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Abstract

In this paper, we prove some coupled coincidence and coupled common fixed point theorems for
mappings having a mixed monotone property in partially ordered b-metric spaces. We also investigate
the existence and uniqueness theorems for Volterra-Fredholm and Volterra integral equations. The result
we have established is illustrated with an example.

1 Introduction

Consider the nonhomogeneous nonlinear Volterra integral equation

u(x) = ϕ

(∫ x

a

H(x, t, u(t))dt

)
+ g(x) ≡ Tu, u ∈ X, (1)

where x, t ∈ [a, b], −∞ < a < b < +∞, g : [a, b] → Rn is a mapping, H is a continuous function on the
domain

D := {(x, t, u) : x ∈ [a, b], t ∈ [a, x], u ∈ X}

where X := (C[a, b],Rn), with the metric d(f, g) = maxx∈[a,b] |f(x)− g(x)|, for all f, g ∈ X and assume that
ϕ is a bounded linear transformation on X. In this case, we define ‖ϕ‖ = sup{‖ϕx‖; x ∈ X, ‖x‖ = 1}.
Thus, ϕ is bounded if and only if ‖ϕ‖ <∞, [14].
Consider the system of Volterra-Fredholm integral equations

u(x) = g(x) +

∫ x

a

H(x, t, u(t))dt+

∫ b

a

G(x, t, u(t))dt, x ∈ I = [a, b] u ∈ X, (2)

where g : I → X, H,G : I × I × X → X are continuous. Nonlinear integral equations have studied by
many authors in the literature and many authors have been studied the problems of existence, uniqueness,
continuation and other properties of these type or special forms of the equations (1) and (2), see, for example,
[12, 16, 21, 22, 23, 24]. The concept of a b-metric space was introduced by S. Czerwik (see [8, 9]). We recall
from [8] the following definition.

Definition 1 ([8]) Let X be a non-empty set and s ≥ 1 a given real number. A function d : X ×X → R+
is called a b-metric provided that, for all x, y, z ∈ X,

(bm-1) d(x, y) = 0 iff x = y,

(bm-2) d(x, y) = d(y, x),

(bm-3) d(x, z) ≤ s[d(x, y) + d(y, z)].
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The pair (X, d) is called a b-metric space with parameter s.

We remark that a metric space is evidently a b-metric space. However, S. Czerwik (see [8, 9]) has shown
that a b-metric on X may not be a metric on X. For more considerations and examples of b-metric spaces,
see, for example, [2, 5, 10, 11, 13]. The existence of coupled coincidence and coupled common fixed point
theorems in partially ordered metric spaces has been considered recently by several authors, see, for example,
[6, 7, 15, 17, 18, 19].
In this work, we establish coupled coincidence and coupled common fixed point results for a mixed g-

monotone mapping in partially ordered b-metric spaces. Our results generalize recent results obtained by
Luong and Thuan [20] and Berinde [3]. Also we will use an iterative method to prove that equations (1) and
(2) have the mentioned cases under some appropriate conditions. Finally, we offer an example to illustrate
verify the application of this kind of nonlinear functional-integral equations. First we introduce some new
definitions in partially ordered metric spaces.
The concept of a mixed monotone property has been introduced by Bhaskar and Lakshmikantham in [4].

Definition 2 ([4]) Let (X,�) be a partially ordered set. A mapping F : X ×X → X is said to have mixed
monotone property if F (x, y) is monotone nondecreasing in x and is monotone nonincreasing in y; that is,
for any x, y ∈ X,

x1, x2 ∈ X,x1 � x2 implies F (x1, y) � F (x2, y),

y1, y2 ∈ X, y1 � y2 implies F (x, y2) � F (x, y1).

The authors in [17] introduced the concept of a g-mixed monotone mapping.

Definition 3 ([17]) Let (X,�) be a partially ordered set. Let us consider mappings F : X ×X → X and
g : X → X. The map F is said to have mixed g-monotone property if F (x, y) is monotone g-nondecreasing
in x and is monotone g-nonincreasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 implies F (x1, y) � F (x2, y),

y1, y2 ∈ X, gy1 � gy2 implies F (x, y2) � F (x, y1).

An element (x, y) ∈ X ×X is called a coupled fixed point of a mapping F : X ×X → X if F (x, y) = x
and F (y, x) = y [4].
Also, an element (x, y) ∈ X ×X is called a coupled coincidence point of the mappings F : X ×X → X

and g : X → X if F (x, y) = gx and F (y, x) = gy [1].
The following definition was given by Luong and Thuan [20], that used in this paper.

Definition 4 Let Θ denote the class of those functions θ : [0,+∞)2 → [0, 1) which satisfies the condition:
for any sequences {tn}, {sn} of positive real numbers,

θ(tn, sn)→ 1 implies tn → 0 and sn → 0.

For examples, θ1(t1, t2) = k, for all (t1, t2) ∈ [0,+∞)2, where k ∈ [0, 1),

θ2(t1, t2) =
ln(1 + k1t1 + k2t2)

k1t1 + k2t2
, ∀ (t1, t2) ∈ [0,+∞)2\{(0, 0)} and θ2(0, 0) ∈ [0, 1),

where k1, k2 > 0, are in Θ.
In [3], Berinde established some generalized coupled fixed point results for the mixed monotone mappings.

Theorem 1 ([3, Theorem 2.1]) Let (X,�) be a partially ordered set and suppose there exists a metric d
on X such that (X, d) is a complete metric space. Let F : X ×X → X be a mixed monotone mapping for
which there exists a constant k ∈ [0, 1) such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k [d(x, u) + d(y, v)],
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for all x, y, u, v ∈ X with x � u and y � v. If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0),

or
x0 � F (x0, y0) and y0 � F (y0, x0),

then there exist x̄, ȳ ∈ X such that x̄ = F (x̄, ȳ) and ȳ = F (ȳ, x̄).

Recently, Luong and Thuan established some coupled fixed point results for the mixed monotone map-
pings in [20] and extended above theorem.

Theorem 2 ([20, Theorem 2.1]) Let (X,�) be a partially ordered set and suppose there exists a metric
d on X such that (X, d) is a complete metric space. Let F : X ×X → X be mapping such that F has the
mixed monotone property on X. Suppose that there exists θ ∈ Θ such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ θ(d(x, u), d(y, v))(d(x, u) + d(y, v))

for all x, y, u, v ∈ X with x � u and y � v. Suppose that either

(a) F is continuous, or

(b) X has the following properties:

(i) if a non-decreasing sequence {xn} converges x, then xn � x for all n ≥ 0;

(ii) if a non-increasing sequence {yn} converges y, then y � yn for all n ≥ 0.

If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0), then F has a coupled fixed point, that
is, there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

In this paper, we study the existence and uniqueness of solution of the systems (1) and (2). In Sections 2
and 3 we establish coupled coincidence and coupled common fixed point results in partially ordered b-metric
spaces. In section 4 we study the existence and uniqueness of solution to a nonlinear integral equation. In
section 5 we give an example to illustrate the usefulness of our results.

2 Coupled Coincidence Point Theorems

We start this section by new definition.

Definition 5 Let (X, d) be a b-metric space and let g : X → X and F : X ×X → X be two mappings. The
mappings g and F are said to be b-compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0,

and
lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0,

are hold whenever {xn} and {yn} are sequences in X such that limn→∞ F (xn, yn) = limn→∞ gxn and
limn→∞ F (yn, xn) = limn→∞ gyn.

Proposition 3 Let (X, d) be a b-metric space. If {xn} and {yn} are b-convergent to x and y respectively,
then

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

So if s = 1, then limn→∞ d(xn, yn) exists and equals to d(x, y).
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Proof. Suppose {xn} and {yn} are b-convergent to x and y respectively. Then, by (bm-3) we have,

d(xn, yn) ≤ s(d(xn, x) + d(x, yn))

≤ s[d(xn, x) + s(d(x, y) + d(y, yn))]

= sd(xn, x) + s2(d(x, y) + s2d(y, yn))

consequently,
lim sup
n→∞

d(xn, yn) ≤ s2d(x, y). (3)

Also,

d(x, y) ≤ s(d(x, xn) + d(xn, y))

≤ s[d(x, xn) + s(d(xn, yn) + d(yn, y))]

= sd(xn, x) + s2d(xn, yn) + s2d(yn, y).

Consequently,
1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn). (4)

Consequently, from (3) and (4), we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

Now we prove our main results.

Theorem 4 Let (X,�) be a partially ordered set and d be a b-metric on X such that (X, d) is a complete
b-metric space with constant s ≥ 1. Let F : X ×X → X and g : X → X are two mappings such that F has
the mixed g-monotone property on X and there exists θ ∈ Θ such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ 1

s2
θ(d(gx, gu), d(gy, gv))(d(gx, gu) + d(gy, gv) (5)

for all x, y, u, v ∈ X with gx � gu and gy � gv. Also let F (X ×X) ⊆ g(X), g be continuous and g and F
are b-compatible. Suppose that either

(a) F is continuous, or

(b) X has the following properties:

(i) if a nondecreasing sequence {xn} converges to x, then gxn � gx, for all n ≥ 0;

(ii) if a nonincreasing sequence {yn} converges to y, then gy � gyn, for all n ≥ 0.

If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then g and F have a coupled
coincidence point, that is, there exist x, y ∈ X such that gx = F (x, y) and gy = F (y, x).

Proof. Let x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0). Since F (X × X) ⊆ g(X), we can
choose x1, y1 ∈ X such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Again since F (X ×X) ⊆ g(X), we can
choose x2, y2 ∈ X such that gx2 = F (x1, y1) and gy2 = F (y1, x1). Continuing in this way we construct two
sequences {xn} and {yn} in X such that for all n ≥ 0,

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn). (6)

Now we prove that for all n ≥ 0
gxn � gxn+1, (7)
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and
gyn � gyn+1. (8)

We shall use the mathematical induction. Let n = 0. Since gx0 � F (x0, y0) and gy0 � F (y0, x0), in view
of gx1 = F (x0, y0) and gy1 = F (y0, x0), we have gx0 � gx1 and gy0 � gy1, that is, (7) and (8), hold for
n = 0. We presume that (7) and (8), hold for some n ≥ 0. As F has the mixed g-monotone property and
gxn � gxn+1 and gyn � gyn+1, from (5), we have

gxn+1 = F (xn, yn) � F (xn+1, yn) � F (xn+1, yn+1) = gxn+2 (9)

and
gyn+1 = F (yn, xn) � F (yn+1, xn) � F (yn+1, xn+1) = gyn+2. (10)

Using (9) and (10), we have gxn+1 � gxn+2 and gyn+1 � gyn+2.
Thus by mathematical induction (7) and (8) are hold for all n ≥ 0. Therefore,

gx0 � gx1 � gx2 � ... � gxn � gxn+1 � ..., (11)

and
gy0 � gy1 � gy2 � ... � gyn � gyn+1 � .... (12)

If for some n, we have (gxn+1, gyn+1) = (gxn, gyn), then F (xn, yn) = gxn and F (yn, xn) = gyn, that is, F
and g have a coincidence point. So we may assume that (gxn+1, gyn+1) 6= (gxn, gyn), for all n ∈ N, that is,
we assume that either gxn+1 = F (xn, yn) 6= gxn or gyn+1 = F (yn, xn) 6= gyn.
Since gxn � gxn−1 and gyn � gyn−1, from (5) and (6), we get

d(gxn+1, gxn) + d(gyn+1, gyn) = d(F (xn, yn), F (xn−1, yn−1)) + d(F (yn, xn), F (yn−1, xn−1))

≤ 1

s2
θ(d(gxn, gxn−1), d(gyn, gyn−1))(d(gxn, gxn−1) + d(gyn, gyn−1)).

As θ(t1, t2) < 1 and s ≥ 1, for all (t1, t2) ∈ [0,+∞)× [0,+∞), implies

d(gxn+1, gxn) + d(gyn+1, gyn) < d(gxn, gxn−1) + d(gyn, gyn−1).

Set δn = d(gxn+1, gxn)) + d(gyn+1, gyn). Then the sequence {δn} is monotone decreasing. Therefore, there
exists some δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

[d(gxn+1, gxn)) + d(gyn+1, gyn)] = δ. (13)

Now, we show δ = 0. Suppose, to the contrary, that δ > 0. From (13), we get

d(gxn+1, gxn) + d(gyn+1, gyn)

d(gxn, gxn−1) + d(gyn, gyn−1)
≤ 1

s2
θ(d(gxn, gxn−1), d(gyn, gyn−1)) < 1.

By taking the limit from above inequalities, as n→∞ and using (13), we get

lim
n→∞

θ(d(gxn, gxn−1), d(gyn, gyn−1)) = 1. (14)

Since θ ∈ Θ, relation (14) implies that limn→∞ d(gxn+1, gxn)) = 0 and limn→∞ d(gyn+1, gyn) = 0, or
d(gxn+1, gxn)) + d(gyn+1, gyn)→ 0 as n→∞, which is a contradiction. Thus δ = 0, that is,

lim
n→∞

δn = lim
n→∞

[d(gxn+1, gxn)) + d(gyn+1, gyn)] = 0. (15)

So, we prove that both {gxn} and {gyn} are Cauchy sequences in the b-metric space (X, d). Suppose on the
contrary that at least one of {gxn} and {gyn} are not a Cauchy sequence. So there exists ε > 0 such that
we can find subsequences {n(k)} and {m(k)} of N with n(k) > m(k) ≥ k such that

d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) ≥ sε. (16)
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Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest integer with
n(k) > m(k) ≥ k and it satisfies (16). From (15) for large enough k, we have n(k)−m(k) ≥ 2 and

d(gxn(k)−1, gxm(k)) + d(gyn(k)−1, gym(k)) < sε. (17)

By (16), (17), we get

sε ≤ d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ s(d(gxn(k), gxn(k)−1) + d(gxn(k)−1, gxm(k))) + s(d(gyn(k), gyn(k)−1) + d(gyn(k)−1, gym(k)))

< s(d(gxn(k), gxn(k)−1) + d(gyn(k), gyn(k)−1)) + s2ε.

Using above inequality and (15) there exists L > 0 such that for all k ∈ N, we get

0 < δε ≤ d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) ≤ L. (18)

Now, suppose {εk} is a positive real number such that limk→∞ εk = 0. Therefore from above inequality

lim
k→∞

d(gxn(k), gxm(k)) + d(gyn(k), gym(k))− εk
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

= 1. (19)

So, we have

d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ s(d(gxn(k), gxn(k)+1) + d(gxn(k)+1, gxm(k))) + s(d(gyn(k), gyn(k)+1) + d(gyn(k)+1, gym(k)))

≤ sd(gxn(k)+1, gxn(k)) + s(sd(gxn(k)+1, gxm(k)+1) + sd(gxm(k)+1, gxm(k))) + sd(gyn(k)+1, gyn(k))

+s(sd(gyn(k)+1, gym(k)+1) + sd(gym(k)+1, gym(k)))

≤ sδn(k) + s2δm(k) + s2[d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gym(k)+1)]. (20)

Since n(k) > m(k), gxn(k) � gxm(k) and gyn(k) � gym(k), with using (5) and (6) we have

d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gym(k)+1)

= d(F (gxn(k), gyn(k)), F (gxm(k), gym(k))) + d(F (gyn(k), gxn(k)), F (gym(k), gxm(k)))

≤ 1

s2
[θ(d(gxn(k), gxm(k)), d(gyn(k), gym(k)))(d(gxn(k), gxm(k)) + d(gyn(k), gym(k)))]. (21)

From (20) and (21), we get

d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ sδn(k) + s2δm(k) + s2
1

s2
[θ(d(gxn(k), gxm(k)), d(gyn(k), gym(k)))(d(gxn(k), gxm(k)) + d(gyn(k), gym(k)))].

Since θ(t1, t2) < 1 for all (t1, t2) ∈ [0,+∞)× [0,+∞), from above inequality

d(gxn(k), gxm(k)) + d(gyn(k), gym(k))− sδn(k) − s2δm(k)
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ θ(d(gxn(k), gxm(k)), d(gyn(k), gym(k))) < 1. (22)

By taking the limit from (22), as k →∞ and using (15) and (19) we get

lim
k→∞

θ(d(gxn(k), gxm(k)), d(gyn(k), gym(k))) = 1.

Since θ ∈ Θ, we get
lim
k→∞

d(gxn(k), gxm(k)) = lim
k→∞

d(gyn(k), gym(k)) = 0.
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Hence
lim
k→∞

[d(gxn(k), gxm(k)) + d(gyn(k), gym(k))] = 0,

and this is a contradiction. Thus we proved that {gxn} and {gyn} are Cauchy sequences in the b-metric space
(X, d). Since (X, d) is complete, there are x, y ∈ X such that {gxn} and {gyn} are respectively b-convergent
to x and y, that is,

lim
n→∞

gxn = lim
n→∞

F (xn, yn) = x and lim
n→∞

gyn = lim
n→∞

F (yn, xn) = y. (23)

b-compatibility of g and F implies that

lim
n→∞

d(F (gxn, gyn), gF (xn, yn)) = 0, (24)

and
lim
n→∞

d(F (gyn, gxn), gF (yn, xn)) = 0. (25)

Now suppose that the assumption (a) holds. Using triangle inequality we have

d(F (gxn, gyn), gx) ≤ s[d(F (gxn, gyn), gF (xn, yn)) + d(gF (xn, yn), gx)].

From (23), (24) and continuity of g and F , we get d(F (x, y), gx) = 0 and d(F (y, x), gy) = 0, that is,
gx = F (x, y) and F (y, x) = gy.
Finally, suppose that (b) holds. Since {gxn} is nondecreasing and gxn → x and as {gyn} is nonincreasing

and gyn → y, we have
ggxn � gx and ggyn � gy.

Since g and F are b-compatible mapping and g is continuous and from (23), (24) and (25), we have

lim
n→∞

g(gxn) = gx = lim
n→∞

gF (xn, yn) = lim
n→∞

F (gxn, gyn),

and
lim
n→∞

g(gyn) = gy = lim
n→∞

gF (yn, xn) = lim
n→∞

F (gyn, gxn).

Since ggxn � gx and ggyn � gy, from (5) we get

d(F (gxn, gyn), F (x, y)) + d(F (gyn, gxn), F (y, x))

≤ 1

s2
θ(d(ggxn, gx), d(ggyn, gy))[d(ggxn, gx) + d(ggyn, gy)]

≤ 1

s2
[d(ggxn, gx) + d(ggyn, gy)].

Using Proposition 3 and continuity of g, by taking the limit in above inequality as n→∞ we conclude that

1

s2
[d(gx, F (x, y)) + d(gy, F (y, x))] ≤ 1

s2
s2[d(gx, gx) + d(gy, gy)] = 0.

Hence d(gx, F (x, y)) = d(gy, F (y, x)) = 0. Therefore gx = F (x, y) and gy = F (y, x). This completes the
proof.

The following theorem is a direct result of Theorem 4.

Theorem 5 Let (X,�) be a partially ordered set and d be a b-metric on X such that (X, d) is a complete
b-metric space with constant s ≥ 1. Let F : X ×X → X be a mapping such that F has the mixed monotone
property on X. Suppose there exists θ ∈ Θ such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ 1

s2
[θ(d(x, u), d(y, v))(d(x, u) + d(y, v))]

for all x, y, u, v ∈ X with x � u and y � v. Suppose that either
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(a) F is continuous, or

(b) X has the following properties:

(i) if a nondecreasing sequence {xn} converges to x, then xn � x, for all n ≥ 0;

(ii) if a nonincreasing sequence {yn} converges to y, then y � yn, for all n ≥ 0.

If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0), then F has a coupled fixed point, that
is, there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Proof. Let g = IX and apply Theorem 4. So this proof is complete.
By considering θ(t1, t2) = k for all t1, t2 ∈ [0,∞), where k ∈ [0, 1), and g to be identity mapping in

Theorem 4, we conclude the following corollary.

Corollary 6 Let (X,�) be a partially ordered set and d be a b-metric on X such that (X, d) is a complete
b-metric space with constant s ≥ 1. Let F : X × X → X be a mixed monotone mapping for which there
exists a constant k ∈ [0, 1) such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k

s2
(d(x, u) + d(y, v)) (26)

for all x, y, u, v ∈ X with x � u and y � v. Suppose that either

(a) F is continuous, or

(b) X has the following properties:

(i) if a nondecreasing sequence {xn} converges to x, then xn � x, for all n ≥ 0;

(ii) if a nonincreasing sequence {yn} converges to y, then y � yn, for all n ≥ 0.

If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0), then F has a coupled fixed point, that
is, there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Remark 1 By considering g to be identity mapping and also with definition s = 1 in Theorem 4, we conclude
Theorem 2.

3 Common Fixed Point

Now we shall prove the existence and uniqueness theorem of a coupled common fixed point. If (X,�) is a
partially ordered set, we endow the product set X ×X with the partial order � defined by

(x, y)B (u, v)⇔ x � u and y � v,

for (x, y), (u, v) ∈ X ×X.

Theorem 7 In addition to the hypotheses of Theorem 4, suppose that,

(c) for every (x, y), (u, v) ∈ X ×X, there exists (w, z) ∈ X ×X such that (F (w, z), F (z, w)) is comparable
to both (F (x, y), F (y, x)) and (F (u, v), F (v, u)).

Then F and g have a unique common fixed point, that is, there exists a unique p ∈ X such that p = gp =
F (p, p).
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Proof. From Theorem 4, the set of coupled coincidences is nonempty. We shall show that if (x, y) and (u, v)
are coupled coincidence points, that is, if gx = F (x, y), gy = F (y, x), gu = F (u, v) and gv = F (v, u), then

gx = gu and gy = gv. (27)

By assumption, there exists (w, z) ∈ X×X such that (F (w, z), F (z, w)) is comparable to both (F (x, y), F (y, x))
and (F (u, v), F (v, u)). There is four possible cases.
Case 1.

(F (x, y), F (y, x)) B (F (w, z), F (z, w))

(F (u, v), F (v, u)) B (F (w, z), F (z, w)).

Put w0 = w, z0 = z and choose w1, z1 ∈ X such that gw1 = F (w0, z0) and gz1 = F (z0, w0). Then, similarly
as in the proof of Theorem 4, we can inductively define sequences {gwn} and {gzn} in X by

gwn+1 = F (wn, zn) and gzn+1 = F (zn, wn)

for all n ∈ N. By taking
x0 = x1 = x2 = ... = xn = ... = x,

y0 = y1 = y2 = ... = yn = ... = y,

u0 = u1 = u2 = ... = un = ... = u

and
v0 = v1 = v2 = ... = vn = ... = v,

for all n ∈ N, we have

gxn = F (x, y), gyn = F (y, x) and gun = F (u, v), gvn = F (v, u).

Since
(F (x, y), F (y, x)) = (gx1, gy1) = (gx, gy)B (F (w, z), F (z, w)) = (gw1, gz1),

we see that gx � gw1 and gy � gz1. Now we shall prove that

gx � gwn and gy � gzn ∀ n ≥ 1. (28)

Suppose that (28) holds for some n ≥ 1. Then by the mixed g-monotone property of F , we have

gwn+1 = F (wn, zn) � F (x, zn) � F (x, y) = gx,

and
gzn+1 = F (zn, wn) � F (y, wn) � F (y, x) = gy.

So (28) holds. From (5), we get

d(gx, gwn+1) + d(gy, gzn+1) = d(F (x, y), F (wn, zn)) + d(F (y, x), F (zn, wn))

≤ 1

s2

[
θ(d(gx, gwn), d(gy, gzn))(d(gx, gwn) + d(gy, gzn))

]
. (29)

Therefore,
d(gx, gwn+1) + d(gy, gzn+1) ≤ d(gx, gwn) + d(gy, gzn).

Set δn = d(gx, gwn+1)) + d(gy, gzn+1). Since {δn} is nonincreasing and bounded belove, there exists some
δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

[d(gx, gwn+1)) + d(gy, gzn+1)] = δ. (30)
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Now, we show that δ = 0. Suppose, to the contrary, that δ > 0. From (29), we get

d(gx, gwn+1) + d(gy, gzn+1)

d(gx, gwn) + d(gzn, gy)
≤ 1

s2
θ(d(gx, gwn), d(gzn, gy)) ≤ θ(d(gx, gwn), d(gzn, gy)) < 1.

By taking the limit from above inequalities, as n→∞ and using (30), we get

lim
n→∞

θ(d(gx, gwn), d(gzn, gy)) = 1. (31)

As θ ∈ Θ, relation (31) implies

lim
n→∞

d(gx, gwn) = 0 and lim
n→∞

d(gzn, gy) = 0,

which is a contradiction. Thus δ = 0, that is, lim
n→∞

[d(gx, gwn) + d(gzn, gy)] = 0, which implies that

lim
n→∞

d(gx, gwn) = lim
n→∞

d(gzn, gy) = 0. (32)

Similarly,
lim
n→∞

d(gu, gwn) = lim
n→∞

d(gzn, gv) = 0. (33)

Therefore, from (32), (33) and the uniqueness of the limit, we get gx = gu and gy = gv. So (27) holds.
Case 2.

(F (x, y), F (y, x)) B (F (w, z), F (z, w))

(F (w, z), F (z, w)) B (F (u, v), F (v, u)).

Since
(F (x, y), F (y, x))B (F (w, z), F (z, w)),

By the same method in Case 1, we have

lim
n→∞

d(gwn, gx) = lim
n→∞

d(gzn, gy) = 0. (34)

Since
(F (w, z), F (z, w)) = (gw1, gz1) = (gw, gv)B (F (u, v), F (v, u)) = (gu, gv),

then gw1 � gu and gz1 � gv. Now we shall prove that

gwn � gu and gzn � gv ∀ n ≥ 1. (35)

Suppose that (35) holds for some n ≥ 1. Then by the mixed g-monotone property of F , we have

gzn+1 = F (zn, wn) � F (v, wn) � F (v, u) = gv,

and
gwn+1 = F (wn, zn) � F (u, zn) � F (u, v) = gu.

So (35) holds. From (5), we get

d(gzn+1, gy) + d(gwn+1, gx) = d(F (zn, wn), F (v, u)) + d(F (wn, zn), F (u, v))

≤ 1

s2
θ(d(gzn, gy), d(gwn, gx))(d(gwn, gx) + d(gzn, gy)). (36)

Therefore,
d(gzn+1, gy) + d(gwn+1, gx) ≤ d(gwn, gx) + d(gzn, gy).
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Set δn = d(gzn+1, gy) + d(gwn+1, gx)). Since {δn} is nonincreasing and bounded belove, there exists some
δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

[d(gwn+1, gx)) + d(gzn+1, gy)] = δ. (37)

Now, we show δ = 0. Suppose, to the contrary, that δ > 0. From (36), we get

d(gwn+1, gx) + d(gzn+1, gy)

d(gwn, gx) + d(gzn, gy)
≤ 1

s2
θ(d(gzn, gy), d(gwn, gx) ≤ θ(d(gzn, gy), d(gwn, gx)) < 1.

By taking the limit from above inequalities, as n→∞ and using (37), we get

lim
n→∞

θ(d(gzn, gy), d(gwn, gx)) = 1. (38)

As θ ∈ Θ, relation (38) implies

lim
n→∞

d(gwn, gx) = 0 and lim
n→∞

d(gzn, gy) = 0,

which is a contradiction. Thus δ = 0, that is, lim
n→∞

[d(gwn, gx) + d(gzn, gy)] = 0, which implies that

lim
n→∞

d(gwn, gx) = lim
n→∞

d(gzn, gy) = 0. (39)

Similarly,
lim
n→∞

d(gwn, gu) = lim
n→∞

d(gzn, gv) = 0. (40)

Therefore, from (39), (40) and the uniqueness of the limit, we get gx = gu and gy = gv. So (27) holds.
Case 3.

(F (u, v), F (v, u)) B (F (w, z), F (z, w))

(F (w, z), F (z, w)) B (F (x, y), F (y, x)).

This case is similar to the Case 2.
Case 4.

(F (w, z), F (z, w)) B (F (x, y), F (y, x))

(F (w, z), F (z, w)) B (F (u, v), F (v, u)).

Also this case is similar to the Case 1.
Suppose (x, y) is a coupled coincidence point of F and g. So (y, x) also is a coincidence point. By (27)

we get gx = gy = p. Hence F (x, y) = gx = gy = F (y, x).
By define, xn = x and yn = y for all n ∈ N, we have

lim
n→∞

F (xn, yn) = F (x, y) = gx = lim
n→∞

gxn,

and

lim
n→∞

F (yn, xn) = F (y, x) = gy = lim
n→∞

gyn.

b-compatibility of g and F implies that

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0.

Therefore gF (x, y) = F (gx, gy). Hence gp = F (p, p). This shows that (p, p) is a coincidence point of F and
g. From (27) we conclude that gp = gx = p = gy = gp. Hence F (p, p) = gp = p. Therefore p is a common
fixed point of F and g. By (27) we conclude that this fixed point is unique and this complete the proof.

The following theorem is a direct result of Theorem 7.

Theorem 8 In addition to the hypotheses of Theorem 5, suppose that, for every (x, y), (z, t) ∈ X×X, there
exists a (u, v) ∈ X ×X such that (u, v) is comparable to (x, y) and (z, t). Then F has a unique fixed point,
that is, there exist p ∈ X such that p = F (p, p).

Proof. By getting g = IX and using Theorem 7, we have the desired conclusion.
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4 Generalized Voltera-Fredholm Integral Equations

In this section, we study the existence and uniqueness of solution to a nonlinear integral equation, as an
application to the fixed point theorem proved in Section 2.
Consider the integral equation:

u(x) = Φ
(∫ .

a

H(., t, u(t))dt,

∫ b

a

G(., t, u(t))dt
)

(x) + g(x), (41)

where x, t ∈ [a, b], −∞ < a < b < +∞, g : [a, b] → Rn is a mapping and H and G are tow real continuous
function on the domain D := {(x, t, u) : x ∈ [a, b], t ∈ [a, x], u ∈ X}. For every u ∈ X we define tow functions
U1 and U2 as follows:

U1(x) :=

∫ x

a

H(x, t, u(t))dt, U2(x) :=

∫ b

a

G(x, t, u(t))dt

We will analyze Eq. (41) under the following assumption:

(i) X = C([a, b],Rn) is a partially ordered set with the following:

u, v ∈ C([a, b],Rn) u � v ⇔ u(t) ≤ v(t).

(ii) Φ : X ×X → X has the mixed monotone property and there exists L > 0 such that

|Φ(U1, U2)(x)− Φ(V1, V2)(x)| ≤ L|U1(x)− V1(x)|+ L|U2(x)− V2(x)|,

for all u, v ∈ X and x ∈ [a, b].(U1, U2, V1 and V2 are defined above)

(iii) H,G : D → Rn and g : [a, b]→ Rn are continuous.

(iv) There exists integrable functions p1, p2 : [a, b]× [a, b]→ R+ such that for all u, v ∈ X, if v � u then

0 ≤ H(x, t, u)−H(x, t, v) ≤ p1(x, t)(u− v),

and
−p2(x, t)(u− v) ≤ G(x, t, u)−G(x, t, v) ≤ 0.

(v)

23p−2

[
sup
x∈[a,b]

(∫ b

a

p1(x, t)dt

)p
+ sup
x∈[a,b]

(∫ b

a

p2(x, t)dt

)p]
Lp < 1.

Theorem 9 Under assumptions (i)—(iv), Eq. (41) has a unique solution in C([a, b],Rn).

Proof. Let X = C([a, b],Rn). X is a partially ordered set if we define the following order relation in X by

u, v ∈ C([a, b],Rn) u � v ⇔ u(t) ≤ v(t),

for all t ∈ [a, b]. The space (X, d) is a complete b-metric space with s = 2p−1 and

d(u, v) = d1(u, v)p,

where d1(u, v) = supt∈[a,b] |u(t)− v(t)| is a metric for all u, v ∈ X.
Suppose {un} is a monotone nondecreasing in X that converges to u ∈ X. Then for every t ∈ I, the

sequence of real numbers

u1(t) ≤ u2(t) ≤ ... ≤ un(t) ≤ ...,
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converges to u(t). Therefore, for all t ∈ [a, b] and n ∈ N we have un(t) ≤ u(t). Hence un � u, for all n.
Similarly, we can verify that limit v(t) of a monotone nonincreasing sequence vn(t) in X is a lower bound

for all the elements in the sequence. That is, v � vn for all n. So, condition (b) of Corollary 6 holds.
We consider the operator F : X ×X → X define by

F (u, v)(x) = Φ

(∫ .

a

H(., t, u(t))dt,

∫ b

a

G(., t, v(t))dtdt

)
(x) + g(x),

for all x ∈ [0, 1].
At first, we prove that F has the mixed monotone property. For every u1, u2, v ∈ X with u1 � u2, that

is, u1(t) ≤ u2(t), for all t ∈ [a, b], from (iv) we have∫ .

a

H(., t, u1(t))dt �
∫ .

a

H(., t, u2(t))dt.

Since Φ has the mixed monotone property, from above inequality we conclude that

F (u1, v) = Φ

(∫ .

a

H(., t, u1(t))dt,

∫ b

a

G(., t, v(t))dt

)
� Φ

(∫ .

a

H(., t, u2(t))dt,

∫ b

a

G(., t, v(t))dt

)
= F (u2, v).

Similarly, if u, v1, v2 ∈ X with v1 � v2 we get F (u, v2) � F (u, v1). Thus, F has the mixed monotone
property.
Now, for every u, v, w, z ∈ X with w � u and v � z, that is, u(t) ≥ w(t) and v(t) ≤ z(t) for all t ∈ [a, b],

we have

|F (u, v)(x)− F (w, z)(x)|

=
∣∣∣Φ(∫ .

a

H(., t, u(t))dt,

∫ b

a

G(., t, v(t))dt

)
(x)

−Φ

(∫ .

a

H(., t, w(t))dt,

∫ b

a

G(., t, z(t))dt

)
(x)
∣∣∣

≤ L
∣∣∣ ∫ x

a

[H(x, t, u(t))−H(x, t, w(t))]dt
∣∣∣+ L

∣∣∣ ∫ b

a

[G(x, t, v(t))−G(x, t, z(t))]dt
∣∣∣

≤ L

∫ x

a

|H(x, t, u(t))−H(x, t, w(t))|dt+ L

∫ b

a

|G(x, t, v(t))−G(x, t, z(t))|dt

≤ L

∫ x

a

p1(x, t)|u(t)− w(t)|dt+ L

∫ b

a

p2(x, t)|v(t)− z(t)|dt

≤ Ld1(u,w) sup
x∈[a,b]

(∫ x

a

p1(x, t)dt

)
+ Ld1(v, z) sup

x∈[a,b]

(∫ b

a

p2(x, t)dt

)
.

Thus,

d1(F (u, v), F (w, z)) = sup
x∈[a,b]

{|F (u, v)(x)− F (w, z)(x)|}

≤ Ld1(u,w) sup
x∈[a,b]

(∫ b

a

p1(x, t)dt

)
+ Ld1(v, z) sup

x∈[a,b]

(∫ b

a

p2(x, t)dt

)
.
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Therefore,

d(F (u, v), F (w, z)) = sup
x∈[a,b]

{|F (u, v)(x)− F (w, z)(x)|}p

≤
(
Ld1(u, v) sup

x∈[a,b]

(∫ b

a

p1(x, t)dt

)
+ Ld1(v, z) sup

x∈[a,b]

(∫ b

a

p2(x, t)dt

))p

≤ 2p−1

(
Lpd1(u,w)p sup

x∈[a,b]

(∫ b

a

p1(x, t)dt

)p
+ Lpd1(v, z)

p sup
x∈[a,b]

(∫ b

a

p2(x, t)dt

)p)
.

Similarly,

d(F (v, u), F (z, w))

≤ 2p−1

(
Lpd1(v, z)

p sup
x∈[a,b]

(∫ b

a

p1(x, t)dt

)p
+ Lpd1(u,w)p sup

x∈[a,b]

(∫ b

a

p2(x, t)dt

)p)
.

Hence,

d(F (u, v), (F (w, z)) + d(F (v, u), (F (z, w))

≤ 2p−1

(
sup
x∈[a,b]

(∫ b

a

p1(x, t)dt

)p
+ sup
x∈[a,b]

(∫ b

a

p2(x, t)dt

)p)
2Lp (d1(v, z)

p + d1(u,w)p)

=
23p−2

(
supx∈[a,b]

(∫ b
a
p1(x, t)dt

)p
+ supx∈[a,b]

(∫ b
a
p2(x, t)dt

)p)
Lp

(2p−1)2
× (d(u,w) + d(v, z)) .

But from (iv), we have

k = 23p−2

[
sup
x∈[a,b]

(∫ b

a

p1(x, t)dt

)p
+ sup
x∈[a,b]

(∫ b

a

p2(x, t)dt

)p]
Lp < 1.

Consequently,

d(F (u, v), (F (w, z)) + d(F (v, u), (F (z, w)) ≤ k

s2
(d(u,w) + d(v, z))

which is just inequality (26) in Corollary 6. So, Corollary 6 gives us that F has a coupled fixed point
(x, y) ∈ X ×X.

Finally, X × X = C([a, b],Rn)× C([a, ],Rn) is a partially ordered set if we define the following order
relation in X ×X

(x, y), (u, v) ∈ X ×X, (x, y)B (u, v)⇔ x(t) ≤ u(t) and y(t) ≥ v(t),∀ t ∈ [a, b].

For any x, y ∈ X, max{x(t), y(t)} and min{x(t), y(t)}, for each t ∈ [a, b], are in X . Therefore, for every
(x, y), (u, v) ∈ X × X, there exists a (max{x, u},min{y, v}) ∈ X that is comparable to (x, y) and (u, v).
Hence by Theorem 8 we conclude that x = F (x, x) and x ∈ C([a, b],Rn) is the unique solution of Eq. (41).
This complete the proof.

Remark 2 By considering Φ(x, y) = ϕ(x) for all x, y ∈ X, in Eq. (41) we conclude Eq. (1).

Remark 3 By considering Φ(x, y) = x+ y for all x, y ∈ X and a = 0 in Eq. (41) we conclude Eq. (2).
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5 Example

In this section we give an example to illustrate the usefulness of our results and the following example shows
that Theorem 4 is a real extension for Eq. (1).

Example 1 Consider the following nonlinear Volterra-Fredholm integral equation

u(x) = 1− e−
∫ x
1

1
24 tan(

πt2x
32 )

u(t)+|u(t)|
2 dt − 3

∫ 2

1

1

24
e−xtu(t) + e−x

2

− 1. (42)

In Eq. (41), let X = C([1, 2],R) and we define

H(x, t, u) :=
1

24
tan(

πt2x

32
)
u+ |u|

2
, G(x, t, u) :=

1

24
e−xtu, g(x) := e−x

2

− 1,

for all t, x ∈ [1, 2] and u ∈ C([1, 2],R). Also suppose that Φ(f, h) = 1− e−f − 3h for all f, g ∈ X. Obviously,
Φ has the mixed monotone property and by using the mean valued theorem

|Φ(U1, U2)(x)− Φ(V1, V2)(x)| ≤ 3|U1(x)− V1(x)|+ 3|U2(x)− V2(x)|,

for all x ∈ [1, 2] and u, v ∈ X.
We consider p = 2 in Theorem 4. Then clearly C([1, 2],R) is a complete b-metric space with s = 2p−1 = 2.
Now for all u, v ∈ X, if v � u we have

0 ≤ H(x, t, u)−H(x, t, v) ≤ p1(x, t)(u− v),

where p1(x, t) = 1
24 tan(πt

2x
32 ) which is integrable function of [1, 2]× [1, 2] into R+ and

sup
x∈[1,2]

(∫ 2

1

p1(x, t)dt

)2
≤ 1

242
.

Similarly, for all u, v ∈ X, if v � u we have

−p2(x, t)(u− v) ≤ G(x, t, u)−G(x, t, v) ≤ 0

where p2(x, t) = 1
24e
−xt which is integrable function of [1, 2]× [1, 2] into R+ and

sup
x∈[1,2]

(∫ 2

1

p2(x, t)dt

)2
≤ 1

242
e−2.

Moreover,

23p−2

[
sup
x∈[1,2]

(∫ 2

1

p1(x, t)dt

)p
+ sup
x∈[1,2]

(∫ 2

1

p2(x, t)dt

)p]
Lp ≤ 24[

1

242
+

1

242
e−2]32 < 1.

Hence the required conditions of Theorem 9 are satisfied and Eq. (42) has a unique solution in complete
metric space C([1, 2],R).
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