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Abstract

An advanced class of convexity has been introduced in this article, named as co-ordinated o-convexity.
This variant holds some other types of co-ordinated convex functions as its special cases. We also
constituted integral inequalities enmeshed with the Hermite-Hadamard type for co-ordinated o-convex
functions, as application.

1 Introduction

A function ¥ : B — R is known as convex in classical sense when B C R is a convex set, and the following
inequality is true V z,y € B and t € [0, 1]

IOz + (1 —0)y) < 09(z) + (1 — 0)I(y).

The ideology of convexity plays a significant role in various fields of applied and pure sciences. That is the
reason why the classical notion of convex sets as well as convex functions have been generalized in numerous
ways. For further details, reader may see [2]-[4]. One more perspective for which the theory of convex
functions has captivated a large number of researchers is its compact relationship with theory of inequalities.
There are so many renowned inequalities which have been obtained using the concept of convexity. For more
information, see [5]-[15]. Hermite-Hadamard’s inequality is the most eminent name among these inequalities,
which actually yields a necessary and sufficient condition for a function to be convex. This famous result of
Hadamard and Hermite is as follows by

Theorem 1 Assume a convex function 9 : [eq,ep] C R — R which is integrable on its domain. Then

ep
9 (ea +eb> < 1 / 9(z)dz < w.
€p — €4 €aq

2 2

S. S. Dragomir presented the concept of co-ordinated convex functions in 1999 in [1]. He defined

a function from a bi-dimensional interval A := [e,,ep] X [ec, eq] € R? with e, < e, and e, < eq to R, i.e
¥ : A — R is called convex on co-ordinates if the partial mappings ¥y, : [eq, 5] — R, ¥y(u) := J(u,y), and
Py = [ec,eq] — R, ¥,(v) = ¥(z,v), are convex which are defined for all y € [e.,eq] and = € [eq, ep]. He

also proved that, every convex mapping ¥ : A — R is convex on the co-ordinates, but the converse is not
generally true. He also furnished the Hermite-Hadamard inequality for co-ordinated convex functions.
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Theorem 2 For co-ordinated convex function ¥ : A — R on A, the following inequalities are true

€q +ep €+ eq 1 1 b €.+ eq 1 /ed €q + €
9 —_ < = % d v d
( 2 2 > = Q[ebea/ea T S 2 Y)W

1 ep /ed
< Hzx,y) dydz
< sl [ v
1 1 o 1 o
< =
< 1 leb e /ea Iz, e.)dx + p— /ea Iz, eq)dx
+ / I(ea,y dy+ / (e, y dl/]
€d — €¢
< Hea, ec) + ¥ eq, eq) + ¥ep, ec) + Jep, eq)

4 )
these inequalities are sharp.

Furthermore an analytical definition of two variable convex functions on co-ordinates has been presented
n [16].

Definition 1 A function 9 : A — R will be called co-ordinated conver on A, for all 8,¢ € [0,1] and
(z,9), (u,v) € A, if the following inequality holds

YO0z + (1 -0y, du+ (1 — ¢)v) <0 x,u) + ¢(1 — 0¥ y,u) + 6(1 — @)d(z,v) + (1 —0)(1 — d)¥(y,v).

Moreover few class of convexity has been introduced in [17] named as o-convexity which comprises
various other classes of convexities.

The aim of the present article is to combine o-convexity with convex functions of two variables on co-
ordinates, which emerged the notions of coordinated o-convex sets and coordinated o-convex functions. Thus
we define the coordinated o-convex functions through the formula

Mooy ((21,91), (02,2)) = (07 (0o (1) + (1 = O)o(y1)), 0~ (0 (x2) + (1 = §)o(y2))

which has a relationship with the strictly monotonic continuous function o, where M, is the quasi-airthmatic
mean for p € R, which binds all the power means together.

Additionally, as applications of the coordinated o-convex functions, we acquire some new Hermite-
Hadamard type inequalities. Simultaneously we also discuss some important special cases in detail.

2 Co-ordinated o-Convex Functions

This section is devoted to formulate co-ordinated o-convexity.

Definition 2 A bi-dimensional set A,, C R? is known as bi-dimensional o-convex set related to a strictly
monotonic continuous function o if

Moo ((@1,1), (22,52)) = (07 (B (21) + (1 = O)o(y1)), 0~ (¢o(2) + (1 = $)o(12)) € Ao,
for all (z1,y1), (z2,Y2) € Age and 0,6 € [0,1].
Definition 3 A function 9 : A,, — R is said to be co-ordinated o-conver on A,, if

79(/\4[02]((%72/1)7 (72,92))
< 0¢9(x1, 22) + ¢(1 — 0)I(y1, x2) + O(1 — d)I(z1,92) + (1 = O)(1 — @)V (y1,92), (1)

for all (z1,y1), (z2,y2) € Ay := [eq, €] X [ec, eq] and 0, ¢ € [0,1].
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Now we can extract various other types of co-ordinated convex function as special cases of co-ordinated
o-convex function by assuming different mappings in place of ¢ in Definition 3.

Case I: If we take o(x1) = In(z), then (1) becomes
el v, o ' ?)
< 06 I(z1,22) + o1 —0) I(y1,22) + 0(1 — ¢) H(x1,y2) + (1 — 0)(1 — @) I(y1,v2),

for all (z1,y1), (T2,Y2) € Ap2 := [€q, €] X [€c, eq) C (0,00) x (0,00) and §, ¢ € [0, 1], this is the concept
of co-ordinated geometric convexity.

Case II: If we take o(x;1) = x%v then (1) becomes

9 ( T1Y1 Z2Y2 >
(I =021+ 0y (1 - ¢)za + dyo
< 0¢9(z1,22) + (1 — 0)pd(y1, x2) + 0(1 — ) I (21, y2) + (1 — 0)(1 — ¢)I(y1, y2),

for all (z1,y1), (x2,Y2) € Apg := [ea, €p] X [€c, 4] C (0,00) x (0,00) and 6, ¢ € [0, 1], this is the concept
of co-ordinated harmonic convexity [18].

Case III: If we take o(xq) = z¥, then (1) becomes

ﬁ((ew’{ (1= 0)yh) ", ($ah+ (1~ ¢>y§)’1’>
< 0¢0(z1, 22) + O(1 — 0)9(y1, x2) + 0(1 — @) (w1,y2) + (1 = 0)(1 — )V (y1,y2),

for all (z1,y1), (T2,y2) € Apa 1= [ea, €] X [€c, €q] C (0,00) x (0,00) and 6, ¢ € [0, 1], this is the concept
of co-ordinated p-convexity.

Case IV: If we take o(z1) = exp(x1), then (1) becomes
ﬂ(ln(& exp(z1) + (1 — 0) exp(y1)), In(pexp(z2) + (1 — ¢) exp(yg))>
< 000(21,m2) + (1= 0)d0(y1, 22) +0(1 — )I(z1,42) + (1 = O)(1 = 9)I(y1, 42),
for all (z1,y1), (T2,y2) € Aya = [eq, €] X [ec, eq] and 6, ¢ € [0, 1], this is the concept of co-ordinated

log-exponential convexity.

3 Applications of Co-ordinated o-Convex Functions to Integral
Inequalities

Lemma 1 Every o-convex mapping ¥ : Ay, := [€q,€p] X [€c,eq] — R is co-ordinated o-convex, although the
converse s not true in general.

Proof. Suppose that 9 : A,, — R is o-convex in A,,. Let 9, : [e., eq] — R be defined by

9 (y) := 19(0_1 (0o (z) + (1 - 9)0(95)),y).
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Then for all § € [0, 1] and y1,y2 € [ec, eq4] one has

D2 (07 (B (wn) + (1 - 0)o (1)) )
= 19(0*1(90(90) + (1= 0)o(2)), 07 (B (yr) + (1 - 9)0(1/2)))
< 09(x,y) + (1 - 0)d(z, y2)
= 99 <J—1(a(w)),y1> +(1—6) <a—1(o(x)),yz)
= 00:(y1) + (1= 0)9.(y2),

which shows the o-convexity of ¥,. The fact that ¥, : [e4, ] — R defined by 9, (z) := 19(1:,0’1(90(1/) +

(1- H)J(y))), is also convex on [eg, €] goes likewise.

Now, consider the mapping ¥ : [0,1]2 — [0,00) defined as ¥(x,y) = xy. Let 0 : R — R defined as
o(x) =P, p € (0,1]. If (u,0), (0,w) € [0,1]? and ¢ € [0, 1], we get

9 <a—1 (9() + (1 =0)0(0)) , o7 (60(0) + (1 9>0(w)))

9 (w (wy + (1= 0)(07) , o= (90 + (1 - ")(“’)p)>

"=

ﬂ((e)%u (- 9)%w) - (9(1 . 9))' ww
and
09(u,0) + (1 — 0)0(0,0) + (1 — 0)0(u, w) + (1 — §)20(0, w) = A(1 — )uw.

This shows that 9 is co-ordinated o-convex on [0, 1]2.

Now,
9 (01 ((1 —0)o(u) + 90(0)) , ot ((1 —0)o(0) + 90(“’)))
- ﬁ(ol((l - 9)up> ) 01(9“’1)))
= 19((1 — 9)%u , 9%10)
= (o0 - 0))%uw
and

(1 —6)%(u,0) 4+ 09(0,w) = 0.
Thus, V6 € (0,1), u,w € (0,1) and p € (0,1], we get

19<01 ((1=0)(w) +00(0)) . o ((1 - 0)(0) + oa<w>)> > (1= 6)0(u,0) + 69(0, w),

hence, it proves that 9 is not o-convex on [0,1]?. =
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Theorem 3 Suppose that ¥ : Ay, = [eq,ep] X [€c,€q] — R is co-ordinated o-convex on A,,. Then the
following inequalities are true

( . (a(ea);‘ (eb)) o (0(66)42-0(%)))

< e [ 2 (e (572 e
*3 [um [ ( (M) y) <z
N ey ) / / (=, 9)0 (=)o’ (W)dyde
< i[mb_”a/ Iz, e)o dx—i—m/ Iz, eq)o ()daz]
w1 s | e i+ s [t ]
SR c>+ﬁ<ea,ed>Iﬂ(eb,e»w(eb,edx o)
Proof. Since ¥ : Ay, = [eq, 5] X [ee, ea] — R is co-ordinated o-convex on A,,, it follows that the mapping

9o : [ec, eq] — R defined by go(y) := 9(c (0o (eq) + (1 — O)a(ep)), y) is o-convex on [e., e4] for all 6 € [0, 1].
Then by Hadamard’s inequality we have

96 (0‘1 (U(eC) —g a(ed)» S B ia(ec) /:d g6(y)o’ (y)dy < w, 0 €10,1].

That is,
9 (Crl(ea(ea) +(1=0)o(es)), 0" (W))

; “ 0-*1 ole —0o(e o
O'(ed)—g(ec) /ec 19( (0 (a)+(1 0) (b))vy) (y)dy

Yo (0o(eq) + (1 —0)o(ep),e.) + (o (Oo(eq) + (1 —0)o(ep), eq)
- 2

IN

, 6€]0,1].

Integarting the above inequality on [0, 1] by substituting o= (0o(eq)+(1—0)o(ep)) = x and df = %dm,

we have

1
[ (eb) - U(ea)” €d —0 e(/ / / 7‘9 SC y (y)dxdy

1
2o(er) — o(ea)] / @, ec) + 0, ea)lo’ (@)dz. 3)

By the similar argument applied for the mapping g, : [eq, €] — R defined by gy (z) := I(z, 07 (po(e.) +

(1 —¢)o(eq))), we get
m / v <”1 ((e”a(eb)) y) o' (y)dy

1
[ (eb) - U(ea)][ ed —0 ec / / 19 ‘T y (y)diUdy

[9(ea, ) + (e, y)lo’ (y)dy. (4)

IN

IN

1
2[o(ea) — oec)] ~/€
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By adding the above inequalities (3) and (4), we get the second and the third inequalities in (2). From the
Hadamard’s inequality, we also have

o () ()t o (032

and

(o () o () o (03 )

by addition, it gives the first inequality in (2). Finally, we can also write by the same inequality

; 0 2. eNo' (2)dx 19(6&’66)4'19(617760)
e e / 3z, eo)o’ (z)de < : ,

1
olep) — o

(€q) /ejb Iz, eq)o’ (x)dr < V(eq, eq) ; Iey, €d)’

1
oleq) — o

(ec) /:d V(ea, y)o’ (y)dy < V(ea, ) ;19(6(17 ear,)7

1 €d , Iep, ec) + ¥ ep, €q)
U(ed)—U(ec)/ec ey, y)o'(y)dy < 2 )

which give, by addition, the last inequality in (2). =

Theorem 4 Let ¥ : A,, C R? — R? be a partial differentiable mapping on A = [eq, €p] X [ec, €q] in R? with
eq < ep and e, < eq. If 66%594) € L(A), then

ﬂ(eav eC) + 19(6(17 Bd) + '19(6[), ec) + ﬂ(elh Bd)

4
1 b cd / /
T olen) — oteno(en) — o(e0)] / / e y)o'(z)o (y)dydz

1 1 e /
5 U(eb)_o—(ea)/ea (ﬁ(xaec) +19(J3,ed))0' (Jj)d];

1
oleq) — o

Ce

_ [J(eb) - U(ea)][a(ed) — J(ec)} /1 /1 { (1 - 2¢)(1 - 20)
0 0

(ec) /ed (V(ea,y) +19(eb,y))0’(y)dy]

4
toall)

X 2005 (07 (o (eq) + (1 = 0)o(ep)), 0 H(po(ee) + (1 — p)a(eq))) }d@qu. (5)
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Proof. Using integration by parts, we have

/ / {1 —20)1 - 20) 7L q,)( “Ba(ea) + (1 - 0)a(er)) , o (do(e) + (1 — d)o(eq)))} dodo
- / <1—2¢>{<1—29>§Z< “B(ea) + (1L—0)a(e) . o~ (0(er) + (1~ B)a(ea)))| bas
2 1 Loy _
+U(ea)_a(%)/( 2¢){ | 8¢( “(0o(ea) + (1= 0)o(es), 0 1(¢0(6c)+(1¢)0(€d)))d9}d¢,

! ! o0,
B W/O - 2@5){%(%70 (po(ee) + (1 — d)o(eq)))

+Z—Z(eb, o Hopole,) + (1 — ¢)J(ed)))}d¢
olep) — o(eq) A /o “HOo(eq) + (1 — 0)a(ep)), 0 (po(ec) + (1 — @)o(eq)))dbds.  (6)

Again using integration by parts on the rlght hand side of (6), we get

[a-2a (5 ¢< Hgo(ed) + (1= Do(ea))) + 5o eno™ (Baed) + (1= Do(ea)) ) do

o]
i / / (1 -20) 2% (06 (Bo(ea) + (1~ O)a(er)). 07 (B0 (ec) + (1 d)oea))dds
= (1-2¢) U(ea (¢U(ec) + (1 = )a(ea)) + I(ep, 0~ (do(ec) + (1 — ¢)o(ea))) ‘1

ole.) —o(eq) 0

# 1 aail ole —o)o(e o YNool(e —o)o(e
+0(ec)_a(ed)/o {9(a.07 (@0 (ec) + (1= @)a(ea))) + (9(b.0 ™ (d0(ec) + (1 = §)o(ea))) } do

9o (Boled) + (1= 0)o(e)), 0 (dolec) + (1= B)alea)) |
2/ (1-29) o(e0) — olea) e

s | [ e 0t + (1= 0ot o vnted + (- Sro(eaaoas

Ieq,ec) + 19(ea ed) + Y(ep, ec) + Few, eq)
o(ec)

e / / B0~ (00 (ea) + (1~ O)o(er)), 0~ (60 (ee) + (1~ 6)o{eq)))dodd

U(d)fa(){ [ 0.7 @oe0) + (1= d)otea) + 000,07 go(e) + (1~ g)otea)]ds

0
+/0 [ﬁ(afl(ea(ea) + (1= 0)a(es), ) + 9o (0o (eq) + (1 — O)o(ey), ed)}de}. (7)

Writing (7) in (6), using the change of the variable
v =0""(00(ea) + (1= 0)o(ey))  and  y=0""((o(ec) + (1 - ¢)o(ea)),
for 0, ¢ € [0,1]?, and multiplying the both sides by

[o(e) — o(ea)llo(ea) — olec)]
1 )

we obtain (5),which completes the proof. m
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Theorem 5 Let 9 : A,, C R? — R? be a partial differentiable mapping on Ay, = [eq,eb] X [€c, €q] in R?

with e, < ep and e < eq. If ‘%) is coordinated o-convex function on A,,, then one has the inequality

19(6(1, ec) + 19(6,1, ed) + 19(667 ec) + 19(6177 ed)

4
+(a(eb)—a(e )(0 / / W, y)o (y)dydz — A
(U(eb) - a(ea)) (a(ed) - a(ec))
- 16
y (|%(ea> ’ + ‘awe €a €d ’ 1’ ‘0(;589 €b, € )’ + ‘%(e%ed)‘)? (8)
where
1 1 b , 1 d ,
A= §{a(eb) —o(eaq) /ea [P(x, ec) + Iz, ea)lo’(z)dz + o(ea) —olec) /e (ea:9) +9eny)lo (y)dy}.

Proof. From Theorem 4, we have

Hea, ec) + Fea, eq) + Fep, ec) + Hep, €q)
4

(0(es) — o(ea)) (0(ea) — o(e0)) / / (2.9)0 ()0’ (y)dyda — A

< (U(eb)—U(ea //‘ 1_2¢‘

8802c“;9¢ (o‘l (Ho(ea) +(1- 9)0(617))70_1 (¢0(€c) +(1- ¢)0(€d))>

Since ¥ : Ay, — R is coordinated o-convex function on A,s, one has

+

d9de.

Pea, ec) + ¥ ea, eq) + Few, ec) + Fep, €q)
4

(o(ep) — o(eq) )(U / / (z,y)o (y)dydx — A
< (o(en) — 0(€a))4(0(€d —o(e.) A [A ‘ )(1 - 2¢) ‘

x{e 929
}Cw] i
2

9000 (ea,a—1(¢0(€c) +(1- ¢)o(ed))>‘
+(1-0)
s (e (0010 + (1= d)o(ea)))

+

;T;(;S (6b,0_1(¢0(€c) +(1- ¢)g(ed)))

Firstly, by calculating the integral in above inequality, that is

1
/ |1—29|{9
0

+(1-0)

}de,

886’761; (ea, o (po(ec)+(1— qs)g(ed)))
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by breaking the limits of integration, 0 < 6 < % and % < 0 <1 then integrating we get

1

Thus, we obtain

2

6697(;9(25 (eb, o (¢olec) + (1 — qi))o(ed))) |> )

o (ea,afl (po(ec) + (1 — ¢)U(ed))) +

9000

Peq, ec) + Hea, eq) + Hep, e) + Hep, €q)
4

1 el ’ ’ .
(@) — olen)fo(ea) —o(er) / / Az y)o(z)o (y)dydz — A
loes) — olea)llo(ea) — olec)]

- 16
! oY) o
X /0 |1 - 2¢| m (ea,o’ ((;50(60) +(1- gb)a(ed)))
%0 1
—_— - ) 1-— .
+ 375 (e 07 (G0 (ec) + (1= d)otea) ) | }d¢ )
Similarly for other integral, since ¥ : A,2 — R is coordinated o-convex on Agz, we have
/ =208 [ 20 (e 0 (G0ee) + (1= d)o(en)) )| + |2 (er, 07 (d(ed) + (1 = D)otea))) |
398(;5 ’ 000\’ ’
by breaking the limits of integration, 0 < ¢ < % and % < ¢ < 1 then integrating we get
e 0| [ teuscal| + s e e0| + | dsten o) o)

4
By (9) and (10), we get (8). m
Theorem 6 Let 9 : A,, C R? — R? be a partial differentiable mapping on Ay, = [eq,ep] X [€c, €q] in R?

. 2.9 |4 . . .
with eq < ep and e, < eq. If ‘889—5’;) , ¢ > 1, is a coordinated o-convex function on A,,, then one has the

inequaliy

Feq, ee) + Uea, eq) + Vep, ec) + Dep, €q)

4
1 €b €4d , . -
T oler) — olea)lolea) — olen)] / ) / ) Wz, y)o'(z)o’ (y)dyda — A
< [o(en) — o(eq)l[o(ea) — o(ec)]
Alp+1)»
X (’889%(6‘1’60) + ‘%(ea’ed)‘q + )%(ebaec) Ty ‘%(eb,ed) q)é
4 )

where

1 1 e / 1 o /
A= oot [, P o cal@io + o [0 + oo s}

a c

1 1 _
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Proof. From Theorem 4, we have

Wea, ec) + V¥(eq, eq) + Fep, ec) + Fep, eq)
4

+ / / Iz, y)o y)dydx — A
[(eb)—aea o(eq) —o(ee)]

- ((eb)fa(ea //‘ 1_%

y @8923115 <0_1 (ea(ea) (11— e)a(eb)>,g—1 ((ba(ec) +(1- ¢)U(ed)>>

dode.

As ¥ : Aoy — R is coordinated o-convex on A,,, now by using Holder’s inequality for double integrals, we
can get

Vea, ec) + Feq, eq) + Few, ec) + I ep, €q)
4

+ / / Iz, y)o y)dydx — A
[(eb)—aea o(eq) —alel)]

[0(ep) — o(eq)][o(eq) — o(ec)] ( d&d(b) %

4
(/‘/ (00 (ea) + ufew@wywﬂwﬂ%y+uf¢w@@n

is coordinated o-convex function on A,,, we know that for 6 € [0, 1],

< (1—20)(1 - 2¢)

320
aaa¢

N
d9d¢> .

. 02y |1
Since ‘m

2 q
éiixd%WM%)+@*QW@QLWJWﬂ%%+Of¢M@@»
= a%é;ib (en0™ (Gotee) + (0= 9)otea)) )| +(1-0) a%éis (en,07" (60(ec) + (1= B)o(ea))
and
aaeaﬂd) (77" (Bo(ea) + (1= )a(er)), o (d0(cc) + (1 = B)o(ea)))
s 09 m(ea,ec) +0(1-9) m(e“’ed) +(1-0)o m(ebyec) +(1-6)(1-9) 898¢(eb ed)| s
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hence, it follows that

Peq, ec) + Hea, eq) + Hep, e) + ¥ ep, €q)
4

1 e [ed ’ / .
*[cr(eb)—a(eamcf(ed)—a(ecn/e / e, y) (@)o(y)dyde — A

. w@wﬁzT : ) — ole) (/L/{

q

920
9004

5 (€asec)| +0(1—9) (€as€a)

aea¢

q

Q=

2

-y 2L

2

s e ed)] + (=01 =)| e }d0d¢>
_ lo(en) —alea)]lo(ea) — alec)]
A(p+1)7
q+‘839252(6a76d‘ +‘808¢ eb,ec ‘q 1

2 1
( ‘ aagaﬂd) ((:’a, ec) aga(z, eb, ed) > 4
X .
4

Theorem 7 Let 9 : A,, C R? — R? be a partial differentiable mapping on Ay, = [eq,eb] X [c, €q] in R?
with e, < ey and e, < eq. If ‘39%

, ¢ > 1, is coordinated o-convex function on A,,, then one has the

inequality
Hea, ee) + Fea, eq) + Few, ec) + Hep, €q)
4
1 el ’ /
o sl =, J, e @ i - 4
< loler) = olea)llo(ea) — ofec)]
- 16
e Y e Y A
where

1 1 b ’ 1 “ /
A::2{00%)_Cd&0tla[ﬂ@;%)+4ﬂx¢mﬂa(xymr+00%)_cdedtlc[ﬂ@uwﬁ+—ﬂ@myﬂ0(ywy}

Proof. From Theorem 4, we have

e, ec) + ¥ea, eq) + Fep, ec) + Fep, eq)
4

1
+[ (ev) — o(eqd)][o(ea) — o(ec)] / / o' (y)dydz — A
< (o(en) — U(ea))4(o eqd) — olec) /0 /0 ‘(1 o 2(/))‘

X 3692319(;5 (0—1 (ea(ea) +(1— G)U(eb)),a—l (¢a(ec) +(1— ¢)g(ed))>

dode.
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By using power mean inequality for double integrals, ¥ : Ao — R is coordinated o-convex on A,,, we can
get

e, ec) + Hea, eq) + Hep, e) + Fep, €q)

4

et = [, ], 0 e s

< [o(ep) — a(ea)]ia(ed) —o(ec)] ( ' (1—20)(1— 2¢>)‘d0d¢> ’
1,1
—20)(1 -2
X(Até\u )1 - 20)
%9 ! ‘
s (7 (60 (ea) + (1= 0)0(e)).07" (or(ec) + (1= D)o(ea) ) wmﬁ
Since ‘% * is coordinated o-convex function on A,,, we know that for 6 € [0, 1]

q

O (77 (00e) + (1= 0)o(er)), 0~ (90(ec) + (1~ Ghoea)

9096
=/ ;T;éf?(ema_l ($otec) +(1 - ¢)U(ed))) +(1-9) ;T;;S (ebva_l (¢o(ec) + (1 — ¢)0(ed))) ;
and
2 q
a%z;; ("71(9"(%) + (1= 0)a(es)), 0™ (¢o(ec) + (1 - ¢)a(ed)))
< 9¢ %(ea,ec) + 9(1 - ¢) ;Taq;(@med) + (1 — 9)¢ 880819¢(eba€c) + (1 _ 9)(1 _ ¢)> ;T;ﬁ(ebzed) 7

hence, it follows that

Feq, ec) + Hea, eq) + Hep, ec) + FHew, eq)

4
+[a(eb) clelo(ea) = o ()] / /e Ha,y)o (y)dydz — A
< bl —otedliolea - a@ﬂ(lyi
- 4
q 8219 q
(/ / ( 1 - 20)( ‘{% aeaqs(e“’e“’) +601-9)| 5oz ea )
020 ! 9% ! 0
+(1—-0)¢ m(eb,ec) +(1-0)(1-9) m(ebaed) }d9d¢> ,
By calculating the integral in above inequality, we obtain
L %9 ! %9 ! 9% ! 9% !
/0 |1—20| <9¢ m(ea,ec) 0(1—¢) ae—aqs(ea,ed) +(1-6)¢ 89—%(%7@@) +(1-0)(1—¢) a9—(,9(25(%,%) )da
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now by breaking the limits of integration, 0 < 6 < % and % < 0 <1, then after integrating we get

q q q q
2 2 2 2
® 39312) (€asee) (1-9) aaeiaig(eaa ed) 5¢ 36973194)(%7 ec) 5(1—¢) %(eb, ed)
24 + 24 + 24 + 24
q q q q
2 2 2
50| gagg (caree)| 51— 0) g (earea)|  S|gmplened)| (1= 6)|dplen ea)
+ 24 + 24 + 24 + 24
q q q q
2 2 2 2
0] d&)0019¢ (6a7 60) + (1 - Qb) 389731’;5(6@7 ed) ¢ d(?ga% (eba 6(.) + (1 - ¢) 3(9‘973%(61)’ ed)
4 + 4

Thus, we obtain

I(eq,e.) + eq, eq) + I ep, e.) + ¥ ep, €q)
4

1 Lol / / .
ﬂo(eb)—a(ea>na<ed>—a<ec>1/e / e,y)o'(z)o (y)dyde — A

’
< [l Zotealoted [/ = 2¢|( 66925; (aree)
029 ! 29 ’ 2 AWK
+(1-9) m(emed) +¢ %(Eb,ec) +(1-9) m(eb,ed) )d(b] : (12)
Similarly for other integral
! 020 ! 29 !
/ I1- 2¢|< 9604 (easec)| +(1—9) m(eaaed) +¢ 898¢(eb’60) +(1-9) 808(;5 (ep, € >d¢,

smce ¥ : Ay, — R is coordinated o-convex on A,,, now by breaking the limits of integration, 0 < ¢ < %
and 1 5 < ¢ < 1, then after integrating we get

2 q 2 q 2 2 q
s eared)| 5| Fslarea)  |dmmlened] 5| Zalenea)
24 + 24 + 24 24
58219(6 ee) 8219(6 e)q 5619( ) 8219( 1
8004 \Cas Cc 8004 \Cas d n 860¢ €h, Ec 8004 €bh, ed)

24 24 24 24
q 2 2 q

B )38059¢(ea760) + ‘6%59¢(eaved ‘ + )aoaqs € € %(eb’ed)‘ (13)
= 1 ,

By (12) and (13), we get the inequality (11). m

Conclusion

1. In this paper we introduced co-ordinated o-convexity and we have shown that co-ordinated o-convexity
implies co-ordinated convexity when we consider o as an identity function.
If we take o(z) = z and o1 (x) = x, then Theorems 3, 4, 5, 6 and 7 given in this paper coincides with
Theorem 1, Lemma 1, Theorems 2,3 and 4 respectively given in [16].
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2. Hermite-Hadamard inequality for co-ordinated geometric convexity: If we take o(x) = In(x)
and o0~ 1(z) = exp(z), then (2) becomes

€p €d 1
9 eaeb,eced In 7/ 9z €.€q dx+1 9 eaeb,y —dy
2 2 20 e €d Je. 2 Y

< / 19 (z, y — dydax
1. e,
< 1n[/ <19(x,ec) +19(z,ed)) dz]
4 €p €a
+11n& /ed ¥ ea,y) + 9 (ew, y) fd
4 ed . arY by Y y Y
< Feq, ec) + Hea, eq) + Hep, ec) + ¥ ew, eq)

4

3. Hermite-Hadamard inequality for co-ordinated harmonic convexity: If we take o(z) = %

and o~ (z) = 1, then (2) becomes

g o 2o ) o L] Colh / e izda?—‘rieced / Ty e ) Lay
€q + € ec+€eg 2lep—eq Je, ecteq)x €d — € Je, eq + €y Y

€qCptcCyd

< I( dyd
~ (ea —ep)( ec—ed/ / (@9) 22yx

1 eqep
< = il
< gt | [ (e o) S

1 eceq ed

e e [/ (ﬂ(ea,y) + 19(eb,y)> i dy}

< e, ec) + ¥(eq, eq) + Fep, ec) + I ep, €q)

4

4. Hermite-Hadamard inequality for co-ordinated p-convexity: If we take o(r) = 2P and 0~ (z) =

1
a7, then (2) becomes
p py L p py L ep p P\ 7
9 (ea +ep >z)7(ec + eq )p < 1 P / oz +eq P
2 2 2 ep? —ed? Jo, 2
1
1 p = ea? + et \ 7 =
*Jedp—ew/ec (=) o)

= p—1 p 1

T (e? —ed?) (ea? —ec?) / / y)z dydx
1 D )

S S5 p—

- 4 ey — e, P |:/€a (19( )€ ) + ﬂ(x; ed))l‘ dﬁC:|

1 p €d -

+Zm |:/€c (ﬁ(emy) + ﬁ(eb,y))y dy:|

< 19(@0,,@@) +19(€a,€d) +Q9(eb’ec) +19(eb,€d)

4

5. Hermite-Hadamard inequality for co-ordinated log-exponential convexity: If we take o(z) =
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exp(z) and 0~ 1(z) = Inz, then (2) becomes

19<1n (exp(ea) ;exp(eb))’ln (eXp(ec) —geXp(ed))>
< % pr(eb) iexp(ea) /: ?9(3@, n (exp(ec) 42- exp(Ed))) eXp(x)dm}

Jr% pr(ed) iexp(ec) /e 19(111 (eXP(ea) ;exP(eb))y) eXp(y)dy}

1 €b €d

= {oxp(es) — exp(en))(exp(eq) — exp(es)) /ea /e Iz, y) exp(z + y)dyda
< iexp(eb) iexp(ea) [/e b (19(1”, ec) + ¥(z, ed)> exp(gg)dgj]

+%exp(€d) i (e {/:d (ﬁ(ea,y) + J(es, y)) exp(y)dy]
< I(eq, ee) + 9eq, eq) + ey, ec) + 9(ep, eq)

4

6. Furthermore, in the same manner we can obtain all other inequalities established in section 3 for the

above four types of co-ordinated convexity.
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