
Applied Mathematics E-Notes, 21(2021), 615-621 © ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Detecting Communities Under Constraints In Directed Acyclic

Networks*

Suzana Antunović�, Damir Vukičević�

Received 19 August 2020

Abstract

Community detection is one of the fundamental problems in complex networks theory with appli-
cations in many different branches of science. Many available algorithms for community detection in
directed acyclic networks do not include analysis of the resulting set of communities, and those that
do, mostly focus on factors like the number of communities and community stability, not on relations
between communities. In this paper, we present an algorithm that, given the topological ordering of a
directed acyclic network, produces an optimal division (in terms of modularity) for that ordering which
allows the establishment of an ordering on the resulting set of communities. The algorithm is based on
recursively placing of the vertices into appropriate communities, thus respecting the order of the vertices,
and resulting in division with optimal modularity.

1 Introduction

The study of networks, in the form of mathematical graph theory, is one of the fundamental pillars of
discrete mathematics [12]. A special class of networks that occur widely in natural and man-made settings
are directed acyclic networks [7]. The term refers to the finite directed graph that has no directed cycles.
Equivalently, directed acyclic graph is a directed graph that has a topological ordering [2], a linear ordering
of its vertices in such way that for every directed edge the starting vertex of the edge occurs earlier in the
sequence than the ending vertex of the edge. Directed acyclic graphs have many applications in scheduling
for systems of tasks with ordering constraints [23], may be used to represent a network of processing elements
[21], Bayesian networks [22], family trees [9], citation graphs [20]. Within the field of complex networks,
the problem of community detection has received wide attention. It relates to finding a natural division of
the network into groups of vertices such that there are many edges within the community, and several (less)
edges between communities [15]. Community detection has proved to be a problem of remarkable subtlety,
computationally challenging and with deep connections to other areas of research [3, 5]. There have been
many different approaches to solving this problem including hierarchical clustering [13], clique based methods
[18], optimization techniques [10], edge-betweenness analysis [5] etc. During the last few decades the most
popular community detection methods are based on maximizing modularity [10, 14, 16]. In recent years,
the focus has shifted to community detection in directed acyclic networks. Taking the direction of edges
into account produces more constraints on the process of community detection. Some of the methods for
resolving the problem include generalizing the form of modularity for directed networks [17, 8, 24], extending
the clique percolation method [19], layering [25], the game theoretical approach [6] and many others.

In this paper, we are interested is finding the optimal, in terms of modularity, division of the network
into set of communities under the following condition. Let G be a directed acyclic network with n vertices
and m directed edges and let it hold x1 ≺ x2 ≺ ... ≺ xn (sign ”≺” denotes that vertex xi comes before vertex
xj in the topological ordering).

*Mathematics Subject Classifications: 05C85, 68R10, 90C35, 05C20.
�Department of Mathematics, Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia
�Department of Mathematics, Faculty of Science, University of Split, Croatia

615



616 Detecting Communities under Constraints

We are interested in finding communities C1, C2, ..., Ck in such way that it holds:

if xi ≺ xj , xi ∈ Cp and xj ∈ Cq, then Cp ≺ Cq or Cp = Cq.

In other words, if all the vertices in community Ci appear earlier in the topological ordering of vertices than
all the vertices in community Cj , the community Ci ”appears” before community Cj in the community order.
Consider, for instance, devising a curriculum for a certain course, or devising a new college major program.
One has to take into account that every educational unit has its prerequisites and that the curriculum needs
to be arranged in a certain order. This algorithm allows the educational units to be grouped in chapters
or courses that can be taught consecutively. The algorithm can also be applied in any process that can be
represented as a directed acyclic graph and divided into consecutive communities. It is based on recursively
placing the vertices into appropriate community choosing the one with the highest modularity increase (if
possible) and respecting the imposed condition on community order. The algorithm was developed for and
tested on curriculum networks described in [1], where educational units are grouped into chapters to be
taught consecutively.

2 Algorithm for Detecting Set of Communities

Every directed acyclic graph has at least one topological ordering of the vertices. For simplicity, we assume
that the vertices are labeled lu ∈ {1, ..., n} where label lu represents the position of the vertex u in the
topological ordering. The measure used to evaluate the quality of community division is modurity defined
as follows. For a directed network G with n vertices and m directed edges represented by an adjacency
matrix A, let din(i) and dout(i) be in–degree and out–degree of a vertex i ∈ V (G). Let vertex i belong to
the community li. Modularity for directed networks is defined as [10]

Qd =
1

m

∑
1≤i,j≤n

[
Aij −

din(j)dout(i)

m

]
δ(li, lj) (1)

where δ(li, lj) is Kronecker’s delta. Modularity measures the actual ratio of edges within the community
reduced by the expected value in the null–model, where the division into communities is the same, but the
edges between the vertices are placed randomly [11].

The algorithm works as follows. Initially, we consider each vertex to belong to a separate community.
Starting from the last vertex in the ordering, for each vertex, we consider placing it into communities that
have been obtained as the best solutions in the previous steps. We introduce the following notations: let rk
be the optimal solution obtained in step k of the algorithm (during the placing of the vertex k) and let zij be
the community consisting of vertices i, j ∈ V (G). The algorithm begins from the last vertex in the ordering
(the one with the largest label n). It holds rn = zn. Moving on to the vertex labeled lu = n− 1, we consider
the change in modularity obtained by combining it with the optimal solution from the previous step or by
remaining in separate communities. Specifically, we consider the cases z(n−1)n and z(n−1) + rn (the ”+” sign
indicates that there are two separate communities). In the next step, we consider vertex labeled n− 2 and
the modularity increase for cases z(n−2)(n−1)n, z(n−2)(n−1) + rn i z(n−2) + r(n−1), where r(n−1) denotes the
optimal solution obtained in the step n − 1. In general, for placing the vertex labeled k we consider the
following cases:

� zk(k+1)...n

� zk(k+1)...(n−1) + rn

� zk(k+1)...(n−2) + r(n−1)

...

� zk + r(k+1)



S. Antunović and D. Vukičević 617

The change in modularity ∆Qd caused by placing two vertices into the same community can be calculated
as follows. Let the vertex i change the existing label li to the new label lj . The change in modularity caused
by this change follows from the equation (1) and is calculated as

∆Qd(ij) =
dji
m
−
[
dout(i)Sin(j) + din(i)Sout(j)

m2

]
(2)

where

� dji is the total number of neighbours of i with label j,

� Sin(j) is the total in–degree of vertices labeled j (the sum of all din(u) such that lu = j ),

� Sout(j) is the total out–degree of vertices labeled j (the sum of all dout(u) such that je lu = j ).

In each step, we choose the optimal solution that results in the largest non-negative change in modularity,
i.e. largest ∆Qd ≥ 0. The algorithm ends when all vertices are placed into the appropriate communities.
The initial topological ordering can be given as an input to the algorithm or it can be obtained during
the execution of the algorithm. The way in which vertices are placed ensures that the condition of a valid
community order is met and that the solution obtained is optimal under the given condition since we look at
the optimal solutions from previous cases at each step. Pseudo code of the algorithm with a given topological
ordering is displayed in the Algorithm 1.

Algorithm 1 Algorithm for detecting communities under constraints

1: assign to each vertex i a unique numerical label li ∈ {1, 2, ..., n} indicating its place in the topological
ordering of the vertices

2: set rn = zn
3: while there are vertices that have not been considered do
4: for each vertex k such that lk ∈ {n− 1, ..., 1} do
5: calculate ∆Qd for each case zk(k+1)...n, zk(k+1)...(n−1) + rn, ... , zk + r(k+1)

6: assign rk to the case with the highest ∆Qd ≥ 0
7: add vertex k to the appropriate community in accordance with the solution obtained
8: end for
9: end while

Let us consider the complexity of the algorithm. To allocate the vertex k into the appropriate community,
it is necessary to consider n− k+ 1 cases. For each of these cases, it is necessary to calculate the modularity
change that is calculated by the formula (2), which requires going through all the neighbours of the current
vertex. Let us denote with dk = din(k) + dout(k). In total, it takes (n − k + 1)dk operations to correctly
place the vertex k. Summing up through all the vertices gives:

n∑
k=1

(n− k + 1)dk = nd1 + (n− 1)d2 + (n− 2)d3 + ...+ 2dn−1 + dn

= (d1 + d2 + d3 + ...+ dn) + (d1 + d2 + d3 + ...+ d(n−1)) + ...+ (d1 + d2) + d1

≤ 2m+ 2m+ ...+ 2m ≤ 2mn.

From the foregoing considerations it follows that the total complexity of the algorithm is equal to O(nm).
The algorithm produces an optimal divison into a set od validly ordered communities for a given topological
ordering of vertices. Let us consider in details how the algorithm works on an example of a very simple
directed acyclic network shown on Figure 1.

A step-by-step demonstration is shown below. The optimal solution in terms of modularity increase is
denoted by a red rectange. In this example, the Algorithm starts from the topological ordering 1 ≺ 2 ≺ 3 ≺
4 ≺ 5 ≺ 6. Starting form the last vertex, the process goes as follows.



618 Detecting Communities under Constraints

Figure 1: The effect of the algorithm on a simple directed acyclic network. A simple example
of directed acyclic network with n = 6 vertices and m = 7 directed edges. b) Division into 2 consecutive
communities obtained by the proposed algorithm. Vertices in community C1 are denoted in red, vertices in
community C2 are denoted in blue.

i = 6 z6 [6]→ r6

i = 5 z56 [5 6]→ r5
z5 + r6 [5] [6]

i = 4 z456 [4 5 6]→ r4
z45 + r6 [4 5][6]
z4 + r5 [4] [5 6]

i = 3 z3456 [3 4 5 6]
z345 + r6 [3 4 5] [6]
z34 + r5 [3 4] [5 6]

z3 + r4 [3] [4 5 6]→ r3

i = 2 z23456 [2 3 4 5 6]
z2345 + r6 [2 3 4 5] [6]
z234 + r5 [2 3 4] [5 6]

z23 + r4 [2 3] [4 5 6]→ r2
z2 + r3 [2] [3] [4 5 6]

i = 1 z123456 [1 2 3 4 5 6]
z12345 + r6 [1 2 3 4 5] [6]
z1234 + r5 [1 2 3 4] [5 6]

z123 + r4 [1 2 3] [4 5 6]→ r1
z12 + r3 [1 2] [3] [4 5 6]
z1 + r2 [1] [2 3] [4 5 6]

3 Experiments and Results

3.1 Data Sets

The algorithm was tested on curriculum networks, directed acyclic networks where vertices represent edu-
cational units, which are described in [1]. Directed edge from vertex u to vertex v means that unit u is a



S. Antunović and D. Vukičević 619

Table 1: Basic statistics for curriculum networks. Notation: number of vertices n, number of directed
edges m, largest in–degree din, largest out–degree dout, average degree davg, average shortest path length l
for pairs of connected vertices, clustering coefficient C.

Network n m din dout davg l C

Number set Q 47 254 17 26 5.404 2.011 0.254
Elementary functions 84 502 27 51 5.976 2.132 0.255
Integral 223 655 15 28 2.941 3.899 0.084
Physics 31 49 4 8 1.581 1.575 0.049
Primary production 28 93 9 14 3.321 2.135 0.183
Data processing 54 197 12 22 3.648 1.744 0.338

Table 2: Comparison of the results obtained using the Algorithm with the results suggested
by the experts who compiled the curriculum networks. Notation: number of vertices n, number of
directed edges m, number of communities Nc, value of modularity Qd calculated for the proposed network
division.

Expert Algorithm

n m Qd Nc Qd Nc

Number set Q 47 254 0.311 5 0.377 4
Elementary functions 84 502 0.239 6 0.286 8
Integral 223 655 0.455 10 0.484 10
Data processing 54 197 0.389 6 0.430 6
Primary production 28 93 0.237 3 0.259 3
Physics 31 49 0.238 6 0.375 4

prerequisite in learning and understanding unit v, i.e., should be studied before the unit v. In each network,
every educational unit u ∈ V has a unique numerical label p(u) ∈ {1, 2, ..., n} indicating the order in which
it is taught which corresponds to its place in the topological ordering. Community division in this context
results in dividing educational units into chapters that can be learned or taught consecutively. The networks
are named after the key concept whose understanding is set as a learning objective for that area. While
tested on curriculum networks, the algorithm has been given a topological ordering as an input. Some basic
statistics for curriculum networks can be found in Table 1. More details can be found in [1]. Measures used
are defined in [15].

3.2 Results

The results given by the algorithm were compared to results given by the authors of each network. Precisely,
the author of each of the networks gave a community division they think is the best way of arranging
educational units into consecutive chapters. Results were given in Table 2. Community division given by the
algorithm gives higher modularity scores for each of the proposed networks. Since the algorithm comes down
to modularity optimization, it is worth mentioning the resolution limit problem introduced in [4]. Their
results imply that modularity optimization algorithms might miss important substructures of a network by
clustering smaller communities to form a larger community, although the problem is most likely to occur
for communities with a number of internal links of the order of

√
2m or smaller. The resolution limit of

modularity does not depend on particular network structure, but results only from the comparison between



620 Detecting Communities under Constraints

the number of links of the interconnected communities and the total number of links of the network [4].
As suggested in paper [4], we constrained the modularity optimization to each single community obtained
for every network used and confirmed that the resolution limit did not have a significant impact on the
community division.

4 Discussion

Since the algorithm was applied to a particular type of networks, it was important to interpret the results in
logical and methodical sense. An analysis of both divisions leads to the conclusion that the algorithm provides
meaningful divisions into communities. The divisions obtained by the algorithm have logical interpretations
and valuable tips can be drawn from the results that could help the assemblers to better compile and
distribute the material. Experts who have created the networks consider that the divisions obtained are
meaningful and valid.

The algorithm does not require a community size specification, although the tendency is to divide the
network into approximately equal smaller communities. Since the testing was carried out on very small
networks, the resolution limit did not have a strong effect on the results. Nevertheless, one should be careful
when using the algorithm on larger networks. The algorithm can be modified by enforcing the community
size and number requirement depending on the type of network that is being analyzed and the various needs
of different researchers.

5 Conclusion

In this paper we present an algorithm for detecting communites that need to be arranged in a certain order.
The algorithm gives great results in terms of modularity, but it also satisfies logical and methodological
requirements of the network. It can be used in different situations and settings, ranging from computer sci-
ence, physics, mathematics, biology, etc. Thus, in addition to increasing modularity, the algorithm provides
logically meaningful divisions.

The algorithm gives a division regarding a specific topological ordering of the vertices. Since there
can be many different orderings of a network, the future work may include the stability analysis of the
obtained communities regarding different valid orderings of vertices, testing the algorithm on different types
of networks and considering the impact of the resolution limit on communities obtained for larger networks.

References

[1] S. Antunović and D. Vukičević, Detecting communities in directed acyclic networks using modified LPA
algorithms, Proceedings of the 2nd Croatian Combinatorial Days, (2019), 1–14.

[2] J. Bang–Jensen, Digraphs: Theory, Algorithms and Applications, vol. 5, Springer-Verlag, 2008.

[3] S. Fortunato, Community detection in graphs, Phys. Rep., 486(2010), 75–174.

[4] S. Fortunato and M. Barthélemy, Resolution limit in community detection, PNAS, 104(2007), 36–41.

[5] M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc. Natl.
Acad. Sci., 99(2002), 7821–7826.

[6] A. Jonnalagadda and L. Kuppusamy, Mining Communities in Directed Networks: A Game Theoretic
Approach. In: Abraham A., Muhuri P., Muda A., Gandhi N. (eds) Intelligent Systems Design and
Applications. ISDA 2017. Advances in Intelligent Systems and Computing, vol 736. Springer, Cham.,
2018.



S. Antunović and D. Vukičević 621

[7] B. Karrer and M. E. J. Newman, Random graph model for directed acyclic networks, Phys. Rev. E,
80(2009).

[8] Y. Kim S.-W. Son and H. Jeong, Finding communities in directed networks, Phys. Rev. E, 81(2010),
016103.

[9] B. B. Kirkpatrick, Haplotypes versus genotypes on pedigrees, Algorithms for Molecular Biology, 6(2011).

[10] E. A. Leicht and M. E. J. Newman, Community structure in directed networks, Phys. Rev. Lett,
100(2008).

[11] X. Liu and T. Murata, Advanced modularity-specialized label proagation algotirhm fordetecting com-
munities in networks, Physica A., 389(2010), 1493–1500.

[12] M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45(2003), 167–256.

[13] M. E. J. Newman, Detecting community structure in networks, Eur. Phys. J. B., 38(2004), 321–330.

[14] M. E. J. Newman, Modularity and community structure in networks, Proceedings of the National
Academy of Sciences, 103(2006),8577–8582.

[15] M. E. J. Newman, Networks: An Introduction, Oxford Univ. Press, Oxford, 2010.

[16] M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev.
E., 69(2004).

[17] V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity to directed
graphs with overlapping communities, J.Stat. Mech, 9(2009).

[18] G. Palla, I. Derényi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of
complex networks in nature and society, Nature, 435(2005), 814–818.

[19] G. Palla, I. J. Farkas, P. Pollner, I. Derényi and T. Vicsek, Directed network modules, New J. Phys. 9,
186(2007).

[20] D. J. de S. Price, Networks of Scientific Papers, Science, 149(1965), 510–515.

[21] S. Sapatnekar, Timing, 1st ed., Springer, Boston, 2004.

[22] I. Shmulevich and E. R. Dougherty, Probabilistic Boolean Networks: The Modeling and Control of Gene
Regulatory Networks, SIAM, 2010.

[23] S. S. Skiena, The Algorithm Design Manual, 2nd ed., Springer-Verlag, London, 2009.

[24] L. Speidel, T. Takaguchi and N. Masada, Community detection in directed acyclic graphs, European
Physical Journal B, 88(2015).

[25] V. Vasiliauskaite and T. S. Evans, Making communities show respect for order, Appl. Netw. Sci. 5,
15(2020).


	Introduction
	Algorithm for Detecting Set of Communities
	Experiments and Results
	Data Sets
	Results

	Discussion
	Conclusion

