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Existence Of Multiple Solutions For A Kirchhoff Type Equation
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Abstract

In this article, we establish the existence of three weak solutions for a nonlinear Kirchhoff type elliptic
equation involving polyharmonic operator by using variational methods. We assume that the nonlinearity
satisfies subcritical exponential growth condition. We use a critical point theorem by B. Ricceri to prove
our result.

1 Introduction
In this paper, we establish the existence of solutions to the problem:

M ([, V™ ul?dz) (—A)"u = Af(z,u) + pg(z,u) inQ,

1
u=Vu=..=V""lu=0 on 0§, L

where Q C R?>™, m > 1 is a smooth and bounded domain, f,¢ : @ x R — R are Carathéodory functions
having subcritical exponential growth, p, A are parameters. We assume that M : [0,00) — R is a continuous,
non-decreasing function satisfying the following hypothesis:

(M1) There exist mg > 0, a > 1 and M (t) > mot®~! for all ¢ € [0,00).

Moser-Trudinger inequality is an important tool for the study of second order elliptic equations with
exponential nonlinearity. The classical Moser-Trudinger inequality [16, 18] reads as follows:

Theorem 1 Let Q C R” be a bounded domain, u € Wy (Q), n > 2 and

/ |Vu(z)|"de < 1.
Q

Then there exists a constant C, which depends on n only such that
/ exp(ou?)dz < C|9Q|,
Q

where
n _1

, & < Qp = nwﬁila
n—1
and wy,_1 s the (n — 1)-dimensional surface area of the unit sphere.
The integral on the left actually is finite for any positive o, but if o > «, it can be made arbitrarily large
by an appropriate choice of u.
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578 Multiple Solutions for a Kirchhoff Type Equation

Moser-Trudinger inequality was extended to higher order Sobolev spaces by D. R. Adams [1]. The Adams’
inequality is as follows:

Theorem 2 Let Q be a bounded and open subset of R™. If m is a positive integer less than n, then there
n

exists a constant C(n,m) such that for allu € C™(R") with support contained in @ and |[V™ul, <1, p= 1,
we have

ﬁ /Q exp(Blu(x)| 77 )dx < C(n,m) ?

for all 8 < B(n,m) where

’
’ an/29mpmtl p .
L [ (72 )] when m is odd,

Wy —1 F(7L73L+1)
ﬁ(’rL?m) - ’
, n"/2omp(my P .
” e when m 18 even
Wn—1 L(=5™)

and p' = L. Furthermore, for any 8 > 3(n,m), the integral can be made as large as desired, where
1 Y g 9

{ AZu when m is even,
VThy = 1
V A7z u  when misodd.

In case of n = 2m, B(2m,m) = 22™7™I'(m+1) for all m. Throughout this paper, we denote the constant
C(2m,m) by Cy.

For some applications of the Adams’ inequality to polyharmonic equations with exponential nonlinearities,
we refer to [11, 4]. N. Lam and G. Lu [12] established the existence of a nontrivial solution to the following
polyharmonic problem:

(=A)™u = f(z,u) in Q,
u=Vu=...=V"lu=0 ondqQ,

They assume that f satisfies subcritical and critical growth condition and employed mountain pass theorem
to establish their result. S. Goyal and K. Sreenadh [8] used Nehari manifold and fibering maps to obtain
existence of multiple solutions to the problem:

A u = Mh(z)|u|?tu + u|u|pe|“‘ﬂ in Q,

m

u=Vu=..=V""ty=0 on 02,

where Q CR", n>2m,0<¢< X —1<p+1landfe (1, 2]

' n—m

Problem (1) is related to the higher order analogue of Kirchoff equation [10],
0° E 2\
P U do | 22 — .
Ox?

h 2L Jq
Mishra et al. [15] used mountain pass theorem to establish the existence of a nontrivial solution to the
following Kirchhoff type problem:

ou

ox

M (|V™ulw) Au = 1E

]

u=Vu=...=V"lu=0 on 0N.

They assumed that f grows like em=m and 0 < o < n > 2m. Mishra et al. [15] also established the existence
result for the following Kirchhoff type problem:
—M (|[V™u|m) A u = Ah(z)|ul?'u+ ululPel*” in Q,
u=Vu=...=V"tu=0 on 0f).
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We also refer to [3, 7, 9, 20] and references cited therein for some more existence results for higher order
Kirchoff type equations.

Several authors have used Ricceri’s critical point theorem [17] to establish the existence and multiplicity
results for elliptic boundary value problems. For instance, see [2, 5, 6, 13, 14] and references therein. In this
article, we use Ricceri’s critical point theorem [17] to prove the existence of three weak solutions to (1). The
main result of the paper is as follows;

Theorem 3 Let f € F be such that
(F1) sup,epp () Jo F(z,u)dz > 0;
(F2) limsup,_,, ITt(lﬁ(f) <0

(F3) limsupyy_, Pt <.

|t|2a

Set
L NE(Jlull*) i
a= f{fQ xudx eHO(Q),/QF(,)d >O}.

Then for each compact interval K C (a,+00), there exists a number n > 0 with the following property: for
every A\ € K and g € F there exists u* > 0 such that for each p € [0, u*], (1) has at least three weak solutions
having norms less than 7.

The plan of the paper is as follows: In Section 2, we state some definitions and preliminary results which
would be used to prove the main theorem. In Section 3, we prove Theorem 3.

2 Preliminaries

In this section, we describe some notations, state some definitions and preliminary results. We say that a
function f : Q x R — R has subcritical exponential growth if

f(z,u)]

= d a.e. in Q.
R exp(e?) 0, Yo > 0 and a.e. in (3)

The growth is called critical if there exists a* > 0 such that

|/ ()|

|u|—oo exp(au?)

|f (2, )]

lu|—oo exp(au?)

=0 for all @ > a" and a.e. in §,

= oo for all @ < a* and a.e. in Q.

Definition 1 We denote by F a class of functions f :  x R — R each of which satisfies the following
properties:

1. f is Carathéodory function.

2. f has subcritical exponential growth, i.e., (3) is satisfied.

3. For every B > 0, supjy<p [ f(z,t)| € L=().

Definition 2 Suppose X is a Banach space. We denote by Lx the class of functionals L : X — R with the
property: If u, — u weakly in X and liminf, . L(u,) < L(u), then {u,} has a convergent subsequence
converging to u.
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Next, we recall the statement of Ricerri critical point theorem [17]:

Theorem 4 Let X be a separable and reflexive real Banach space. Suppose ®,1: X — R are C' functionals
satisfying the following conditions:

~

D is coercive, sequentially weakly lower semicontinuous and is of class Lx.
2. ® is bounded on each bounded subset of X.

3. @' admits a continuous inverse on X*.

4. ® has a strict local minimum at ug with ®(ug) = I(up) = 0.

5

. I’ is compact.

6. max {lim SUD 4| - 00 %, limsup,, ., é((z))} < 0 and sup, ¢ y min{®(u), I(u)} > 0.

Set

:=in %u min{®(u U
a:= f{](u)' € X, {®(u), I( )}>0}.

Then for each compact interval K C (a,+00), there exists a number n > 0 with the following property: for
every A € Kand every C' functional J : X — R with compact derivative, there exists u* > 0 such that for
each p € [0, p*],

&' (u) = A (u) + pJ' (u)

has at least three solutions having norm less than 7.

Throughout this paper, we consider the Sobolev space H{"(€2) equipped with the norm

full = ([ 197 dx)

By Sobolev embedding theorem, Hg*(€2) is continuously embedded into L2(2) for every ¢ > 1. Let S, be the
optimal constant of this embedding, then we have

lully < Sqllull,
where |-, is the standard norm in L9 space. Next, we define weak solution of (1).

Definition 3 We say that u € HJ*(Q2) is a weak solution to (1) if

M ( |Vmu|2da:> VTmuN" vdr — )\/ f(z,u)vde — u/ g(z,u)vdx =0
Q Q Q Q
for every v € HJ'(Q).

For a given f € F, define F(z,t) fo x, 8)ds. We also define the functionals v, ®, T : H*(Q) — R by

:/ |V u|dz,
Q
1.

B(u) = 5 M(3(u), where NI (z / M(s

u):/QF(Jc,u)dm

and
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It is easy to see that ® and I are of the class C! and

(I'(u),v) = | f(z,u)vdz,

Q

(@' (u),v) =M (/Q|Vmu2dx> /vauvmvdx.

3 Proof of Theorem 3

for all u,v € Hi*(2).

To prove Theorem 3, we first prove some lemmas.

Lemma 1 If f € F, then the functional H : Hi'(Q) — R defined by H(u) = [, F( ))dxz, where

fo z,8)ds is C* and H' : H'(Q) — (HF'(Q))* is compact. Here (H(’)”(Q))* is the dual of
Ho (Q)~

Proof. Since f satisfies subcritical growth condition (3), we have
|f(@,)] < Cexp(rt?).
Then for every u € HJ*(£2), and almost every z € Q,
|F(x,u)| < Clu| exp(ku?).

By Adams inequality and Holder’s inequality, H is well defined on Hj"(€2). Next, we show that H is Gateaux
differentiable with derivative

(H'(u) / f(z,u)vdz, Yu,v e H'(Q). (4)

For u,v € HJ*(Q) and ¢ € (0,1), we have
H(u+ tv) — H(u) 7/ F(x,u+tv) —
Q

¢ P = /Qf(:zr,u—FtT(x)v(x))v(:z:)dx,

where 7 is a measurable function taking values in [0 1]. This gives

H
lim (u +tv /f:cuvdx

t—0

This proves (4). Next, we show that if {u,} is a bounded sequence in Hy"(€2), then
sup/ |f(z,up)|?dz < oo for all ¢ > 0.
n Jo

Since {u,} is bounded, there exists L > 0 such that ||u,| < L, Vn > 1. Since f satisfies (3),
fl@,un) < Cexp(slul?)

for some constant C > 0.

/Q |z, w)|tde < / 0 exp(qlun ?)de

2
= Cq/ exp quHunHZ ( [ > dz
Q [[wn ]
2 |tn | :
< C? [ exp | kgL dx.
Q [Junl
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By Theorem 2 if 0 < k < ’8(27” BCmm) then

sup/ |f(z,u,)|%de < .
n JQ

Now, suppose {u,} is a bounded sequence in H{*(€2), then there exists v € HJ"(Q2) such that, upto a
subsequence, u, — u a.e. in Q. We show that, for every ¢ > 0, f(-,u,(-)) — f(-,u(:)) in LI(). Indeed, since
fGun(s)) — f(,u(-)) a.e. in Q, for a fixed p > 1 there exists a constant C; > 0 such that

[ 1@ an@)pras < o,
Q

Let € > 0 be arbitrary and ' C Q be a measurable subset. By Holder’s inequality

/ £, wa)0de < 107 (/ |f($,un)|pqd$>p <Pl <e
194 Q

provided |Q| is small. Here 1% + 5 = 1. By Vitali convergence theorem, f(-,un(-)) — f(-,u(-)) in L1().
Now, we show that H' : HJ*(Q) — (Hy*(2))* is continuous and compact. Let u, — u in HJ*(2). Then,
{un} is bounded and w, — u a.e. in . For some v € HJ"(?) with |[v|| < 1, we have

KFWM—FWMDS<AUWWH—(wudQ (/MdQ

SCW<xgﬂ%uw—f@HUﬂm>

— 0 asn — oo.
Thus H' is continuous. Similarly, we can show that H' is compact. m
Lemma 2 1. The functional ® is sequentially weak lower semicontinuous.
2. ® belongs to the class Lx.
Proof. (i). Let {u,} be a sequence in HJ*(2) such that u,, — u weakly in HJ*(2). Then

/ |V"u|?dz < lim inf/ |V, |?dz. (5)
Q n—oo Jo
Since the function ¢ — M (t) is continuous and non-decreasing,

liminf ®(u,,) = fhmme (/ |Vmun|2dx>

n—oo n—0o0

(hmlnf/ [V ™, dx)
,M (/ |V"”u|2dx> = ®(u).
2 0

Thus @ is sequentially weak lower semicontinuous.
(ii). It is easy to see that v(u) € Lx. Since M is continuous and non-decreasing, we deduce that ® €Lx.

I \/

Proof of Theorem 3. By Lemma 1, I is well defined and continuously Gateaux differentiable function
with compact derivative (I’( fQ z,u)vdx, Vu, v € HJ*(Q2). By Lemma 2, ® is sequentially weakly
lower semicontinuous functlonal Wthh belongs to the class Lx. Next, we show that & is coercive.

1. 1 N
(u) = 51 (Jull®) = 5 lul**
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Thus ® is coercive. It is easy to see that ug = 0 is only global minimum of ® and ®(0) = 0 = I(0). Moreover,
if [|u]] <7 then ®(u) < %M(r”) and hence ® is bounded on each bounded subset of Hj* ().

Next, we show that the operator ® : HJ*(Q) — (H{*())* is invertible on HJ*(2). In view of Minty-
Browder theorem [19, Theorem 26 A], it is enough to show that ® is strictly convex, hemicontinuous and
coercive. Let u,v € HJ*(2) with u # v and ¢ € [0, 1]. Since the operator 7' : Hi*(Q) — (H{*(Q))* given by

(v (u),v) :/QVmuvadx

is strictly monotone, v is strictly convex, see [19, Proposition 25.10]. Furthermore, as M is non-decreasing,
the function M is convex in [0, +00). Thus

M (3(tu + (1 = t)v) < M(ty(u) + (1 = 8)y(0)) < M (y(w) + (1 = )M (y(v)).

This shows that @' is strictly monotone. For any u € HJ*(Q), by (M1), we see that

(@'(u),u) _ M(y(w)) |l

= > mo [|ul** 7
[l ]
Thus @’ is coercive. By using standard arguments, we can conclude that @’ is hemicontinuous. By Theorem
[19, Theorem 26-A] there exists ®'~1 : (HJ*(2))* — HJ'(Q) and ®~! is bounded. Now, we show that
®'~! is continuous. Let {v,} C (H(Q))* be a sequence converging to v € (HJ*(Q))*, u,, = ®~!(v,) and
u = ®~1(v). Then {u,} is bounded in H{*(Q2) and upto a subsequence u,, — uy weakly in H{*({2). Since
v, — v, it is easy to see that

lim (@ (up), un — ug) = Lim (v, u, — ug) =0

n—oo n—oo

which implies

lim M (/ |Vmun|2dx> / VU, V'™ (U — ug)dw = 0. (6)
Q Q

n—oo

Since {uy} is bounded in HJ*(Q2), we have
/Q |V, |2dz — b > 0 as n — oc.
If b = 0, then {u,} converges to up = 0 in HJ*(2) and the proof is complete. If b > 0,
M (/Q |Vmun|2dx> — M(b) as n — oo.
By (M1),

M (/Q |Vmun|2da:) >0 >0 (7)
From (6) and (7),

lim [ V", V™ (up — ug)dz = 0. (8)
n—oo Q

Since u, — ugp weakly in HJ"(Q),
lim V™ ugV™ (tp, — uo)dz = 0. (9)
n—oo Q

From (8) and (9), u, — uo in HJ*(Q). Since @ is continuous and injective, u, — w in H*(2) and hence
&'~ is continuous. In the following, we prove that
I(u)

lim sup —% < 0. 10
P Ty S (10)
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By the hypothesis (H2), for every € > 0, there exists d; > 0 such that for all x € Q and |t| < 7y,
F(x,t) < €|t|*™. (11)
Since f € F, for a fixed a > 0 and ¢ > 2« there exists C' > 0 such that for every x € Q and |¢t| > 01,
F(x,t) < C|t|? exp(at?). (12)
On combining (11) and (12), we obtain
F(z,t) < e|t|*™ + Ot|? exp(at?). (13)

On using (13), (2) and Holder’s inequality

H@:LF@@M

< / (e|u|2a + Clul? exp(a|u|2)) dx
Q

1
7

(ool (35) (1)

«@ 2a %
< eSza [ull™ + C(Spg)*C Jlull®

2 1 /9 2a
g;fsxémy+cwp@%g(a¢m0 .
0

mo
Then .
I(u)  2ea o 1/ 2a\ % q—2a
— < — 550+ C(Sprg)ICE | — P B
(U)_ mo 2oc+ ( PQ) 0 <m0> (U) 2o,
where Cy = C(2m,m) is defined in (2). Since ¢ > 2a and ®(u) — 0 as u — 0, we see that
I(u) <o.
[uf—0 ®(u)
Next, we show that
I(u)
limsup —— < 0. (14)
luf—oo (w)

By the assumptions (F3), for every ¢ > 0 there exists 2 > 0 such that
F(z,t) < €|t|*® for every € Q and [t| > §s. (15)
Since f € F, there exists K > 0 such that for every z € (Q,

sup |f(z,t)| < K. (16)
[t| <32

On combining (15) and (16), we get
F(x,t) < K&y + €|t|*™ for every z € Q and t € R.

Thus
I(u) < K62|Q| + 6/ |u|?*da.
Q
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Since H{'(Q) — L2*(Q),

1 2 20K 55|Q  20eS3e
(u) < a 2a(K62|Q|+e/ luf20dz) < 22 2\2a| acSza
®(u) ™ mo [|ul Q mo ull mo
This proves (14). From (10) and (14), we obtain
. I(u) . I(u)
max ¢ limsup —=, limsup —= » <0.
{|u|~>olc? B(u) 0" B(u)

Thus all the conditions of Theorem 4 are satisfied. Moreover, the functional A(u) = [, G(z,u)dz, where
G(z,t) = [, g(x,s)dz, is continuously Gateaux differentiable in Hg"(€2). It is easy to see that A has compact
derivative given by

(N (u),v) :/Qg(ac,u)vdx.

By Theorem 4 there exists > 0 such that for every A € K there exists p* > 0 such that for each u € [0, u*],
the functional ® — AT — uA has at least three critical points whose norm is less than 7. Hence, (1) has three
weak solutions. This completes the proof. m
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