 226-232 240
69-89 140 188-194 190 233 245
90-101 145 195-198 195 234-235 250

ksto = 50 is used and the initial point x0 = (0.1, 0.2, 180, 160, 210, 11.21, 3.21, 5.8)T.
This optimal solution

x∗ = (0.5009916, 0.5009925, 137.247, 187.1867, 174.5884, 16.48846, 24.89633, 10.55855)T

and f∗
SPCGB = 1149.78 is given by the Matlab code of our approach.

Problem 18 ([15])











minimize: −(x1 + 0.5x2 + 0.667x3 + 0.75x4 + 0.8x5)
1.5,

subject to: Ax ≤ b,

x ≥ 0,

where:

A =





























0.795137 0.225733 0.371307 0.225064 0.878756
−0.905037 −0.638848 −0.134430 −0.921211 0.150370
0.905037 0.248231 0.278197 0.376265 −0.597468
0.762043 −0.304755 −0.012345 −0.394012 −0.792129
0.564347 0.746523 −0.822105 −0.892331 −0.922916
−0.954276 −0.196016 0.242000 0.797813 −0.147119
0.747682 0.912055 −0.529338 0.243496 0.279402
−0.109599 0.727219 −0.741781 −0.058455 0.749470
0.209106 −0.074202 −0.022484 −0.144214 −0.735169





























and

b =





























4.242372
−1.785220
3.213560
1.205676
−0.891062
−0.066698
2.286079
0.521564
−0.730516





























ksto = 1 is used and the initial point x0 = (2.9, 0, 0.8, 0.2, 1.7)T . This optimal solution

x∗ = (0.40964, 5.6011, 6.1354, 7.7007e− 12, 0.4258)T

and f∗
SPCGB = −21.1304 is given by the Matlab code of our approach.
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Problem 19 ([19])























































minimize:
π

n

(

k1 sin2(πy1) +
n−1
∑

i=1

[

(yi − k2)
2(1 + k1 sin2(πyi+1))

]

+ (yn − k2)
2

)

,

subject to: 3x1 + x2 + 2x5 + x7 − x9 + 6x10 ≤ 120,

2x1 + 4x2 + 7x4 + 3x5 + x8 ≤ 57,

x5 + 2x8 − x10 ≤ 10,

x3 + x8 + 2x10 ≤ 42,

x4 + x9 + x10 ≤ 23,
0 ≤ xi ≤ 6 i = 1, 2, 5, 0 ≤ xi ≤ 8 i = 3, 4, 8, 9, 10, 0 ≤ xi ≤ 10 i = 6, 7,

where yi = 1+0.25(xi−1), i = 1, 2, . . . , 10. ksto = 5 is used and the initial point x0 = (1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5)T.
This optimal solution

x∗ = (1.0001, 0.98776, 0.88898, 0.98776, 0.98776, 0.98776, 0.98776, 1.0865)T

and f∗
SPCGB = 4.1245e− 04 is given by the Matlab code of our approach.

Problem 20 ([6])



























































minimize: x1 − x2 − x3 − x1x3 + x1x4 + x2x3 − x2x4,

subject to: x1 + 2x2 ≤ 8,

4x1 + x2 ≤ 12,

3x1 + 4x2 ≤ 12,

2x3 + x4 ≤ 8,

x3 + 2x4 ≤ 8,

x3 + x4 ≤ 5,

0 ≤ xi, i = 1, . . . , 10,

ksto = 5 is used and the initial point x0 = (0, 0, 0, 0)T . This optimal solution x∗ = (3,−7.2287e −
12, 4,−3.3552e− 09)T and f∗

SPCGB = −13 is given by the Matlab code of our approach.

Problem 21 ([6])


































































minimize: −
10
∑

i=1

(x2
i + 0.5xi),

subject to: 2x1 − x6 + x7 ≤ 3,

x3 − x5 + x7 ≤ 1.5,

3x4 − 2x9 + x10 ≤ 2.2,

x5 + 2x6 − x9 ≤ 2.7,

x2 + x9 − x10 ≤ 2.3,

x3 + 2x8 − x10 ≤ 3,

0 ≤ xi ≤ 1, i = 1, 2, . . . , 10,

ksto = 1 is used and the initial point x0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T . This optimal solution x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

and f∗
SPCGB = −15 is given by the Matlab code of our approach.
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Problem 22 ([12])










































minimize:
m
∑

i=1

n
∑

j=1
(cijxij + dijx

2
ij),

subject to:
m
∑

i=1
xij = bj , j = 1, . . . , n,

n
∑

j=1
xij = ai, i = 1, . . . , m,

0 ≤ xij,

where

dij ≤ 0,

m
∑

i=1

ai =

n
∑

j=1

bj.

This problem features n + m equality constraints and nm variables. There is exactly one redundant equality

Problem Algorithm
# n nc f∗

SQP f∗
IP f∗

CGB f∗
SPCGB

1 2 4 0.4129 2.1649e-15 0.0013 4.2077e-06
2 2 4 -1.0316 -1.0316 -1.0316 -1.0316
3 2 4 -24776.51 -24776.51 -24758.17 -24774.56
4 3 6 -1.0901 -1.0901 -0.3469 -1.0891
5 2 4 -436.9999 -409.9999 -24.06 -436.7659
6 2 4 -0.9999 -0.9999 -3e-09 -0.9995
7 3 5 -186.4223 -83.9999 -15.0471 -185.0364
8 2 4 -1.1278 -1.1278 -10.5526 -17.4018
9 4 4 4.7295e-09 9.4263e-08 0.0692 4.0389e-07
10 4 4 5.8795e-13 4.9411e-13 0.0257 0.0206
11 2 2 -1 -1.0833 -1 -1.0833
12 2 2 -2.2136 -2.2136 -2.2136 -2.2137
13 2 4 -16.28 -16.28 -16.24 -16.27
14 2 4 0 3.99e-06 0 -3
15 5 2 8.2606e-14 3.0643e-14 2.1767e-05 2.0694e-10
16 3 1 -26250.46 -26250.46 -26249.71 -26250.46
17 8 15 1150.08 1150.08 1538.30 1149.78
18 5 9 -21.1304 -21.1304 -21.1304 -21.1304
19 10 15 1.4205e-16 8.1598e-12 5.8412e-04 4.1245e-04
20 4 6 -10 -10 -13 -13
21 10 16 -15 -15 -15 -15
22 24 10 18270 15990 18270 15639

Table 1: Comparing optimal values of SQP, IP, CGB and SPCGB algorithms.

constraint.
n = 4, m = 6,

a = (8, 24, 20, 24, 16, 12)T,

b = (29, 41, 13, 21)T ,

c =

















300 270 460 800
740 600 540 380
300 490 380 760
430 250 390 600
210 830 470 680
360 290 400 310

















and d =

















−7 −4 −6 −8
−12 −9 −14 −7
−13 −12 −8 −4
−7 −9 −16 −8
−4 −10 −21 −13
−17 −9 −8 −4

















.
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Problem
Algorithm

SQP IP CGB SPCGB
# kiter CPU kiter CPU kiter CPU kiter CPU
1 11 0.02 12 0.03 6 0.04 6 0.05
2 10 0.02 10 0.02 10 0.02 5 0.03
3 12 0.56 13 0.60 1960 11.89 1817 39.43
4 14 0.96 17 0.49 1228 8.60 998 11.82
5 22 0.71 19 0.30 12 1.02 24 9.03
6 32 0.05 28 0.04 2 0.01 2 0.03
7 13 0.19 20 0.45 22 0.12 19 3.18
8 4 0.08 10 0.13 5 0.05 5 0.07
9 56 0.35 50 0.45 2 0.04 2 0.28
10 15 0.04 13 0.03 19 0.12 24 5.86
11 2 0.02 27 0.09 2 0.03 2 0.06
12 8 0.03 11 0.04 8 0.07 5 0.09
13 4 0.14 8 0.50 74 0.64 97 0.92
14 2 0.29 9 0.21 3 0.03 3 0.37
15 9 0.14 17 0.51 12 0.17 7 1.41
16 17 0.71 10 0.29 600 4.16 18 0.42
17 26 0.40 40 0.80 3 0.07 7 2.17
18 6 0.03 13 0.05 3 0.05 3 0.04
19 6 0.04 15 0.09 3 0.05 3 0.07
20 6 0.05 17 0.10 9 0.08 3 0.04
21 3 0.02 14 0.08 3 0.04 2 0.04
22 3 0.03 35 0.11 5 0.06 3 0.05

Table 2: Comparing results between SQP, IP, CGB and SPCGB algorithms.

We remark that the rank of the matrix of constraints is less than the number of there rows in this problem,
so we need to add the intelligent variables. ksto = 5 is used and the initial point

x0 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)T .

This optimal solution

x∗ = (5.9998, 2.0002, 0, 0, 0, 2.9998, 0, 21, 20, 0, 0, 0, 0, 24, 0, 0, 3.0002, 0, 12.9998, 0, 0, 12, 0, 0)T

and f∗
SPCGB =15639 is given by the Matlab code of our approach. From Table 1 below, we see that our

algorithm SPCGB can find a global solution, and the computation results illustrate that our algorithm SPCGB
executes well for those problems. In contrast to the numerical results of CGB algorithm, IP and SQP
algorithms failed to find a global solution of problems 14, 20, 22 and we show that

f∗
SPCGB < f∗

CGB

except in problems 2, 18, 20 and 21 we have f∗
SPCGB = f∗

CGB .
In Table 2 below, we remark that our algorithm SPCGB (and also CGB) can find its solutions with a

large number of iterations for problems 3 and 4 and the execution takes more time. This is mainly due to
the fact that one of the disadvantages of conditional gradient method is not very fast.

5 Conclusion

In this work, we have proposed an implementation of stochastic perturbation of conditional gradient and
bisection (SPCGB) method for optimizing a non-convex differentiable function subject to linear constraints.
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In particular, at each iteration, we compute a search direction by conditional gradient, and optimal line
search by bisection algorithm along this direction yields a decrease in the objective value. In the lack
of convexity assumptions, convergence to a global minimum cannot be ensured. We also introduced a
stochastic modification of the method involving the incorporation of a random perturbation Pk, which may
be interpreted as a perturbation of the direction. This approach leads to a stochastic method where the
deterministic sequence generated by the conditional gradient is replaced by a sequence of random variables.
A mathematical result concerning convergence to a global minimum was established for a convenient class
of random perturbations. We established that perturbations such that Pk = ξkZ belong to this class if
Z is a gaussian random vector (N(0, 1) variate), and {ξk}k≥0 is a decreasing sequence of strictly positive
real numbers converging to zero and such that ξ0 ≤ 1. This provides a simple method for generation of
convenient perturbations.

We proposed an algorithm for the implementation of the method and presented the results of some
numerical experiments. The implementation and test of SPCGB algorithm proposed show that this approach
is effective to calculate for non-convex optimization problems with linear constraints. The main difficulty in
the practical use of the stochastic perturbation is connected to the tuning of the parameters â and ksto.

The SPCGB algorithm can solve many problems such as the optimal control problems, optimization for
machine learning and image regularization via penalty method. Also, we can generalized SPCGB implemen-
tation for solving large-scale optimization problems and non-smooth optimization problems.

Acknowledgment. The Authors would like to thank the referees for their fruitful suggestions, which
helped us to improve the quality of the paper.
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