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Abstract

Our interest in this paper is to analyse the asymptotic behaviour of a Lamé system with internal
fractional delay and boundary damping of Neumann type. Assuming the weights of the delay are small
enough, we show that the system is well-posed using the semigroup theory. Furthermore, we introduce
a Lyapunov functional that gives the exponential decay.

1 Introduction

This work is devoted to the study of well-posedness and boundary stabilization of the Lamé system in a
bounded domain € of R” with smooth boundary 9 of class C2. We assume that I' = 'y U 'y, where Iy
and I'; are closed subsets of I' with I'o NI’y = (). The system is given by:

gt — pAu — (p+ A V(divu) + a10" u(z,t —7) =0 in Q x (0, +00)

u=0 in Ty x (0, +00),

/‘g% + (p+ A (divu)r = —agu(z, t) inT'y x (0, +00), (P)
u(z,0) = ug(x), wue(z,0) =uy(z) in ,

ut(x,t —71) = fo(z,t —7) in  x (0,7),

where p1, A are Lamé constants, u = (u1, Uz, ..., u,)?. Moreover, a; > 0, az > 0 and the constant 7 > 0 is
the time delay. v stands for the unit normal vector of 0f) pointing towards the exterior of Q and g—z is the
normal derivative. The notation 9;"" stands for the generalized Caputo’s fractional derivative (see [5]) of
order o with respect to the time variable and is defined by

1 ! d
0 w(t) = m/o (t— s)_o‘e_"(t_s)d—l:(s)7 ds O<a<l, k> 0.

One very active area of mathematical control theory has been the investigation of the delay effect in the
stabilization of hyperbolic systems. It is well known that an arbitrarily small delay can have a destabilizing
effect to systems that are asymptotically stable in the absence of delay (see [1], [7], [8], [14] and [10]).

In particular, the following boundary stabilization problem for the n-dimensional wave equation with
interior delay was studied in [1],

uge(x,t) — Au(z,t) + aug(z, t —7) =0 x€Q, t>0,

u=20 xely, t>0,

% = —kuy(z,t) zecTly, t>0, (PA)
u(z,0) =up(z), wu(x,0)=ui(x) x €,

ut(xvt) = g(x, )7 z€e) tE (77—70),
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706 Lamé System with Fractional Time Delays and Boundary Feedbacks

where the authors showed an exponential stability result under the usual Lions geometric condition on the
domain 2, providing that the delay coefficient a is sufficiently small.

In the absence of the delay in system (PA), that is for 7 = 0, a large amount of literature is available on
this model, addressing problems of the existence, uniqueness and asymptotic behavior in time when some
damping effects are considered, such as: frictional damping, viscoelastic damping and thermal dissipation.

Moreover, the result in [1] was extended to the Timoshenko system in [15] (see also [9]), where the authors
studied a Timoshenko beam system given by two coupled hyperbolic equations, with delay terms in the first
and second equation and two boundary controls, they proved the exponential decay of the total energy.

To our best knowledge the Lamé system with internal fractional time delay terms is not considered
previously. Motivated by the above research, we will consider the Lamé with internal fractional time delays
and boundary feedbacks (P). The main objectives of the present work are to establish the global well-
posedness and exponential stability of system (P).

The outline of the paper is as follows. In Section 2, we take advantage of the complete monotonicity of
the power function integral kernel to represent it as a superposition of exponentials and derive what we call
the "augmented model", while in Section 3, we deal with the well-posedness result of the problem using the
semigroup theory. Lastly, in Section 4, we obtain exponential stability results by constructing an appropriate
Lyapunov functional as in [1].

2 Preliminaries

This section is concerned with the reformulation of the model (P) into an augmented system. For that, we
need the following claims.

Theorem 1 (see [13]) Let w be the function:
w(€) =162 D/2 _so< €< 400, 0<a< 1. (1)

Then the relationship between the "input” U and the "output” O of the system

(&) + (2 + K)P(E,1) —Uw(€) =0, —o0 < €< +00,k> 0,t> 0, (2)
$(£,0) =0, (3)
+oo

O(t) = (v) " sinfarm) [ w(€)oe.t)de (4)

is given by
O = I'"*"U = D"V, (5)

where
100 = g [ =7t (e

Lemma 2 (see [4]) If A > 0, then for w in (1),

[T e T e

oo /\—|—§2 sin o
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We are now in a position to reformulate system (P). Indeed, by using Theorem 1, system (P) may be
recasted into the augmented model:

U — pAu — (p+ NV (diva) + ¢ [T w(@)p(r, €,1)dE =0 in Q x (0, +00),

8tw(ma§7t) + (§2 + K)w(xaévt) - Z(‘T’ l,t)w(f) =0 in O x (7007 OO) x (Oa +00)7
th(x,p,t)+zp(:ﬂ,p,t) =0 in % (0,1) x (0, +o0),

u(z,t) =0 in Ty x (0, +00),

,u% + (p+ N (divu)ry = —aguy(x, t) in 'y x (—00,00) X (0, 400), (P")
z(x,0,t) = ue(x, t), in £ x (0, 4+00),

u(i,0) = uo(z), ur (2, 0) = ur (1) in 0,

P(x,£,0)=0 in Q x (—o0,00)

z(z, p,0) = folx,—pT) in 2 x (0,1),

where ¢ = ay ()~ !sin(ar).
We define the energy of the solution by:

B = 5

n

<||th||%2(9) +H||VujH%2(Q) +C/Q/J—r§¢j($yf’t)|2d§d$>

1

<

n 1
+ A
S / / 123 (2, 0,0) Pdodi + 2 div 2., (6)
= JaJo 2

|

— 2
where ¢ = 5% and I = OOO 2)24(52 d¢ and v is a strictly positive real number.

In order to establish the exponential energy decay rate, let us consider the usual geometrical control
condition: there exists a point xg € R™ such that

m-v<0 onlyg, m-v>0 only, (7)

where m = x — xg.
The main result of this paper is the following.

Theorem 3 For any as > 0, there exist positive constants ag, Cq, Co such that
E(t) < Cre~C2*E(0) (8)

for any regular solution of problem (P) with 0 < a1 < ag. The constants ag, Cy, Cy are independent of the
initial data but they depend on as and on the geometry of .

3 Well-posedness

In this section, we give the existence and uniqueness result for system (P’) using the semigroup theory (see
[6]). We define the energy space H by

H = (HE,(2)" x (L*(2)" x (L*(Q x (—o00, +00)))" x (L*(©2 x (0,1)))",

where

=

110(9) ={uec H (Q): ur, = 0}.
For any U = (u,v,v,2)T € H, U= (~,6,1L,2)T € 'H, the inner product in H is defined as

<U, U>H - jil/ﬂ(vj@j+wujvaj)dx+(MH)/Q(divu)(diva) dz

_n o _ n 1
+<j§:jl /Q /_ ) wj(:c,fwj(a:,&)dfdxw; /Q /O 2(z, 0)(x, o)dodz.
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For U = (u,v,1,2)T, where v = us, then system (P’) is equivalent to an abstract Cauchy problem:

{ U = AU, t>0, (9)
U(0) = Uo = (uo,u1,0, fo)T
and

u

v | uAu—i—(u—l—)\) dlvu -7 W(z, &) dé

Alw |~ s Ao Te (10)

z 777129(‘%, Q)

with domain
D) = {(wv,.2) inHiue (HXQ)NHLQ)", ve (H(Q)",

—(€ + &)Y + (2, Dw(E) € (LP(Q x (=00, +00))) ",
€ (L* (2 H'(0, 1)))n, ,u% + (p+ A)(divu)v + av =0 in I'y,
€]y € (L2(Q x (—o00,+00)))", v = 2(.,0) in © } (11)

Remark 1 The condition |£1(€) € (L2(2 x R))™ is imposed to insure the exvistence of

= . <2 - 2
c;/ﬁ/m@ ) (€, 1)[? dE da

and w(&)Y(z, &) € (LY x R))™.

We show that there exists a positive constant ¢ such that A — cI is dissipative. Let U = (u,v,,2)7
D(A). Then

(AU, Uy

n n 400
“on sl ~ X [ [ wle e dear
+<Z [ o) [ st dean annm = >l Dl
j=1
—ZZ/Q[ (€ + W)l (6,0 de do
—az Z [0l Z2(ry + ( Z 51172 ()
< (2<+;_);||Uj|%2(m~

This shows that A — ¢I is dissipative.
In the sequel, we claim that the operator A has the property R(S\I —A) = H for fixed A > 0. Indeed, let
G = (G1,Go,G3,Gy) € H, where G; = (g}, 92, ..., g"), we must solve the problem (A — A)U = G for some
= (u,v,v,z) € D(A). The equation becomes the system

IN

M — v = Gy(x),

Mo = pdu = (p+ NV (diva) + ¢ [17 w(@)(z,€) dE = Ga(a),
X+ (€2 + k)Y — 2(z, Dw(€) = Ga(x, ),

Az(x,0) + 77 2p(x, 0) = Gz, 0)-
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Suppose that we have obtained « with the appropriate regularity, then (12); and (12)3 yield

v=2>u—Gi(z) € (Ht,(Q)" (13)
e G (2, ) + w(©)x(, 1)
x,§) +wl§)z(z,
P = 250 & : (14)
E+ R+ A
We note that the last equation in (12) with z(x,0) = v(z) has a unique solution given by
- . ) -
2(z, 0) = v(zx)e T + Te_AQT/ Gy(x,r)e N dr. (15)
0
Inserting (13) in (15), we get
. - - - 0 -
2(z, 0) = Mu(x)e " — Gy (x)e 7 + 7'67)\97—/ Gy(z,7)eMdr, x e, pe(0,1). (16)
0
In particular, i
2(z,1) = du(z)e ™ + z(x), €9, (17)
where for x € )
zo(x) = —Gl(x)e_S‘T + TG_S\T/ Gy(z, T)@X”dr. (18)
0
In light of the above results, the function w satisfies the following equation:
~92 +oo ~
K= plu = (e V(v +¢ [ wl€(e.€)d¢ = Galo) + 361(0) (19)

Then for any w € (Hp, (€2))", it follows from problem (19) that

/Q (qujwj — ,uAujwj> dr — (u+ M) /Q a(zj(div w)w;dz + Cjzi;/ﬂ w; /:)O w(&);(w,&) dédx

- /Q (Fi () + \FJ () )w; dv. (20)

By using integration by parts, the boundary condition (11)4 and (14), we infer that

Z/ (S\Qijj + pVu; Vw; dw) —|—(,u+)\)/(divu)(divw)dx
j=1"% Q
+5\92/ ujwje_S‘T dm+5\a22/ ujw; dl’
j=1"9 j=1"11
n , o n . d T w()gi(z,€)
= () + \gl(z)) w; dx + a / I (x)w; dz — /w / SIS S) e ) d
7_21/9(92() g1 ( )) j 2; Fl91() fi C; o . 52—1—/%—1—7' £

—9;/ijzo(x) dz, (21)

where 6 = ij;o ffjfi)ng.

Problem (21) is of the form

B(u,w) = L(w), (22)
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where B : (H%O(Q))n X (H%O(Q))n — R is the bilinear form defined by
B(u,w) = Z/ (S\Q’ujwj + uVu; Vw, d:c) +(p+A) / (div u)(div w)dz
j=1"9 Q

+5\92/ ujwje*;\T derS\aQZ/ ujw; dl’
j=1 Q j=1 Iy

and L : (Hll[J (Q))n — R is the linear form given by

cw) = Y [ (o) 3 @) wyar -3 [, (/j“m@dw

It is easy to get that B is continuous and coercive, and £ is continuous. Therefore, by using Lax-Milgram
theorem we can obtain problem (22) has a unique solution u € (H%O(Q))n for all w € (Hf, (©))". By the

regularity theory for the linear elliptic equations, it follows that u € (H? (Q))n Thus, the operator (Al — A)
is surjective for any A > 0. By using Hille-Yosida theorem, we have the following existence result:

Theorem 4 (Existence and uniqueness) (1) If Uy € D(A), then system (9) has a unique strong solu-
tion
UecC' Ry, D(A)NCHR L, H).

(2) If Uy € H, then system (9) has a unique weak solution

UeC' Ry, H).

4 Proof of Theorem 3

The proof will be divided into several technical propositions.

Proposition 5 For any solution of problem (P') the following estimate holds:

/ . n ‘ ) M n 2
B < ‘”;/Fl'“”(x’”' o+ L ;/Quﬁ(x,t)dx
I—wr 1 & oo
Hgr L @t s o)

Proof. Multiplying the first equation in (P’) by u;:, integrating over Q and using integration by parts, we
get

1d

)
—— w3 — Aujujy dz — )\/—d' od
2dt”uﬂ”2 ﬂ/ﬂ ujujedr — (p+ A) anj( ivu)ujide

“+o0
¢ /Q uje [ (€, (z, €, t)dedz = 0.
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Then

d LA
7 Z (||th||%2 @ T MHV“J‘H%z(Q)) + 7” divul[Z2(q) + as Z gl 72y

+<Z/uﬂ/+o® b, (x,€, 1) dé dw = 0.

DN =

Multiplying the second equation in (P’) by ij and integrating over Q x (—oo, +00), we obtain:

Z d n _n 400

2 q Z 195172 (@x (—o0,400)) + CZ ; (&% + w) |1 (z, &, 1) PdEda

= = oo
oo

—CZ/ zi(x, 1,1 / w(€)v;(x,&,t) dE dz = 0.
Multiplying the third equation in (P’) by vz; and integrating over € x (0, 1), we get:

od anjnp(m oay + Z/ (. 1,1) — (1)) = 0.
From (6), (24) and (26) we get

n _n 400
B0 = o sl T3 L[ @rmmeenra

+oo

—CZ/th/+OO (z,€, t)dfdx—l—CZ/zj z,1,t) / W(E);(x, &,t) dE da

oo

—1 n

T~ 9 vT 9
+ 5 Z/Qujt(m,t)dx— 5 Z/sz(m,l,t)dx.

j=1 j=1

Moreover, we have

]/m (), (61 df‘ (/ Js d£>é</+m(§2+ﬁ)wj(x,£,t)l2d£>

[

- o 4K oo
Then
+o00o
/zj(w,l,t)/ w(f)z/}j(x’§7t)dfdx
Q —o0
+oo 2 % 4o %
< (/OO g‘;—(fl d&) sz(l'yl;t)“LZ(Q) (/Q [m (52 +I€)|¢j(1‘,f,t)|2 d.’ﬂdf)
and

/Quj't(%t) /+MW(€)¢j($7§,t)d€dl’

—0o0

400 2 1 oo :
(/_oo ;fl dg) 1 (2, 1) 22 (o) </Q /_OO (§2+H)|¢j($,§,t)|2dmd§>

Applying the Cauchy-Schwarz inequality we obtain (23). m

IN
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(26)

(27)



712 Lamé System with Fractional Time Delays and Boundary Feedbacks

Proposition 6 For any regular solution of problem (P') and for every e, § > 0, we have

n

; % {/Q [2m - Vi + (n = D] uje dx}

_zn:/ﬁ (|th\2+(u—%C’(P))\Vuj|2> dm_(ﬂ+>\)/ﬂ\divu|2 de

4‘2/ [2m - Vu; + (n — 1)u;] UW w(E);(x,€) dg] dz

— 00

n—1) [m |5 Sp
+;/F<<m”oo+ 5 a3 +2 50 a2 | Jugl? — s — 2 V2| dr

f(,u+>\)6/ | div u|?dr,
r

where C(P) is a sort of Poincaré constant, which is a positive constant depending on ) and independent of
the solution wu.

Proof.

jf{/pm Vu; + (n 1)Uj]uﬁdw}
- /Q[Qm Ve + (0= Dujeluge da

+oo
n /Q [2m-wj+<n1>umuAuj+<u+A>(.f;<divu>c / e oddds (9

For u € H?(2), we have the following Rellich’s identity

Jo Auj(m - Vuy)de = [(m - Vuj)au" I — [, Vu;-V(m- Vuj)
Jo =5 AN (1. Vuy)da = Jp(m - V) (divu)v; T — [ (divu)5 (m Vu;) dx

I

Hence

jt{/[Qm Y, + (n 1)uj]ujtdx}

= / 2m - Vuj + (n — 1)uje)uye de
Q

— 0o

“+o0
~¢ [ l2m Vg + (=l | €, delds
—|—2,u/r(m-Vuj)%uvj dF—Qu/QVuj-V(m-Vuj)dx
: . 0
+2(M+A)A(m-VUj)(d1VU)Vj dF—2(M+A)A(dlvu)(%j(m-Vuj)dx
2 _ ws 3“7
—(n—l)u/Q|Vuj| dz + (n 1)#/ i 5 dr’

—(n—=1)(p+N) /Q gxuj(div u)dr+ (n—1)(p+ ) /F uj(divu)y; dl. (30)

Moreover, using the following identity

2Vu; - V(m - Vu;) = 2|Vu;|? +m - V(| Vuy|?)
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and integration by parts, we get

(31)

2fQ Vu; - V(m- Vuj)dx =(2-n) [ |Vu;|*dz + [m-v|Vu;[?dl,
2 Z Jo (divuw) ax (m - Vuj)dx— —n) [o |divul*dz+ [m - v|divul® dD

Substituting (31) into (30), we get

ii{/@m Vau; + (n 1)uj]ujtdx}

j=1

= Z/ [2m - Vujs + (n — Dujuje da

—CZ/[Qm'VUJ+(n—1)Uj] U
j=179 —o0
n au n )
+2ujz=;/r(m-Vuj)avjdf—u;/rm-MVuj dr
—(u—i—)\)/m-V|divu|2dr+2(u+/\)2/(m-Vuj)(divu)yjdf
r — Jr

—/JJZ/|VUJ\ dx — ( u+)\)/|dlvu| dx + ( n—luZ/uJaJdF

= D)+ A) Z/Fuj(div v, dr.

—+o00

(€, (2, ) dg] da

I¢]

Noting that Vu; = S2v on Iy, it follows that

n

Z jt {/ [2m - Vi, 4+ (n — Du;jug, dm}
- Z:/Q|uj-t|2dw+i/r(m.y)|ujtzdF
Cjil/Q[Qm.VujJr(nl)uj] {/MO

— 00

(€02, de] da
+uZ/m-u|Vuj|2dI‘+(/L+)\)/m~1/|divu|2df

= r
—1—22/ (m - Vu;)(p + (1w + M) (divu)v;)dl — uZ/m v|Vu;|? dl'
—(u+)\)/rm-u|divu|2df—MZ_:I/Q|VUJ-|2dx—(,u—&—)\)/9|divu|2d:r

+(n-1) Z/u] + (u+ M) (divu)v;) drl. (32)
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Since T’y is compact and m, v are sufficiently regular, there exists ¢ > 0 such that m(z) -
all z € T';. from (32) we deduce

dt{/ 2m - Vu; + (n — 1ujluj da}

—Z/ |ujt\2dx—u2/ |Vu;|? do
=179 j=17%

IN

—(/L-l-)\)/ divu|2dx—Ci/[2m-Vu»+(n—1)u»] {/+ww(f)¢»($,§)d£ dx
Q j=1 Q ! ’ —oo !
+||mm2A|th2dF—u5;A|Vuj|2dF—(u+A)6A|divu|2dF

+2Z/ m - Vu,)(p + (p+ A)(divu)r;) dl

Ou; .
=)D [ G+ e+ N(div )T,
where we have used also m(z) - v(x) < 0 on I'y. We can estimate

QA(m-Vuj)< %—i—(u—&-)\)(dlvu) ) dr

2

< /|V j|2dF+2Hn;H ‘ —+(,u+>\)(dlvu) dr
Sy 2 |m||ooa2/ 2
< — i|“dll + 2——==—= j T
< B[ 1vupar 2= [
Moreover,
ou;
(n—l)/uj p—+ (p+ A)(divu)y; | dT'
T 8'(]
2
< /|uj\2df+ /’( 2Ly (p+ M) (divu)r ) ar
2
2 3uJ
< /|Vuj\ dx + /' + (p+ AN (divu)y;| dT

< /|Vu]\2d:z+ - /|u]t|2dl“

where we have used trace inequality and Poincaré’s theorem. m

Remark 2 In the above inequality C'(P) is the smallest positive constant such that

/|19|2d1“ < C(P)/ V9> dz, V9 € Hp (Q).
r Q

v(z) > ¢ > 0, for

Then by using the Young inequality and the Sobolev-Poincaré inequality, we can easily get the following

corollary.
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Corollary 7 For any regular solution of (P') and for every e,§ > 0, we have

Zn: % {/me Vg A+ (= Duglug, dfﬂ}

Jj=1

3 [ ol (= S0P Gt G0 170@) 3 [ 9
j=1

2 _
—(/Hr/\)/ \dival? dz + (]| + 202 g2 (2 a2)2/|ujt|2df
Q 2 /T

IA

op
3.8 +o0
+2Cj_zl/ﬂ/_oo (& + r) (@, &, 1) dw dE
op 12 o
—Q;AIV%I dF—(u+A)6/F|dwu| dr.

Now, let us introduce the functional

n 1
= [ [ e p0Papdn
mi/edo

1
2// eiTpZt(IE,p,t)Z(.T,p,t)dpdi

2 Jo

9 1

= —*// e Pzp(w, p,t)z(z, p, t)dp dx
= **// 2z, p,t)Pdp da
= —7/ 7T|z(:r,1,t)|2dx—|— /|ut\2dx

- [ [ et n0faps

1

f/|ut|2d:c—fe_7/|z(x,1,t)|2dx—e_7// |z(z, p,t)|*d p du.
T Ja g Q QJo

Let us introduce the Lyapunov functional

We can easily estimate

S'(t)

IN

E(t) = E(t) + 7, Z / [2m - Vu; + (n = Dugluye da +725(8),

where v, 7, are suitable positive small constants that will be precised later on. Note that £(t) is equivalent
to the energy E(t) if 7, is small enough. In particular, there exists a positive constant Cy and suitable
positive constants oy, as such that

a E(t) < E(t) < anE(t), Y0 <., 7, <Ci. (35)

Proposition 8 For every as > 0 there exist ag,c1,ca such that for any solution of problem (P) with 0 <
a1 < ag we have
Et) <cre™ ' t>0. (36)

The constants ag, c1,co are independent of the initial data but they depend on as and on the geometry of ).
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Proof. Differentiating the Lyapunov functional £ and using the propositions above we deduce

I
£ < <C +2W 1+72>Z/|uﬁ| da
¢ Z// |2z, p, ) dpdx—— Z/ |2 (2, 1,¢)|? dz
I+vr™
+ (C;}T+2§%>;/Q/_m (§2+F&)|1/)j($,§,t)|2dmd§

11 (= 50(P) = ClmIEet - § 10— 2 )Z PR

|m)?, | (n—1)?
+<71||m||oo + 7,03 (2 S + 2 — a2 ;/FWMQCZF. (37)

For a fixed ay > 0 we want to choose €,7,,7v5 < Cy and a; sufficiently small in order to obtain

E'(t) < —cE(t). (38)

Applying the second inequality of (35) estimate (36) easily follows. To show that (37) implies (38) we simply
need that

I _
H% - +k <0,
(I—vrt 3
9 + 2471 < 0)
3 ¢
p— SC(P) = (mP.T = ST(n = 1)*C(9) > 0,
]2 G 1)
Y1llmlloo + 7163 ( 5 9% az < 0.

For any as > 0 this last condition is satisfied for v, sufficiently small. It then remains to the first and third
conditions. For the first one, we need to assume that v; > ~,/7, while for the third equation we need to fix
€ small enough such that

€
Then we now fix 7,74 and € and fulfilling the above requirements and look at the first equation to the third
equation as conditions on a; and v. m
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