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Abstract

In this paper we study the number of limit cycles for discontinuous differential systems, which can
bifurcate from the periodic orbits of the quartic isochronous centers & = —y + zy(z® + y?),9 = = +
y*(z* + y?) when they are perturbed inside the class of all discontinuous quartic polynomial systems
with the straight line of discontinuity y = 0. Using the averaging theory of first order for discontinuous
differential systems, we show that this system has at least 19 limit cycles. Comparing the obtained
results for the discontinuous with the results for the continuous quartic polynomial differential systems,
this work shows that the discontinuous systems have at least 11 more limit cycles surrounding the origin
than the continuous ones.

1 Introduction

In recent years, there has been intensive study of the bifurcations of limit cycles in planar polynomial vector
fields. The search for the maximum number of limit cycles that polynomial differential systems of a given
degree can have is part of 16'" Hilbert’s Problem and many contributions have been made in this direction,
see for instance [8]. Recently the theory of limit cycles has also been studied in discontinuous piecewise
differential systems, see [5, 6, 11, 12, 16].
Itikawa and Llibre considered in [9] the uniform isochronous center of the quartic polynomial differential
system
&=y +ay@@® +y7), §=x+y @ +y7), (1)

when perturbed inside the whole class of quartic polynomial differential systems, they proved using the
averaging theory of first order that the number of limit cycles which bifurcate from the periodic solutions of
uniform isochronous center located at the origin of system (1) is at least 8.

For recent studies on isochronous and uniform isochronous centers see for instance [1, 4, 7, 15].

Our objective is to study the number of limit cycles of the discontinuous quartic differential systems with
two zones separated by a straight line. Related studies about the number of limit cycles bifurcating from
center and isochronous centers some of them perturbed in discontinuous quadratic and cubic systems can
be found in [3, 10, 14].

In the present work, using the averaging theory of first order we study the limit cycles which bifurcate
from the periodic solutions of the uniform isochronous center located at the origin of system (1) when it is
perturbed inside the whole class of quartic polynomial differential systems. More precisely we consider the
following differential system

Y1 ify>0,

2
Y, ify<o0, @)
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where
v, = (vt ay@® + %) +epi(z,y)
1= 2.2 2 )
z+y? (@ + %) +eqi(x,y)

Y, — (YT (@ +y7) + epa(a,y)
o+ 12 (2 +9%) +eqa(z,y) )7

and ¢ is a small parameter, p;(x,y), ¢;(x,y), i = 1,2 are respectively the quartic polynomials in the variables
x and y, given by

p1(2,y) = a1x + asy + azry + asx® + asy® + agx® + arxy + agxy® + agy®

+ajoz* + a11$gy + a12$2y2 + cL13373y3 + a14y4,

q1(z,y) = bz + boy + bazy + bax’® + bsy® + bex® + bra®y + bgwy® + boy®
+ brox* + b112®y + b1ox®y® + bisay® + biay®,

pa(z,y) = 12 + coy + cary + cax® + csy® + x> + craty + csxy® + coy?

+ crozt + 01133331 + 012332312 + 013373y3 + 014y4,

q2(z,y) = dix + doy + dzxy + dyx® + dsy® + dea® + drx?y + dsaxy® + doy?
+ d10$4 + d11$3y + d12$2y2 + dlgfbyg + d14y4.

In other words, we extend the work done by Itikawa and Llibre [9] for the continuous quartic polynomial
differential systems to the discontinuous ones with the straight line of discontinuity y = 0.
System (2) can be written using the sign function in the form

X = Z(w,y) = Gi(z,y) + sing(y)Ga(z,y),
where G1(z,y) = 5 (Yi(z,y) + Ya(z,7)) and Ga(z,y) = 5 (Yi(z,y) - Ya(z,7)).
Our main result is the following.

Theorem 1 For |e| # 0 sufficiently small there are discontinuous quartic polynomial differential systems
(2) having at least 19 limit cycles bifurcating from the periodic orbits of the isochronous center (1).

All our calculations were performed with the assistance of the software Mathematica and Maple. This
paper is structured as follows. In section 2 we present some preliminary results on uniform isochronous
centers and on the averaging theory for discontinuous differential systems that we shall use in this paper.
The proof of Theorem 1 is given in section 3.

2 Main Results

In this section we summarise the main results that we will use to study the discontinuous quartic differential
systems (1). As it was stated in [14] the next theorem is the first-order averaging theory developed for
discontinuous differential systems in [11].

Theorem 2 ([11]) . We consider the following discontinuous differential system
i =eF(t,z) +*R(t, z,¢), (3)

with
F(t,x) = F1(t,z) + sign(h(t, z))Fa(t, x),
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R(ta Z, 5) = Rl(ta Z, 5) + S’Lgn(h’(ta x))RQ(ta Z, 5)5

where F1, Fo : R x D — R"™ Ry, Ry : R x D X (—¢g,e0) = R™ and h : R x D — R are continuous functions,
T—periodic in the variable t and D is an open subset of R™. We also suppose that h is a C* function having
0 as a regular value. Denote by M = h=(0), by > ={0} x D & M, by >y = > \M # @, and its elements
by z = (0, 2) ¢ M.

Define the averaged function f: D — R™ as

We assume the following three conditions.

(i) F1, Fa, R1, Ry and h are locally L-Lipschitz with respect to x;

(ii) for a € Y, with f(a) =0, there exist a neighborhood V of a such that f(z) # 0 for all z € V' \ {a} and
dp(f,V,a) #0, (i.e. the Brouwer degree of f at a is not zero).

(ZZZ) If oh \ 8t(t0, Zo) =0 fOT some (to, ZQ) S M, then (<th, F1>2 - <th, F2>2) (to, Zo) > 0.

Then, for |e| > 0 sufficiently small, there exists a T—periodic solution x(., ) of system (3) such that z(t,e) —
a as e — 0.

As it was stated in [2], The next theorem provides a method to write a perturbed differential system
under the form (5).

Theorem 3 Consider the unperturbed system © = P(x,y), ¥ = Q(z,y), where P,Q : R? — R are continuous
functions, and assume that this system has a continuous family of period solutions {T'p} C {(x,y) : H(z,y) =
h,hi < h < ho}, where H is a first integral of the system. For a given first integral H assume that

2Q(z,y) — yP(x,y) # 0 for all (z,y) in the period annulus formed by the ovals {T1}. Let p: (v/h1,/ha) x

[0,27) — [0, 00) be a continuous function such that
H(p(R,0) cos b, p(R, ) sin §) = R*

for all R € (v/hi,vh2) and all 0 € [0,27). Then the differential equation which describes the dependence
between the square oot of the energy R = v/h and the angle 0 for the perturbed system

(5)

i = P(x,y) + ep(x, ),
y = Q(.I, y) + Eq(xa y)a

where p,q : R? — R are continuous functions is

dR  p(2® +y*)(Qp — Pq)

a8 "% 2R(Qu-Py O) (6)

where p = p(x,y) is the integrating factor corresponding to the first integral H of the unperturbed system and
x=p(R,0)cosb, y=p(R,0)sinb.

For more details see [2]. We also need the next result, which can be found in [13, Prop. 1].
Proposition 1 Let fo,..., fn be analytic functions defined on an open interval I C R. If fo,..., fn are

linearly independent then there exists s1,...,8, € I and Xg, ..., A\, € R such that for every j € {1,...,n}
we have Y1 o X fi(s;) = 0.
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3 Proof of Theorem 1

In order to apply the averaging method for studying limit cycles of (5) for e sufficiently small, we need to
write system (5) in the standard form (3) for applying the averaging theory. The following result of Theorem
3 provides a way for transforming (5) in this standard form.

We recall that the period annulus of a center is the topological annulus formed by all the periodic orbits
surrounding the center contained in the connected component whose inner boundary is the center.

A first integral H and an integrating factor y in the period annulus of the center of the quartic differential
system (1) have the expressions

1 T - 1
3(x2 + 42)3/2 - (22 + y2)1/2’ plz,y) = (22 + y2)5/2

H(‘Tay) =

respectively. For this system we note that h; = 0, ho = 1, and that the function p that satisfies the hypotheses
of Theorem 3 is given by

1

RO = —
PURO) = e B eos )15

then H(pcos, psin@) = R2/3 for all R > /3 and 6 € [0,27). Then using Theorem 3 where

a12? + (az + by)wy + bay? + asx® + (as + b3)xy? + (a3 + by)z?y
+bsy® +agr + (a7 +be )2’y + (as + br)x?y” + (ag + bs)zy® + boy*
+a102® + (a11 — by + bro)z'y + (a1 + ar2 — ba + byy)zy?
+(az + arz — by + b12)z%y® + (a1 + a1a — by + byz)zy*
+(ag + b1a)y® — bax®y + (ag — b3)x*y? + (a3 — by — bs)z3y3
+(as + a5 — b3)2y" + (a3 — bs)xy® + asy® — beay + (ag — br)zy?
+(a7 — bs — bs)z'y® + (ag + ag — by — bo)x®y* + (a7 + ag — bg)a*y®

(ag — b9)$y6 + a9y7 - 5103373/ + (a0 — bll)$6y2 + (@11 — bio — 512)335313
+(a10 + a12 — b1y — big)zty* + (a11 + a1z — biz — bia)z3y®
+(are + a1q — b13)2%y% + (a13 — bia)xy” + aray® for y > 0,

+

Qp— Pq=
c12? + (co + dy)wy + doy? + cax® + (c5 + d3)xy? + (c3 + dy) 22y
+dsy? + cex* + (c7 4+ dg)x3y + (cs + d7)x?y? + (co + dg)xy® + doy?
+c102° + (c11 — di + dio)zty + (c1 + c12 — do + di1)23y?
+(c2 + c13 — di + d12)2%y® + (e1 + cra — do + dig)zy?
+(co + dia)y® — dyx®y + (cq — d3)x*y? + (c3 — dg — ds)z3y3
(s + e — d3)2?y* + (c3 — ds)wy® + 5y — dox®y + (c6 — d7)x®y?
+(c7 — dg — dg)z*y® + (c6 + cs — d7 — do)x3y* + (c7 + co — dg)z?y®
(cs — do)xy® + coy” — droz™y + (c10 — d11)x59? + (c11 — d1o — di2)2’y?
+(c10 + c12 — di1 — dig)zty* + (c11 + c13 — di2 — dia)23y®
+(c12 4 c14 — d13)2?y0 + (c13 — dia)zy” + c1ay® for y < 0.

+
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We transform system (2) into the form

3
“2(R2 + 3 cos(0))
YE(0:a,b)R® + F(6;a,b)R + G(6; a, b)R7) 1O(2)  ify >0,

(A(o; a,b)R + B(0; a,b)R? + C(6;a,b)R® + D(6; a, b)R*

dR

Zanl 5
2(R? + 3 cos(8))
+E(0; ¢, d)R® + F(0; ¢, d)R® + G(0; ¢, d)R7) + O(c%)  ify <0,

(A(o; ¢,d)R+ B(0;c,d)R? + C(0; ¢, d)R® + D(6; c, d) R*

where

A(8; a,b) = 9(ay cos(A)* + (az + b1) cos(6)® sin() + by cos(6)? sin(6)?),

B(6;a,b) = (R? + 3 cos(6)) 5 (3as cos(A)* + 3(as + bs) cos(6)? sin(6)?
+ 3(as + by) cos()? sin(f) + 3bs cos(0) sin(h)?),

C(0;a,b) = 6(ay cos(0)® + (ag + by) cos(#)? sin(#) + by cos(#) sin(6)?
+ 3(R? + 3cos(6)) ¥ (ag cos(0)® + (az + bg) cos(6)* sin(6)
+ (ag 4 by) cos(0)3sin(0)? + (ag + bg) cos(0)? sin(A)> + by cos() sin(h)*),

D(8;a,b) = (R? + 3cos(0)) (as cos(6)® + (a5 + bs) cos(8) sin(6)?
+ (a3 + bs) cos(0)? sin(6) + bs sin(0)* + 3(a10 cos(6)°
+ (@11 — by + big) cos(0)® sin(6) + (a1 + aia — by + b11) cos(h)* sin(6)?
+ (ag 4 a1z — by + biz) cos(0)® sin(0)® + (a1 + a14 — by + by3) cos(6)? sin(6)*
+ (ag + b14) cos(6) sin(9)°,
E(0;a,b) = a1 cos(0)? + (ag + by) cos(0) sin(6) + by sin(6)?
R? + 3cos(9)) 3 (ag cos(0)* + (ar + be) cos(A)® sin(0) + (as + br) cos(6)? sin()?
0) sin(6) + bosin(0)*) + (R + 3 cos(8)) 5 (—by cos(6)? sin(6)
0)* sin(6)? + (a3 — by — bs) cos(0)? sin(A)® + (ay + as — b3) cos(6)? sin()*
0) sin(6)® + as sin(6)°),

_|_

F(#;a,b) = aigcos()® + (a11 — by + big) cos(#)*sin(h) + (a1 + aio — ba + by1) cos(6)® sin(6)?
+ (ag + a13 — by + b1o) cos(0)?sin(A)> + (a1 + ais — ba + by3) cos(6) sin(6)*
+ (a2 + bra) sin(8)® + (R? + 3 cos()) (—bg cos(8)® sin(6) + (ag — br) cos(6)® sin(6)?
+ (a7 — b — bg) cos(0)* sin(0)® + (ag + as — by — by) cos(#)® sin(9)*
+ (a7 + ag — bg) cos(#)? sin()® + (ag — by) cos(f) sin(6)°® + ag sin()7),

G(G, a, b) = _b10 COS(9)7 Sln(@) + (CLlO - bll) COS(9)6 sin(9)2 + (CLll - blO - b12) COS(9)5 sin(9)3
+ (CLlO + a2 — bll - blg) COS(9)4 sin(9)4 + (CLll “+ a3 — b12 - b14) COS(9)3 sin(9)5
+ (@12 + a14 — b13) cos(8)? sin(6)® + (as — byg) cos(6) sin(6)” + a1 sin(6)%,
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where a = (a1, ...,a14),b = (b1, ..., b14), ¢ = (c1, ..., c14) and d = (dy, ..., d14).
The discontinuous differential system (7) is under the assumptions of Theorem 2, so we must study the
zeros of the averaged function f : (0,1) — R where

HR) = 3 /7T A(6; a,b)R + B(0;a,b)R* + C(0; a, b)R3 + D(6; a, b)R*
2 Jo R? + 3 cos(6)
+E(9; a,b)R® + F(6;a,b)R® + G(0;a,b)R”
R? + 3 cos(6)
+§ /2” A(6; ¢, d)R+ B(0;¢,d)R* + C(0; ¢, d)R? + D(6; ¢, d)R*
2 /. R? + 3 cos(0)
+E(9; c,d)R® + F(0; ¢, d)R® 4+ G(0;c,d)R”
R? + 3 cos(6)

do

dé.

Thus the function f can be written as

f(R) = ai1g1+azg2 + asgs + asaga + asgs + asge + azgr + asgs + aggo
+ai0g10 + a11911 + a12912 + a13913 + a14914 + b1g15 + b2g1e
+b3g17 + bagis + bsg19 + begao + brg21 + bsgaa + bogas + biog2a
+b11925 + b12g26 + b13gar + b1agas + c1929 + 2930 + 3931 + Cags2
45933 + C6934 + €7935 + C8g36 + Cog37 + C10938 + C11939 + C12940
+c13941 + c14942 + d1ga3 + dagas + d3gas + dagas + dsgar + degas
+d7ga9 + dggso + dogs1 + d10gs2 + d11953 + d12g54 + d13gs5 + d14gs6-

The expressions of g;(R), i € {1,...,56} are respectively presented in the Appendix 4.
Lemma 1 Let f: R — R be a 2w-periodic function having the form

(19 . ﬁe
f(0) = cos® @sin® O(R* + 3cos0)” or f(0) = cos” v sim

(R? + 3cosf)r’
where v = 0, %, %, 1, 8=2p and a,p € N. We have:
T 2m
[ revio= [ s,
0 iy
in the both cases.
Proof. Putting z = 27 — 6, in both formulas, we get
I g 2m 2m
/ f(6)do = — (27 — 2)dz = (2)dz = f(6)d6.
0 2m g iy
After using the manipulator Maple, we obtain that
5
g1 = gi6 = 929 = g4, g2 = 5915 = —930 = —5943,
gs = 9gs1, 97 = 935;
g10 = —9g25 = 938 = —9gs53, 912 = —g27 = g40 = —Y55,

g11 = —3g39, g13 = —g41, 914 = 942, 917 = 945,

g18 = g46, 920 = 948, 924 = —¢G52, g26 = —Ys4,
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g28 = —Us6,

and applying the Lemma 1, we get
94 = 932,  g17 = 9§45,

g5 = g33, 921 = g49,
g6 = 934, g23 = gs1,
g8 = g36-

So the function f becomes

5 5
f(R) = (a1 +ba + c1 + da2)g1 + (a2 + ghi—c2— §d1)92 + (a3 + c3)g3 + (a4 + c4)ga
+ (a5 + ¢5)g5 + (a6 + c6)gs + (a7 + c7)g7 + (as + cs)gs + aggo

+ (a10 — b11 + c10 — di1)g10 + (@11 — c11)g11 + (@12 — b1z + c12 — di13)g12
+ (a13 — c13)g13 + (a14 + c14)g14 + (b3 + d3)g17 + (ba + d4)g1s + b5g19

+ (b — de)g20 + (b7 + d7)g21 + bggaa + (bg + do)gas + (b1o — d10)g24

+ (b12 — d12)g25 + (b1a — d14)g2s + cogs7 + d5ga7 + dsgso-

Out of the 27 functions G; = g; : (V3,+00) — R, i € {{1,...,14} U{17,...,25} U {28,37,47,50}}, we
have that 20 are linearly independent. Indeed, using the software Mathematica 11.0 to calculate the Taylor
expansions for those 27 functions in the variable R until its 30" power around R = 2, which are too long
and therefore they are not presented here, we construct a 27 x 31 matrix, where in the k row we place the
31 coefficients of R?, R!, ..., R3% of the Taylor expansion of G,

ke{{l,...,14}U{17,...,25} U{28,37,47,50}},

and we conclude that the rank of such matrix is 20.

By Proposition 1 since there are 20 linearly independent functions among the 27 previously described,
then there exists a linear combination of them with at least 19 zeros, because all the coefficients of these
functions are linearly independent, as it is easy to check. Thus there exist R, Ro, ..., Rig € (\/g, +00) and
coefficients a;, b;, ¢;,d; € R, i € {1,...,14} such that f(Rg) =0, k € {1,...,19}.

In summary, we conclude that there are planar discontinuous quartic polynomial differential systems (2)
having at least 19 limit cycles bifurcating from the periodic orbits of the periodic annulus of the uniform
isochronous center located at the origin of the unperturbed differential system (1), using the averaging theory
of first order for discontinuous differential systems. This completes the proof of theorem 1. m

4 Appendix: Averaging functions ¢;(R),i € {1,...,56}

(cos(A)?(R? + 3 cos(8)) + cos(6) sin(h)? + cos(6) sin(H)*)d,

Q
S
|

(cos(0) sin(8)(R? + 3 cos(6)) + cos(9)? sin(0)* + sin(0)°)d6,

/
/
/ﬂ (cos(8) sin(#)® + cos(#)? sin(6)3) )b,
0
/
/

Q
N
|

(cos(0)“ sin(0)(R* + 3cos(9))3 + (R? 1 3cos(6))}

ﬂ(cos(t?)?’(RQ +3cos(0)F + (cos(6)? sin(6)* 4 cos(h)? sin(6)?)

Q
W~
|

(R? + 3cos(6)) 3

ﬂ(cos(ﬁ) sin(0)*(R? +3 cos(@))% i (cos()? sin(0)* + sin(6))

= =
ot w
| |
ROIW NW MW N MW

(R? 4 3cos(6))3
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(cos(6)3 sin(6)* + 005(9)25 sin(6)?) )b,
(R?+ 3cos(9))5
cos(0)* sin(6)® + cos(6)? sin(6)®)
(R? + 3cos(6)):
cos(6)3 sin(#)* + cos(6) sin(6)°)
(R? 4+ 3cos(0))3
_3 " co in(0)3 (R? co 3 (cos(6)” sin(6)° + Sln(9)7
go = 2/0 (cos(®)sin(8)? (R + 3eon(a)) ¥ + 2 R s
_3 / ﬂ(cOs(o)S . (cos(8)" sin(8)" + cos(6)° Si“(o)Q))do,

g6 = g/;(COS(9)4(RQ +3cos(6))3 +

g7 = g‘/oﬂ(cos(e)fi 5111(9)(R2 +3COS(9))% + (

gs = g/oﬁ(cos(@)2 sin(0)*(R? + 3005(9))% + (

Q

=

=}
|

2 /o (R2 + 3 cos(0))
g = g /O " (cos(6)* sin(6) + (COS((’)?’SEI];(Q)JF;CZZ?(%S i) 4
g =2 /O " (cos(0)® sin(6)? + (COS(H)ALS&(Q )+ ;CZZ?(‘QQ sin(0)%) g,
g3 = 5 /0 " (cos(8)? sin(e)?® + ) Sl?é}ﬁj;’:(( )); Sn(0))) 49
g = g /0 " (cos(8) sin(6)* + (COS((’();SI_I;(?))CO;E;;; OF)) 49,
g15 = g /0 ﬂ(cos(@) sin(6)(R? 4 3 cos()) — (cos()? sin(h)> + cos(#)* sin(h)))db,
16 = g /0 " (sin(0)2(R? + 3cos(8)) — (cos(0) sin(6)" + cos(9)? sin(6)2))d0
gi7 = g /0 " (cos(8) sin(0)2(R? + 3 cos(0))§ — (O ?;i J)r ;;:(S()o))% SO g,
n =3 | (con(O sin@)(1 + 3cos(0) —-(COS(9>5§;§(4?5j;§Z?§f;ZSIH( ) a0,
mg—glf@mm%32+3mamﬁ—”““mfgfﬁlizﬁSm””%w,
d20 = g /0 " (cos(8)? sin(8)(R? + 3 cos(6)) ¥ — (cos(o)ﬁ(s;(? ;rczz?g;:sin(ﬁ)b’) )do,
m—gﬁﬁwwnmmm#+um@ﬁ—@“@?ﬁl;;ﬁﬂ@“>5m

(cos(6)® sin(8) + cos()” s1n(9))
(R? + 3cos(6))
(cos(8)* sin(0)* + cos(6)8 sin(0)?)
(R? + 3cos(6))
(cos(6)3 sin(0)® + cos(6)° sin(6)3)
(R? + 3cos(6)) )do,

924 = g/oﬁ(cos(@)4 sin(f) + )de,

g%—géﬁmWmeV— )b,

926 = g/oﬂ(cos(o)Q sin(6)* —

)do,

39
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g27 =

g28 =

g29 =

g30 =

g31 =

g32 =

g33 =

g34 =

g35 =

g36 =

g37 =

g38 =

g39 =

ga0 =

941 =

942 =

943 =

ga4 =

ga5 =

946 =

ga7 =

Discontinuous Quartic Differential System

3

(cos() sin(8)* — (cos(6)?sin(6)° + cos(h)* sin(6)*)

(R?% 4 3cos(9)) )do,
T (cos(6)? sin(0)® + cos(6) sin(6)7)
(sin(6)” - (R2 + 3cos(9)) )6,

(cos(8)?(R? + 3 cos(8)) + cos(6)® sin(h)? + cos(6) sin(H)*)d,

N
3

(cos(0) sin(6)(R* + 3 cos(6)) + cos(#)? sin(0)* + sin(6)®)db),

¥
3

(cos(6) sin(6)° + cos(6)? sin(0)*)
(R2 + 3cos(0)) 5
(cos(8)? sin(0)* + cos(6)* sin(0)?)
(R2 + 3 cos(0)) ¥
(cos(9)? sin(6)* + sin(6)°)
(R2 + 3cos(0))%
(cos()? sin(6)* 4 cos(6)® sin(6)?)
(R2 + 3 cos(0))3
(cos(8)* sin(6)? + cos(#)? sin(6)®)
(R? 4+ 3 cos(f )>%
(cos(6)3 sin(0)* + cos(ﬂz sin(6)° ))dt?,
(R? +3cos(0))3
(cos(0)? sin(9)° + Slﬂ(o)
(R2 + 3 cos(0))3
(cos()* sin()* + cos(6)° sin(6)?)
(R? 4+ 3cos(6))
(cos(6)3 sin(0)® + cos(6)® sin(6)?)
(R? 4+ 3cos(0))
(cos(8)* sin(6)* + cos(#)? sin(6)°)
(R? + 3cos(0))

(cos(6)? sin(8)(R? + 3 cos()) 5 +

)do,

N
3

(cos(8)* (R? + 3 cos(0)) 5 + )do,

¥
3

(cos(0) sin(0)? (R* + 3 cos(e))% +

)do,

N
3

(cos(8)*(R? + 3 cos(6))5 + )do,

N
3

(cos(6)? sin(6)(R? + 3 cos(6))5 +

)do,

¥
3

(cos(6)?sin(0)* (R* 4 3 cos(@))% +

N
3

(cos(6) sin(6)? (R + 3 cos(6)) 5 + ) )do,

N
3

(cos(0)° + )do,

N
3

(cos()* sin(0) +

)do,

¥
3

(cos(6)? sin(0)? +

)do,

NIW W DWW NDIW NW NDW NDIW NDW NDIWw NDWw NDWw NWw NWw N w

¥
3

(cos(#) sin(0)7 + cos(6)3 sin(6)°)
(R? + 3cos(6))
8

(cos(0)? sin(0)® + )do,

(R? 4 3cos())s
(cos(#) sin(6)> + cos(6)3 sin(6)3)
(R2 + 3 cos(0)) %

3

3
)
3 [ . (cos(6)? sin(0)® + sin(0)®)
5/77 (cos(#) sin(h)* + (RZ % 3cos(0)) )de,
g/ﬂ(cos(ﬁ) sin(0)(R? 4 3 cos(0)) — (cos(6)? sin(0)> + cos(8)? sin(6)))d,
0
g/ (sin(0)%(R? + 3 cos(#)) — (cos(#) sin(h)* + cos(#)> sin(#)?))do
0
3 [T o (0V2(R2 4 3co 2 (cos(6)?sin(0)* + cos()* sin(0)?)
3 | (cos(o)sim(0)* (R + 3cos(0) o
g / " (cos(8)? sin(8) (R? + 3 cos(e)) ¥ — (0O sl )“OS(H)?;M( 2 ya,
0
3
2,

(sin(6)®(R? + 3 cos(6))5 — )do,
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(cos(#)% sin(#) + cos(#)* sin(6)3 ))dO
(R? 4+ 3 cos(f ))% ’
_3 [ cos(#)? sin 2 co T (cos(6)® sin(6)? + cos(6)? sin(6)*)
i =5 [ con(0)? s (R +3.cos(0) =l o,
(cos(#)? sin(6)® + cos(6)* sin(6)? )\a6
(R? + 3 cos(f ))% ’

s = 5 | (con(O) sin(0)(? + 3cos(0)) s -

0 = 3 | (cos(0)sin@)° (1 + 3cos(0)) s -

_3 [T o 2\ 300 L (cos(6)? sin(6)* + cos(#) sin(6)°)
o = 5 [ (i) (72 +3cos(0) N R
(cos(0)° sin(0)* + cos(0)7 sin(6))

(R? + 3cos(6))

g52 = g/oﬁ(cos(@)4 sin(f) + )de,

3 [T .o (cos()*sin(6)* + cos(#)% sin(6)?)
953 = 5‘/0 (COS(9)3 3111(9) - (R2 + 3COS( )) )doa
3 [T 5 . (cos(0)3 sin(0)° + cos(#)® sin(#)?)
954 = 5/0 (cos(6)? sin(6)® — (72 1 3008(0)) )do,
o =3 [ (conto)sin(pyt - D oA O,

9))
3T (cos(6)? sin(0)® + cos(6) sin(6)7)
g _/0 (sin(6)° - (R + 3c0s(0)) )db.

Using the software Mathematica 11.0, we obtain

37 R? _

g1

g2 =5;

95 = 3 (g (10R® + 22212 + 10 ({/1 - 4 — 1) B* + (98— 63 /1 — &) R* — 1008)
- (m(—mm —222R2 4 10 (.3/% r1- 1) RS+ (98 633/ 2 ) R* —1008) ) )

— 1 4 1 1.1. 6
g1 = W(—w(—4320+138R2+19R +20RS +10RS) oFy (— 3,5 1 -7

+7(3 + R?) ( — 576 + 169R? — 40R* + 10R®) o F} (—%, 41 —Rzﬁ,g) );

- 1 _ 2 _ 4 6 8 _
gs = 352(73+R2)%7T ((720 78R —49R* + 4R° + 2R ) o (

W=
—
Y
re
w
~—

1
29

—(3+ R?)(96 — 19R? — 8R* + 2R6> oy (—%, 4.9, __6 ) );

9 = mrsr ( (R?+3) (6R® — 12R® + 1TR* — 58R? — 352) o Fy (4, 1 1; — 7o)

— (R? = 3) (6R® = TR~ 1036) 2Fy (=4, 3515 s ) );

41
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97—%(W(—1238+9634 +(-179 (1= )7 1) B+ (6-6 (1 - £)*°) rO
( s

1—3)° 58) R6+648> _

3, (1238 —96R1 + (<179 (% + 1) — 144) R?

1
728(R24-3)%/3

(= + 1)) RO+ (137 (5 +1)*° — 58) B - 648)));

95 = o (w (R? = 3) (6R® — 85R* + 504) 2Py (=4, 2515 -5 )

—m (R? +3) (6R® — 12R® — 61R* + 98R? + 168) 21} (%, 2:1; —R263>>;

go = g(m (6R8 —126R" + (369 (1= £2)"" = 513) B2 + (3(1 = £5)"* = 3) RV
+(68—62(1— )" ) RO+ 1080) - s ( — 6R + 126R* + (369 (£ + 1)

+ (3 (& +1)%° —3) RV 4 (68—62 (& + 1)2/3) RS~ 1080));

910 = ( TR (36R4 + 81+ 24R%, /2 4 8RS (—1 ETR}?))) :

911 = 3355 (6 (—5R® + 30R* + 297) + 5 (R* — 9) R° (log (R* + 3) — log (R* - 3)) >;
g12 = B (—8RS + 108R" +8 (R = 3)"* (R? +3)"° R? - 243) 5

g13 = (6 (5R® — 7T5R* 4 378) + 5 (R® — 9R)” (log (R — 3) — log (R2 + 3)) >;

g1 = 5k (8 (9 - RY)"*log (£7) =8 (9~ BY)™ " log (L= ) + mR? (SRS — 180R* + 1215));

07 = T w((960 — 214R? — I5TR* + 20R® + 10R%) o Fy (— 4,3 15— )

—(3+ R?)(128 — TR? — 40R* + 10R®) 2F1( 141 -8 ))

918—%(88031W(IOR6+310R2+10(3 1= 1) R+ (3 3/1—%“0)34—480))
~ (smohrs (F10R = 310R2 +10 ({/2 +1 1) B+ (3{/7 + 1+ 10) B* - 480) )
g19 = %(%Olﬁ( —10RS +834R% + (10 = 103/1 - &) RS+ (2393/1 - & —274)
RY = 576) — sorpbers (1016 — 834R% + (10— 10§/ & + 1) B+ (239{/ & + 1 — 274)
R4—576)>;
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g20 = %(W(m&w (98— 70 (1— &) )R2 —4R* —3 (1 + (1 — %)**)RS
—6R®+ (3 -3 (1~ %)2/3)1%10) - %(— 168+ (—98 — 70 (1 + 2)*/*) R?

364(R243)%/3

AR —3 (14 (14 2&)Y*)RO + 6R® + (3—3 (1 + %)2/3)1%10));

g21 = W(&T (R?=3) (2R® — 11R" +64) 2 I (_%’ 5L _R26—3)

—n (R? +3) (6R® — 12R® — 9R* — 6R? + 64) ,F) (%, 2.1, —Rgg) :

922 = g(m (6R8 — AR+ (=60 (1 )77 —123) B2+ (3(1- )" - 3) RY

+(42-36 (1 - %)) RS + 140) W(—6R8+74R4+ (—60(%4—1)2/3

—123>32 +(3(H+ )" 3) RO+ (236 (&% +1)"") RO - 144));

923 =S558y ( (R? +3) (2R® — 4R% — 29R* 4+ 50R? — 48) o F} (%, 2:1; _R2673)
— (R?—3) (2R® — 3TR' — 144) o P (=4, 3515 s ) ))
924 = 5355 (6 (5 (R*+ 3) R* +324) + 5R'° (log (R? — 3) — log (R + 3)) ) ;
925 = ﬁgo(ﬁ (5 (R*—6) R*+108) 45 (R* — 9) RS (log (R? — 3) — log (R2+3))>;
928 = 3155 (6 (—5R® + T5R* + 432) — 5 (R® — 9R)? (log (R2 — 3) — log (R* + 3)) );
g37 = 3(7364@213)2,3 ( — 615 +126R" + (369 (& + 1) = 513) B + (3 (& + 1) = 3) R0

T 364(R2—3)2/3

+ (68— 62 +1)"*) RS - 1080) S — (6R8 —126R" + (369 (1 - )" — 513) B2

(3= &) =) RO+ (6862 (1— %)) RO+ 1080));

gar = g(m(mm —834R2 + (10— 103/ + 1) B® + (2393/2% +1 - 274)
RY = 576) — coabos (— 10RS + 834K + (10 - 104/1 - & ) B* + (28031 - & — 274)

R — 576));

3
G50 = 5(W( — 615+ 74R' + (=60 (5 +1)*" —123) B2 + (3 (% +1)"" - 3) RV

43
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+ (4236 (% + 1)) RS - 144) — L s (6R® - TARY + (=60 (1 - )" —123) B2

+(30- &) =3) RO+ (1236 (1— %)) RO+ 144));
where 2 F7 (a, b, ¢, z) is the hypergeometric function which has the series expansion

= (@) (D) 2"
(C)k k!

with
(a)s = 1, if k=0,
YDEZ ala+1)(a+2)..(atk—1), ifk>0.
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