Hybrid Pair Of Suzuki-Type Contractions And Related Coincidence Point Results*

Sushanta Kumar Mohanta[†], Ratul Kar[‡]

Received 26 October 2020

Abstract

In this paper, we introduce the concept of hybrid pair of Suzuki-type (α, φ, ζ) -contractions via Bianchini-Grandolfi gauge functions and utilize this to obtain points of coincidence for a hybrid pair of mappings on metric spaces. As some consequences of this study we obtain several important results of the existing literature.

1 Introduction

Let (X,d) be a metric space, CL(X) be the family of all nonempty closed subsets of X and CB(X) be the family of all nonempty closed and bounded subsets of X. For $A, B \in CB(X)$, define $\mathcal{H}(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\}$. Then \mathcal{H} is called Pompeiu-Hausdorff metric on CB(X). Let $T: X \to CB(X)$ be a multivalued mapping. If there exists $\lambda \in (0,1)$ such that $\mathcal{H}(Tx,Ty) \leq \lambda d(x,y)$ for all $x,y \in X$, then T is called a multivalued contraction. In 1969, Nadler [9] proved that every multivalued contraction on a complete metric space has a fixed point. Thereafter, several authors successfully established some interesting fixed point results for multivalued mappings with application in control theory, differential equations and convex optimization(see [3, 4, 5]). The study of fixed point theory combining simulation functions and gauge functions is a new development in the domain of contractive type multivalued theory. Following Nadler, many researchers have developed fixed point theory for multivalued mappings in different spaces; see for examples [7, 11, 12, 13, 14]. In this study, we introduce the concept of hybrid pair of Suzuki-type (α, φ, ζ) -contractions via Bianchini-Grandolfi gauge functions and obtain a sufficient condition for existence of points of coincidence for a hybrid pair of mappings on metric spaces. Finally, an example is given to justify the validity of our main result.

2 Basic Definitions and Results

We begin with some basic notations, definitions, and necessary results that will be needed in the sequel.

Definition 1 ([6]) A mapping $\zeta : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ is called a simulation function if:

- $(\zeta_1) \zeta(0,0) = 0;$
- (ζ_2) $\zeta(t,s) < s-t$ for all t, s > 0:
- (ζ_3) if (t_n) , (s_n) are sequences in $(0,\infty)$ such that $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n > 0$ then $\limsup_{n\to\infty} \zeta(t_n,s_n) < 0$.

We note that $\zeta(t,t) < 0$ for all t > 0.

^{*}Mathematics Subject Classifications: 54H25, 47H10.

[†]Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, India

[‡]Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, India

Example 1 ([6]) Let $\zeta : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ be defined by

(i) $\zeta(t,s) = \varphi_1(s) - \varphi_2(t)$ for all $t, s \in [0,+\infty)$, where $\varphi_1, \varphi_2 : [0,\infty) \to [0,\infty)$ are continuous functions $such \ that \ \varphi_1(t) = \varphi_2(t) = 0 \ if \ and \ only \ if \ t = 0 \ and \ \varphi_1(t) < t \leq \varphi_2(t) \ for \ all \ t > 0;$

- (ii) $\zeta(t,s) = s \frac{f(t,s)}{g(t,s)}t$ for all $t, s \in [0,\infty)$, where $f, g: [0,\infty) \times [0,\infty) \to (0,\infty)$ are continuous functions with respect to each variable such that f(t,s) > g(t,s) for all t,s > 0;
- $(iii) \ \zeta(t,s) = s \varphi(s) t \ for \ all \ t, \ s \in [0,\infty), \ where \ \varphi: [0,\infty) \to [0,\infty) \ is \ a \ lower \ semicontinuous \ function \ for \ all \ t, \ s \in [0,\infty), \ where \ \varphi: [0,\infty) \to [0,\infty) \ is \ a \ lower \ semicontinuous \ function \ for \ all \ t, \ s \in [0,\infty), \ where \ \varphi: [0,\infty) \to [0,\infty) \ is \ a \ lower \ semicontinuous \ function \ for \ s \to [0,\infty)$ such that $\varphi(t) = 0$ if and only if t = 0;
- (iv) $\zeta(t,s) = \varphi(s) t$ for all $t, s \in [0,+\infty)$, where $\varphi:[0,\infty) \to [0,\infty)$ is an upper semicontinuous function such that $\varphi(t) < t$ for all t > 0 and $\varphi(0) = 0$;
- (v) $\zeta(t,s) = s \int_0^t \nu(u) du$ for all $t, s \in [0,\infty)$, where $\nu : [0,\infty) \to [0,\infty)$ is a function such that $\int_0^\epsilon \nu(u) du$ exists and $\int_0^\epsilon \nu(u) du > \epsilon$ for all $\epsilon > 0$.

Each of the function considered in (i)–(v) is a simulation function.

In 2017, Alolaiyan et al.[1] considered the following family of mappings:

$$\Phi = \left\{ \varphi : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R} \mid \varphi \text{ satisfies } \varphi(r_1, r_2) \le \frac{1}{2}r_1 - r_2 \right\}.$$

The function $\varphi: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ defined by $\varphi(r_1, r_2) = \frac{1}{2}r_1 - r_2$ is an element of Φ . Throughout the paper J denotes an interval on \mathbb{R}^+ containing 0, that is, an interval of the form $[0, a], [0, a) \text{ or } [0, \infty).$

Definition 2 ([10]) Let $r \geq 1$. A function $\eta: J \to J$ is said to be a gauge function of order r on J if it satisfies the following conditions:

- $(\eta_1) \ \eta(\lambda t) < \lambda^r \eta(t) \ for \ all \ \lambda \in (0,1) \ and \ t \in J;$
- $(\eta_2) \ \eta(t) < t \ for \ all \ t \in J \setminus \{0\}.$

It is easy to verify that condition (η_1) is equivalent to the following one:

$$\eta(0) = 0 \text{ and } \frac{\eta(t)}{t^r} \text{ is nondecreasing on } J \setminus \{0\}.$$

Definition 3 ([10]) A nondecreasing gauge function $\eta: J \to J$ is said to be a Bianchini-Grandolfi gauge function on J if

$$\sigma(t) = \sum_{i=0}^{\infty} \eta^{i}(t) < \infty \text{ for all } t \in J.$$
 (1)

A function $\eta: J \to J$ satisfying condition (1) is called a rate of convergence on J and noticed that η satisfies the following functional equation

$$\sigma(t) = \sigma(\eta(t)) + t.$$

Lemma 1 ([2]) Let (X,d) be a metric space, $B \in CL(X)$ and $u \in X$. Then, for each $\epsilon > 0$, there exists $v \in B$ such that

$$d(u, v) \le d(u, B) + \epsilon$$
.

Definition 4 Let (X,d) be a metric space and C be a nonempty subset of X. Let $T:C\to CL(X)$ be a multivalued mapping and $g:C\to X$ be a single valued mapping. Then T is called α -admissible w.r.t. g if there exists a mapping $\alpha:g(C)\times g(C)\to [0,\infty)$ such that

$$a, b \in C, \ \alpha(ga, gb) \ge 1 \Rightarrow \alpha(u, v) \ge 1$$

for all $u \in Ta \cap g(C)$ and $v \in Tb \cap g(C)$.

Definition 5 Let (X,d) be a metric space and C be a nonempty subset of X. Let $T: C \to CL(X)$ be a multivalued mapping and $g: C \to X$ be a single valued mapping. If for $x_0 \in C$, there exists a sequence (gx_n) in g(C) such that $gx_n \in Tx_{n-1}$, $n \in \mathbb{N}$, then $O(T, x_0) = \{gx_0, gx_1, \dots\}$ is called an orbit of T at x_0 in g(C).

Definition 6 Let (X, d) be a metric space and C be a nonempty subset of X. A function $h: C \to \mathbb{R}$ is said to be T-orbitally lower semicontinuous w.r.t. g at $t \in C$ if (gx_n) is a sequence in $O(T, x_0)$ and $gx_n \to gt$ implies $h(t) \leq \liminf_{n \to \infty} h(x_n)$.

For $A, B \in CL(X)$, define

$$H(A,B) = \left\{ \begin{array}{l} \max \left\{ \sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A) \right\} & \text{if the maximum exists,} \\ \infty & \text{otherwise,} \end{array} \right.$$

where $d(x, B) = \inf\{d(x, y) : y \in B\}$. Such a map H is called Pompeiu-Hausdorff metric on CL(X) induced by d.

Theorem 1 ([8]) Let (X,d) be a metric space and let $T: X \to CL(X)$ and $g: X \to X$ be a hybrid pair of mappings such that $T(X) \subseteq g(X)$ and g(X) a complete subspace of X. Assume that there exists $r \in (0,1)$ such that

$$H(Tx, Ty) \le rd(gx, gy) \tag{2}$$

for all $x, y \in X$. Then g and T have a point of coincidence in g(X).

3 Coincidence Point Results

In this section, we prove some coincidence point results for a hybrid pair of mappings in metric spaces.

Definition 7 Let (X,d) be a metric space, C a closed subset of X, and let η be a Bianchini-Grandolfi gauge function on J. Let $T:C\to CL(X)$ be a multivalued mapping and $g:C\to X$ be a single valued mapping with $T(C)\subseteq g(C)$. Then (T,g) is called a hybrid pair of Suzuki-type (α,φ,ζ) -contraction, if there exist $\alpha:g(C)\times g(C)\to [0,\infty), \ \varphi\in\Phi$, and a simulation function ζ such that T is α -admissible w.r.t. g and

$$\varphi\left(d(gx,Tx\cap C),d(gx,gy)\right)<0$$

implies that

$$\zeta\left(\alpha(gx, gy) H(Tx \cap C, Ty \cap C), \eta(d(gx, gy))\right) \ge 0 \tag{3}$$

for all $x \in C$, $gy \in Tx \cap C$ with $gx \neq gy$ and $d(gx, gy) \in J$.

In particular, if

$$\zeta(t,s) = s - \int_0^t \nu(r) dr \ \forall t, s \ge 0,$$

where $\nu: \mathbb{R}^+ \to \mathbb{R}^+$ is a function such that $\int_0^{\epsilon} \nu(r) dr$ exists and $\int_0^{\epsilon} \nu(r) dr > \epsilon$ for all $\epsilon > 0$, then (3) reduces to

$$\int_{0}^{\alpha(gx,gy)} \frac{H(Tx \cap C, Ty \cap C)}{\nu(r) dr} \leq \eta(d(gx, gy))$$

for all $x \in C$, $gy \in Tx \cap C$ with $gx \neq gy$ and $d(gx, gy) \in J$. In this case, (T, g) is called a hybrid pair of Suzuki-integral type (α, φ, ζ) -contraction.

Remark 1 In case g = I, the identity map on C, we call T is a multivalued Suzuki-type (α, φ, ζ) -contraction, instead of saying that (T, I) is a hybrid pair of Suzuki-type (α, φ, ζ) -contraction.

Definition 8 Let (X, d) be a metric space, C a nonempty subset of X and let $T: C \to CL(X)$, $g: C \to X$ be two mappings. If $y = gx \in Tx$ for some x in C, then x is called a coincidence point of T and g, and g is called a point of coincidence of T and g.

Theorem 2 Let (X,d) be a metric space, C a closed subset of X and let η be a Bianchini-Grandolfi gauge function on an interval J. Suppose that (T,g) is a hybrid pair of Suzuki-type (α, φ, ζ) -contraction and g(C) is a complete subspace of (X,d). Also assume that there exists $x_0 \in C$ with $d(gx_0,z) \in J$ for some $z \in Tx_0 \cap C$ and $\alpha(gx_0,z) \geq 1$. Then,

- (a) there exist an orbit $\{gx_0, gx_1, \dots\}$ of T at x_0 in g(C) and $u \in g(C)$ such that $\lim_{n \to \infty} gx_n = u = gt$, for some $t \in C$:
- (b) u is a point of coincidence of g and T in g(C) if the function $h(x) = d(gx, Tx \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t.

Proof. Suppose there exists $x_0 \in C$ such that $d(gx_0, z) \in J$ for some $z \in Tx_0 \cap C$ and $\alpha(gx_0, z) \geq 1$. Since $T(C) \subseteq g(C)$, there exists $x_1 \in C$ such that $gx_1 = z$. If $gx_0 = gx_1$, then gx_0 is a point of coincidence of g and T. So, we assume that $gx_0 \neq gx_1$. Now,

$$\varphi(d(gx_0, Tx_0 \cap C), d(gx_0, gx_1)) \leq \frac{1}{2} d(gx_0, Tx_0 \cap C) - d(gx_0, gx_1)
\leq \frac{1}{2} d(gx_0, gx_1) - d(gx_0, gx_1)
< d(gx_0, gx_1) - d(gx_0, gx_1)
= 0.$$

Since $d(gx_0, gx_1) \in J$, we obtain from (3) that

$$0 \leq \zeta(\alpha(gx_0, gx_1) H(Tx_0 \cap C, Tx_1 \cap C), \eta(d(gx_0, gx_1))) < \eta(d(gx_0, gx_1)) - \alpha(gx_0, gx_1) H(Tx_0 \cap C, Tx_1 \cap C).$$

This gives that

$$\alpha(qx_0, qx_1) H(Tx_0 \cap C, Tx_1 \cap C) < \eta(d(qx_0, qx_1)).$$

We can choose an $\epsilon_1 > 0$ such that

$$\alpha(gx_0, gx_1) H(Tx_0 \cap C, Tx_1 \cap C) + \epsilon_1 \leq \eta(d(gx_0, gx_1)).$$

Therefore,

$$d(gx_1, Tx_1 \cap C) + \epsilon_1 \leq H(Tx_0 \cap C, Tx_1 \cap C) + \epsilon_1$$

$$\leq \alpha(gx_0, gx_1) H(Tx_0 \cap C, Tx_1 \cap C) + \epsilon_1$$

$$\leq \eta(d(gx_0, gx_1)). \tag{4}$$

By using Lemma 1, there exists $gx_2 \in Tx_1 \cap C$ for some $x_2 \in C$ such that

$$d(gx_1, gx_2) \le d(gx_1, Tx_1 \cap C) + \epsilon_1. \tag{5}$$

Using conditions (4) and (5), we get

$$d(gx_1, gx_2) \le \eta(d(gx_0, gx_1)). \tag{6}$$

Suppose that $d(gx_1, gx_2) \neq 0$, otherwise gx_1 is a point of coincidence of g and T in g(C). By (η_2) and (6), we get

$$d(gx_1, gx_2) \le \eta(d(gx_0, gx_1)) < d(gx_0, gx_1),$$

which implies that $d(gx_1, gx_2) \in J$. Since T is α -admissible w.r.t. g and $\alpha(gx_0, gx_1) \geq 1$, we have $\alpha(gx_1, gx_2) \geq 1$.

Again, we have

$$\varphi(d(gx_1, Tx_1 \cap C), d(gx_1, gx_2)) \leq \frac{1}{2} d(gx_1, Tx_1 \cap C) - d(gx_1, gx_2)
\leq \frac{1}{2} d(gx_1, gx_2) - d(gx_1, gx_2)
< d(gx_1, gx_2) - d(gx_1, gx_2)
= 0.$$

Since $d(gx_1, gx_2) \in J$, we obtain from (3) that

$$0 \leq \zeta(\alpha(gx_1, gx_2) H(Tx_1 \cap C, Tx_2 \cap C), \eta(d(gx_1, gx_2))) < \eta(d(gx_1, gx_2)) - \alpha(gx_1, gx_2) H(Tx_1 \cap C, Tx_2 \cap C).$$

This gives that

$$\alpha(gx_1, gx_2) H(Tx_1 \cap C, Tx_2 \cap C) < \eta(d(gx_1, gx_2)).$$

We choose an $\epsilon_2 > 0$ such that

$$\alpha(qx_1, qx_2) H(Tx_1 \cap C, Tx_2 \cap C) + \epsilon_2 < \eta(d(qx_1, qx_2)).$$

Thus,

$$d(gx_2, Tx_2 \cap C) + \epsilon_2 \leq H(Tx_1 \cap C, Tx_2 \cap C) + \epsilon_2$$

$$\leq \alpha(gx_1, gx_2) H(Tx_1 \cap C, Tx_2 \cap C) + \epsilon_2$$

$$\leq \eta(d(gx_1, gx_2)). \tag{7}$$

By Lemma 1, there exists $gx_3 \in Tx_2 \cap C$ for some $x_3 \in C$ such that

$$d(gx_2, gx_3) \le d(gx_2, Tx_2 \cap C) + \epsilon_2. \tag{8}$$

From conditions (7) and (8), we get

$$d(gx_2, gx_3) \le \eta(d(gx_1, gx_2)) \le \eta^2(d(gx_0, gx_1)). \tag{9}$$

We assume that $d(gx_2, gx_3) \neq 0$, otherwise gx_2 is a point of coincidence of g and T in g(C). From (9), it follows that $d(gx_2, gx_3) < d(gx_1, gx_2)$ and so $d(gx_2, gx_3) \in J$. Continuing in this way, we can construct a sequence (gx_n) in g(C) such that $gx_n \in Tx_{n-1} \cap C \subseteq g(C)$, $gx_{n-1} \neq gx_n$ with $\alpha(gx_{n-1}, gx_n) \geq 1$, $d(gx_{n-1}, gx_n) \in J$ and

$$d(gx_n, gx_{n+1}) \le \eta^n (d(gx_0, gx_1)), \ \forall n \in \mathbb{N}.$$

For $m, n \in \mathbb{N}$ with m > n, we have

$$d(gx_{n}, gx_{m}) \leq d(gx_{n}, gx_{n+1}) + d(gx_{n+1}, gx_{n+2}) + \dots + d(gx_{m-1}, gx_{m})$$

$$\leq \eta^{n}(d(gx_{0}, gx_{1})) + \eta^{n+1}(d(gx_{0}, gx_{1})) + \dots + \eta^{m-1}(d(gx_{0}, gx_{1}))$$

$$= \sum_{i=n}^{m-1} \eta^{i}(d(gx_{0}, gx_{1})).$$

Since $\sum_{i=0}^{\infty} \eta^i(t) < \infty$ for each $t \in J$, it follows that

$$\lim_{n,m\to\infty} d(gx_n, gx_m) = 0.$$

This proves that (gx_n) is a Cauchy sequence in g(C). Since g(C) is complete, there exists $u \in g(C)$ such that $gx_n \to u = gt$ for some $t \in C$. This proves part (a) of the theorem.

As $gx_{n+1} \in Tx_n \cap C$, we have

$$\varphi (d(gx_n, Tx_n \cap C), d(gx_n, gx_{n+1})) \leq \frac{1}{2} d(gx_n, Tx_n \cap C) - d(gx_n, gx_{n+1}) \\
\leq \frac{1}{2} d(gx_n, gx_{n+1}) - d(gx_n, gx_{n+1}) \\
< 0.$$

Therefore, from (3) we get

$$0 \leq \zeta(\alpha(gx_n, gx_{n+1}) H(Tx_n \cap C, Tx_{n+1} \cap C), \eta(d(gx_n, gx_{n+1}))) < \eta(d(gx_n, gx_{n+1})) - \alpha(gx_n, gx_{n+1}) H(Tx_n \cap C, Tx_{n+1} \cap C).$$

This gives that

$$\alpha(gx_n, gx_{n+1}) H(Tx_n \cap C, Tx_{n+1} \cap C) < \eta(d(gx_n, gx_{n+1})).$$
(11)

Since $gx_{n+1} \in Tx_n \cap C$, using (10) and (11), we get

$$d(gx_{n+1}, Tx_{n+1} \cap C) \leq \alpha(gx_n, gx_{n+1}) H(Tx_n \cap C, Tx_{n+1} \cap C) < \eta(d(gx_n, gx_{n+1})) < \eta^{n+1}(d(gx_0, gx_1)).$$

Passing to the limit as $n \to \infty$, we obtain

$$\lim_{n \to \infty} d(gx_{n+1}, Tx_{n+1} \cap C) = 0.$$

Since $h(x) = d(gx, Tx \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t, we have

$$d(gt, Tt \cap C) = h(t) \le \liminf_{n} h(x_{n+1}) = \liminf_{n} d(gx_{n+1}, Tx_{n+1} \cap C) = 0.$$

This gives that $d(gt, Tt \cap C) = 0$. As $Tt \cap C$ is closed, it follows that $u = gt \in Tt$ and hence u is a point of coincidence of g and T in g(C).

Corollary 1 Let (X,d) be a metric space, C a closed subset of X and let η be a Bianchini-Grandolfi gauge function on an interval J. Suppose that (T,g) is a hybrid pair of Suzuki-integral type (α, φ, ζ) -contraction and g(C) is a complete subspace of (X,d). Also assume that there exists $x_0 \in C$ with $d(gx_0, z) \in J$ for some $z \in Tx_0 \cap C$ and $\alpha(gx_0, z) \geq 1$. Then,

- (a) there exist an orbit $\{gx_0, gx_1, \dots\}$ of T at x_0 in g(C) and $u \in g(C)$ such that $\lim_{n \to \infty} gx_n = u = gt$, for some $t \in C$;
- (b) u is a point of coincidence of g and T in g(C) if the function $h(x) = d(gx, Tx \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t.

Proof. The proof can be obtained from Theorem 2 by taking

$$\zeta(t,s) = s - \int_0^t \nu(r) dr \,\forall t, s \ge 0,$$

where $\nu: \mathbb{R}^+ \to \mathbb{R}^+$ is a function such that $\int_0^\epsilon \nu(r) dr$ exists and $\int_0^\epsilon \nu(r) dr > \epsilon$ for all $\epsilon > 0$.

Corollary 2 Let (X,d) be a metric space, C a closed subset of X, and let η be a Bianchini-Grandolfi gauge function on J. Let $T:C\to CL(X)$ be a multivalued mapping and $g:C\to X$ be a single valued mapping with $T(C)\subseteq g(C)$ and g(C) a complete subspace of (X,d). Suppose there exists $\alpha:g(C)\times g(C)\to [0,\infty)$ such that T is α -admissible w.r.t. g and

$$\alpha(gx, gy) H(Tx \cap C, Ty \cap C) \le \psi(\eta(d(gx, gy)))$$
(12)

for all $x \in C$, $gy \in Tx \cap C$ with $gx \neq gy$ and $d(gx,gy) \in J$, where $\psi : [0,\infty) \to [0,\infty)$ is an upper semicontinuous function such that $\psi(t) < t$ for all t > 0 and $\psi(0) = 0$. Also assume that there exists $x_0 \in C$ with $d(gx_0, z) \in J$ for some $z \in Tx_0 \cap C$ and $\alpha(gx_0, z) \geq 1$. Then,

- (a) there exist an orbit $\{gx_0, gx_1, \dots\}$ of T at x_0 in g(C) and $u \in g(C)$ such that $\lim_{n\to\infty} gx_n = u = gt$, for some $t \in C$;
- (b) u is a point of coincidence of g and T in g(C) if the function $h(x) = d(gx, Tx \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t.

Proof. Taking $\varphi(r_1, r_2) = \frac{1}{2} r_1 - r_2$, for $r_1, r_2 \in \mathbb{R}^+$, we obtain that for all $x \in C$, $gy \in Tx$ with $gx \neq gy$,

$$\varphi(d(gx,Tx),d(gx,gy)) = \frac{1}{2}d(gx,Tx) - d(gx,gy)$$

$$\leq \frac{1}{2}d(gx,gy) - d(gx,gy)$$

$$= -\frac{1}{2}d(gx,gy)$$

$$< 0.$$

By considering $\zeta(t,s) = \psi(s) - t, \ \forall \ t, s \ge 0$, it follows from condition (12) that

$$\zeta\left(\alpha(gx,gy)H(Tx\cap C,Ty\cap C),\,\eta(d(gx,gy))\right)\geq 0$$

for all $x \in C$, $gy \in Tx \cap C$ with $gx \neq gy$ and $d(gx, gy) \in J$. Consequently, (T, g) becomes a hybrid pair of Suzuki-type (α, φ, ζ) -contraction. Thus all the hypotheses of Theorem 2 are fulfilled and the conclusion of the corollary can be obtained by applying Theorem 2.

Corollary 3 Let (X,d) be a complete metric space, C a closed subset of X and let η be a Bianchini-Grandolfi gauge function on an interval J. Suppose that $T:C \to CL(X)$ is a multivalued Suzuki-type (α,φ,ζ) -contraction. Also assume that there exists $x_0 \in C$ with $d(x_0,z) \in J$ for some $z \in Tx_0 \cap C$ and $\alpha(x_0,z) \geq 1$. Then,

- (a) there exist an orbit $\{x_0, x_1, \dots\}$ of T at x_0 in C and $u \in C$ such that $\lim_{n \to \infty} x_n = u$;
- (b) u is a fixed point of T if the function $h(x) = d(x, Tx \cap C)$ is T-orbitally lower semicontinuous at u.

Proof. The proof follows from Theorem 2 by taking g = I, the identity map on C.

Remark 2 Several special cases of Theorem 2 can be obtained by particular choices of η , φ and ζ .

Now we present an example to examine the validity of our main result. It should be noticed that a generalized version of Nadler's Theorem can not assure the existence of a point of coincidence in the following example.

Example 2 Let $X = [0, \infty)$ with usual metric d(x, y) = |x - y| for all $x, y \in X$. Let C = [0, 1] and $T : C \to CL(X)$ be defined by Tx = [1, x + 1], $\forall x \in C$ and $g : C \to X$ by gx = x + 1 for all $x \in C$. Obviously, T(C) = g(C) = [1, 2] and g(C) is a complete subspace of the metric space (X, d).

For x = 0, y = 1, we have gx = 1, gy = 2, $Tx = \{1\}$, Ty = [1, 2]. Therefore,

$$H(Tx, Ty) = 1 = d(gx, gy) > rd(gx, gy)$$

for any $r \in (0,1)$ and hence condition (2) of Theorem 1 does not hold true. So, Theorem 1 can not assure the existence of a point of coincidence of g and T.

Let $J = [0, \infty)$, η a Bianchini-Grandolfi gauge function on J and let $\alpha : g(C) \times g(C) \to [0, \infty)$ be defined by $\alpha(x, y) = 1$ for all $x, y \in [1, 2]$. Obviously, T is α -admissible w.r.t. g. Moreover, $x_0 = 0 \in C$ such that $d(gx_0, z) \in J$ for $z = 1 \in Tx_0 \cap C$ and $\alpha(gx_0, z) = 1$.

Let $\zeta(t,s) = \psi(s) - t$, $\forall t, s \ge 0$, where $\psi : [0,\infty) \to [0,\infty)$ is an upper semicontinuous function such that $\psi(t) < t$ for all t > 0 and $\psi(0) = 0$. Take $\varphi(r_1, r_2) = \frac{1}{2} r_1 - r_2$, for $r_1, r_2 \in \mathbb{R}^+$.

We now show that (T,g) is a hybrid pair of Suzuki-type (α, φ, ζ) -contraction.

Case-I: For x=1, we have Tx=[1,2] and $Tx \cap C=\{1\}$. We note that $gy=g0=1 \in Tx \cap C$ with $gx \neq gy$ and $Ty \cap C=\{1\}$. Then, $H(Tx \cap C, Ty \cap C)=0$. Therefore,

$$\alpha(gx, gy) H(Tx \cap C, Ty \cap C) \le \psi(\eta(d(gx, gy))).$$

Case-II: For x = 0, we have $Tx = \{1\}$ and $Tx \cap C = \{1\}$. In this case, there exists no $gy \neq gx \in Tx \cap C$.

Case-III: For 0 < x < 1, we have Tx = [1, x+1] and $Tx \cap C = \{1\}$. This case is also similar to Case-I.

Thus,

$$\alpha(gx, gy) H(Tx \cap C, Ty \cap C) \le \psi(\eta(d(gx, gy)))$$

for all $x \in C$, $gy \in Tx \cap C$ with $gx \neq gy$ and $d(gx, gy) \in J$. Since $\zeta(t, s) = \psi(s) - t$ for all $t, s \geq 0$, it follows that

$$\zeta(\alpha(qx,qy)H(Tx\cap C,Ty\cap C),\eta(d(qx,qy)))>0$$

for all $x \in C$, $gy \in Tx \cap C$ with $gx \neq gy$ and $d(gx, gy) \in J$. Consequently, (T, g) becomes a hybrid pair of Suzuki-type (α, φ, ζ) -contraction.

Therefore, all the hypotheses of Theorem 2 are fulfilled and we observe that there exist an orbit $\{gx_0, gx_1, \dots\}$ of T at $x_0 = 0$ in g(C), where $gx_n = 1$, for $n = 0, 1, 2, 3, \dots$ and $1 \in g(C)$ such that $\lim_{n \to \infty} gx_n = 1 = g0$.

Furthermore, $h(x) = d(gx, Tx \cap C) = d(gx, \{1\}) = x$ is T-orbitally lower semicontinuous w.r.t. g at x = 0. Now applying Theorem 2, we find that 1 is a point of coincidence of g and T in g(C).

Acknowledgment. The authors are grateful to the referees for their valuable comments.

References

- [1] H. A. Alolaiyan, M. Abbas and B. Ali, Fixed point results of Edelstein-Suzuki type multivalued mappings on b-metric spaces with applications, J. Nonlinear Sci. Appl., 10(2017), 1201–1214.
- [2] A. Ali, H. Işik, H. Aydi, E. Ameer, J. R. Lee and M. Arshad, On multivalued Suzuki-type θ-contractions and related applications, Open Mathematics, 18(2020), 386–399.
- [3] I. Beg and A. Azam, Fixed points of multivalued locally contractive mappings, Boll. Unione Matematica Italiana, 7(1990), 227–233.

- [4] I. Beg and A. R. Butt, Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Appl., 71(2009), 3699–3704.
- [5] B. Damjanovic, B. Samet and C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci. Ser. B Engl. Ed., 32(2012), 818–824.
- [6] F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29(2015), 1189–1194.
- [7] S. K. Mohanta and S. Patra, Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph, J. Linear. Topological. Algebra., 6(2017), 301–321.
- [8] S. K. Mohanta and D. Biswas, coincidence point results for graph preserving hybrid pair of mappings, Int. J. Nonlinear Anal. Appl., 11(2020), 409–424.
- [9] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30(1969), 475–488.
- [10] P. D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal., 67(2007), 2361–2369.
- [11] H. Şahin, I. Altun and D. Türkoğlu, Fixed point results for mixed multivalued mappings of Feng-Liu type on M_b -metric spaces, Mathematical Methods in Engineering, Nonlinear Systems and Complexity, 23(2019), 67–80.
- [12] M. Samreen, K. Waheed and Q. Kiran, Multivalued φ -contractions and fixed point theorems, Filomat, 32(2018), 1209–1220.
- [13] J. Tiammee and S. Suantal, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl., 2014, 2014:70.
- [14] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31(2015), 403–410.